1
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
2
|
G Jagadeeshaprasad M, Zeng J, Zheng N. LC-MS bioanalysis of protein biomarkers and protein therapeutics in formalin-fixed paraffin-embedded tissue specimens. Bioanalysis 2024; 16:245-258. [PMID: 38226835 DOI: 10.4155/bio-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) is a form of preservation and preparation for biopsy specimens. FFPE tissue specimens are readily available as part of oncology studies because they are often collected for disease diagnosis or confirmation. FFPE tissue specimens could be extremely useful for retrospective studies on protein biomarkers because the samples preserved in FFPE blocks could be stable for decades. However, LC-MS bioanalysis of FFPE tissues poses significant challenges. In this Perspective, we review the benefits and recent developments in LC-MS approach for targeted protein biomarker and protein therapeutic analysis using FFPE tissues and their clinical and translational applications. We believe that LC-MS bioanalysis of protein biomarkers in FFPE tissue specimens represents a great potential for its clinical applications.
Collapse
Affiliation(s)
| | - Jianing Zeng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Naiyu Zheng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
3
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
4
|
High-throughput proteomic sample preparation using pressure cycling technology. Nat Protoc 2022; 17:2307-2325. [PMID: 35931778 PMCID: PMC9362583 DOI: 10.1038/s41596-022-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
High-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. Here we describe a detailed protocol of pressure cycling technology (PCT)-assisted sample preparation for proteomic analysis of biopsy tissues. A piece of fresh frozen or formalin-fixed paraffin-embedded tissue weighing ~0.1–2 mg is placed in a 150 μL pressure-resistant tube called a PCT-MicroTube with proper lysis buffer. After closing with a PCT-MicroPestle, a batch of 16 PCT-MicroTubes are placed in a Barocycler, which imposes oscillating pressure to the samples from one atmosphere to up to ~3,000 times atmospheric pressure. The pressure cycling schemes are optimized for tissue lysis and protein digestion, and can be programmed in the Barocycler to allow reproducible, robust and efficient protein extraction and proteolysis digestion for mass spectrometry-based proteomics. This method allows effective preparation of not only fresh frozen and formalin-fixed paraffin-embedded tissue, but also cells, feces and tear strips. It takes ~3 h to process 16 samples in one batch. The resulting peptides can be analyzed by various mass spectrometry-based proteomics methods. We demonstrate the applications of this protocol with mouse kidney tissue and eight types of human tumors. High-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. This protocol describes pressure cycling technology (PCT)-assisted sample preparation of biopsy tissues.
Collapse
|
5
|
Kim MS, Ahn JH, Mo JE, Song HY, Cheon D, Yoo SH, Choi HJ. Optimizing tissue clearing and imaging methods for human brain tissue. J Int Med Res 2021; 49:3000605211001729. [PMID: 33771067 PMCID: PMC8166401 DOI: 10.1177/03000605211001729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To identify optimum sample conditions for human brains, we compared the clearing efficiency, antibody staining efficiency, and artifacts between fresh and cadaver samples. METHODS Fresh and cadaver samples were cleared using X-CLARITY™. Clearing efficiency and artifact levels were calculated using ImageJ, and antibody staining efficiency was evaluated after confocal microscopy imaging. Three staining methods were compared: 4-day staining (4DS), 11-day staining (11DS), and 4-day staining with a commercial kit (4DS-C). The optimum staining method was then selected by evaluating staining time, depth, method complexity, contamination, and cost. RESULTS Fresh samples outperformed cadaver samples in terms of the time and quality of clearing, artifacts, and 4',6-diamidino-2-phenylindole (DAPI) staining efficiency, but had a glial fibrillary acidic protein (GFAP) staining efficiency that was similar to that of cadaver samples. The penetration depth and DAPI staining improved in fresh samples as the incubation period lengthened. 4DS-C was the best method, with the deepest penetration. Human brain images containing blood vessels, cell nuclei, and astrocytes were visualized three-dimensionally. The chemical dye staining depth reached 800 µm and immunostaining depth exceeded 200 µm in 4 days. CONCLUSIONS We present optimized sample preparation and staining protocols for the visualization of three-dimensional macrostructure in the human brain.
Collapse
Affiliation(s)
- Min Sun Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Jang Ho Ahn
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Eun Mo
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Ha Young Song
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Deokhyeon Cheon
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong Ho Yoo
- Institute of Forensic Medicine and Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyung Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Gaffney EF, Riegman PH, Grizzle WE, Watson PH. Factors that drive the increasing use of FFPE tissue in basic and translational cancer research. Biotech Histochem 2018; 93:373-386. [PMID: 30113239 DOI: 10.1080/10520295.2018.1446101] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The decision to use 10% neutral buffered formalin fixed, paraffin embedded (FFPE) archival pathology material may be dictated by the cancer research question or analytical technique, or may be governed by national ethical, legal and social implications (ELSI), biobank, and sample availability and access policy. Biobanked samples of common tumors are likely to be available, but not all samples will be annotated with treatment and outcomes data and this may limit their application. Tumors that are rare or very small exist mostly in FFPE pathology archives. Pathology departments worldwide contain millions of FFPE archival samples, but there are challenges to availability. Pathology departments lack resources for retrieving materials for research or for having pathologists select precise areas in paraffin blocks, a critical quality control step. When samples must be sourced from several pathology departments, different fixation and tissue processing approaches create variability in quality. Researchers must decide what sample quality and quality tolerance fit their specific purpose and whether sample enrichment is required. Recent publications report variable success with techniques modified to examine all common species of molecular targets in FFPE samples. Rigorous quality management may be particularly important in sample preparation for next generation sequencing and for optimizing the quality of extracted proteins for proteomics studies. Unpredictable failures, including unpublished ones, likely are related to pre-analytical factors, unstable molecular targets, biological and clinical sampling factors associated with specific tissue types or suboptimal quality management of pathology archives. Reproducible results depend on adherence to pre-analytical phase standards for molecular in vitro diagnostic analyses for DNA, RNA and in particular, extracted proteins. With continuing adaptations of techniques for application to FFPE, the potential to acquire much larger numbers of FFPE samples and the greater convenience of using FFPE in assays for precision medicine, the choice of material in the future will become increasingly biased toward FFPE samples from pathology archives. Recognition that FFPE samples may harbor greater variation in quality than frozen samples for several reasons, including variations in fixation and tissue processing, requires that FFPE results be validated provided a cohort of frozen tissue samples is available.
Collapse
Affiliation(s)
- E F Gaffney
- a Biobank Ireland Trust , Malahide , Co Dublin , Ireland
| | - P H Riegman
- b Erasmus Medical Centre , Department of Pathology , Rotterdam , The Netherlands
| | - W E Grizzle
- c Department of Pathology , University of Alabama at Birmingham (UAB) , Birmingham , Alabama , USA
| | - P H Watson
- d BC Cancer Agency , Vancouver Island Center , Victoria , BC , Canada
| |
Collapse
|
7
|
Lai HM, Liu AKL, Ng HHM, Goldfinger MH, Chau TW, DeFelice J, Tilley BS, Wong WM, Wu W, Gentleman SM. Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat Commun 2018; 9:1066. [PMID: 29540691 PMCID: PMC5852003 DOI: 10.1038/s41467-018-03359-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/02/2018] [Indexed: 01/21/2023] Open
Abstract
Modern clearing techniques for the three-dimensional (3D) visualisation of neural tissue microstructure have been very effective when used on rodent brain but very few studies have utilised them on human brain material, mainly due to the inherent difficulties in processing post-mortem tissue. Here we develop a tissue clearing solution, OPTIClear, optimised for fresh and archival human brain tissue, including formalin-fixed paraffin-embedded material. In light of practical challenges with immunostaining in tissue clearing, we adapt the use of cresyl violet for visualisation of neurons in cleared tissue, with the potential for 3D quantification in regions of interest. Furthermore, we use lipophilic tracers for tracing of neuronal processes in post-mortem tissue, enabling the study of the morphology of human dendritic spines in 3D. The development of these different strategies for human tissue clearing has wide applicability and, we hope, will provide a baseline for further technique development.
Collapse
Affiliation(s)
- Hei Ming Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 852, Hong Kong
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Alan King Lun Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 852, Hong Kong
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Harry Ho Man Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 852, Hong Kong
| | - Marc H Goldfinger
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Tsz Wing Chau
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - John DeFelice
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Bension S Tilley
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Wai Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 852, Hong Kong
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 852, Hong Kong.
- GMH Institute of CNS Regeneration, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- Re-Stem Biotechnology Co., Ltd, 2588 Wuzhong Road, Suzhou, 215310, China.
| | - Steve M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
8
|
Zhang Y, Muller M, Xu B, Yoshida Y, Horlacher O, Nikitin F, Garessus S, Magdeldin S, Kinoshita N, Fujinaka H, Yaoita E, Hasegawa M, Lisacek F, Yamamoto T. Unrestricted modification search reveals lysine methylation as major modification induced by tissue formalin fixation and paraffin embedding. Proteomics 2015; 15:2568-79. [PMID: 25825003 DOI: 10.1002/pmic.201400454] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is considered as an appropriate alternative to frozen/fresh tissue for proteomic analysis. Here we study formalin-induced alternations on a proteome-wide level. We compared LC-MS/MS data of FFPE and frozen human kidney tissues by two methods. First, clustering analysis revealed that the biological variation is higher than the variation introduced by the two sample processing techniques and clusters formed in accordance with the biological tissue origin and not with the sample preservation method. Second, we combined open modification search and spectral counting to find modifications that are more abundant in FFPE samples compared to frozen samples. This analysis revealed lysine methylation (+14 Da) as the most frequent modification induced by FFPE preservation. We also detected a slight increase in methylene (+12 Da) and methylol (+30 Da) adducts as well as a putative modification of +58 Da, but they contribute less to the overall modification count. Subsequent SEQUEST analysis and X!Tandem searches of different datasets confirmed these trends. However, the modifications due to FFPE sample processing are a minor disturbance affecting 2-6% of all peptide-spectrum matches and the peptides lists identified in FFPE and frozen tissues are still highly similar.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland.,Biofluid Biomarker Center (BB-C), Institute for Research Collaboration and Promotion, Niigata University, Niigata, Japan
| | - Markus Muller
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Bo Xu
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | - Sameh Magdeldin
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Naohiko Kinoshita
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hidehiko Fujinaka
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Institute of Clinical Research, Niigata National Hospital, Kashiwazaki, Japan
| | - Eishin Yaoita
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Miki Hasegawa
- Division of Digestive & General Surgery, Niigata University, Niigata, Japan
| | | | - Tadashi Yamamoto
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Biofluid Biomarker Center (BB-C), Institute for Research Collaboration and Promotion, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Song T, Yang H, Ho JCM, Tang SCW, Sze SCW, Lao L, Wang Y, Zhang KY. Expression of aquaporin 5 in primary carcinoma and lymph node metastatic carcinoma of non-small cell lung cancer. Oncol Lett 2015; 9:2799-2804. [PMID: 26137150 DOI: 10.3892/ol.2015.3108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/26/2015] [Indexed: 12/31/2022] Open
Abstract
Aquaporin 5 (AQP5), a water channel protein, is highly expressed in non-small cell lung cancer (NSCLC) tissues compared with adjacent normal tissues. AQP5 expression in lung cancer tissues is associated with a poor prognosis. The present study aimed to analyze the expression of AQP5 and investigate its role in primary and lymph node metastatic NSCLCs. An immunohistochemical labeled streptavidin-biotin method was used to determine the expression of AQP5 in 94 cases of NSCLC primary carcinoma, which included 51 cases accompanied by lymph node metastasis. The results revealed that the expression of AQP5 was significantly higher in adenocarcinomas compared with squamous cell carcinomas (P=0.002). In addition, the percentage of AQP5 expression in the primary carcinomas with lymph node metastasis was significantly higher compared with those without lymph node metastasis (P=0.024). However, no statistically significant difference in the percentage of AQP5 expression was observed between the metastatic and the primary carcinomas (P=0.377). The expression of AQP5 exhibited a correlation with the tumor-node-metastasis staging of NSCLC (P=0.027). The percentage of AQP5 expression in stage III and IV tumors was higher than that in stage I and II tumors. In addition, AQP5 expression was correlated with the survival rate of NSCLC patients (P=0.051). In conclusion, the results of the present study provide evidence for the AQP5-facilitated incidence, progression and metastasis of NSCLC. Therefore, AQP5 may be used as a potential target to investigate the incidence, progression and metastasis of NSCLC.
Collapse
Affiliation(s)
- Tianhe Song
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, SAR, P.R. China
| | - Hong Yang
- Department of Histopathology, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - James Chung Man Ho
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, SAR, P.R. China
| | - Sydney Chi Wai Tang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, SAR, P.R. China
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, SAR, P.R. China
| | - Lixing Lao
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, SAR, P.R. China
| | - Ying Wang
- Department of Histopathology, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Kalin Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, SAR, P.R. China
| |
Collapse
|
10
|
Fowler CB, O'Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 2014; 10:389-400. [PMID: 23992421 DOI: 10.1586/14789450.2013.820531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Washington DC Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
11
|
Rezaul K, Wilson LL, Han DK. Direct tissue proteomics in human diseases: potential applications to melanoma research. Expert Rev Proteomics 2014; 5:405-12. [DOI: 10.1586/14789450.5.3.405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Fowler CB, O'Leary TJ, Mason JT. Improving the Proteomic Analysis of Archival Tissue by Using Pressure-Assisted Protein Extraction: A Mechanistic Approach. ACTA ACUST UNITED AC 2014; 7:151-157. [PMID: 25049470 DOI: 10.4172/jpb.1000315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE tissue. Our laboratory has taken a mechanistic approach to developing improved protein extraction protocols, by first studying the reactions of formaldehyde with proteins and ways to reverse these reactions, then applying this approach to a model system called a "tissue surrogate", which is a gel formed by treating high concentrations of cytoplasmic proteins with formaldehyde, and finally FFPE mouse liver tissue. Our studies indicate that elevated pressure improves the recovery of proteins from FFPE tissue surrogates by hydrating and promoting solubilization of highly aggregated proteins allowing for the subsequent reversal (by hydrolysis) of formaldehyde-induced protein adducts and cross-links. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency and up to a 30-fold increase in the number of non-redundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of non-redundant proteins identified in the FFPE tissue was nearly identical to that of the corresponding frozen tissue.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Office of Research and Development, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | | | - Jeffrey T Mason
- Laboratory of Proteomics and Protein Science, Office of Research and Development, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
13
|
Fu Z, Yan K, Rosenberg A, Jin Z, Crain B, Athas G, Vander Heide RS, Howard T, Everett AD, Herrington D, Van Eyk JE. Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas. Proteomics Clin Appl 2013; 7:217-24. [PMID: 23339088 PMCID: PMC4340701 DOI: 10.1002/prca.201200064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/07/2012] [Accepted: 12/10/2012] [Indexed: 01/04/2023]
Abstract
PURPOSE Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formalin-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics. EXPERIMENT DESIGN Proteins were extracted from fresh frozen aorta at room temperature (RT). FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure. Protein yields were compared, and digested peptides from the extracts were analyzed with MS. RESULTS Combined heat and elevated pressure increased protein yield from human FF or FFPE aorta compared to matched tissues with heat alone (1.5-fold) or at RT (8.3-fold), resulting in more proteins identified and with more sequence coverage. The length of storage did adversely affect the quality of proteins from FF tissue. For long-term storage, aorta was preserved better with FFPE than FF alone. Periostin and MGF-E8 were demonstrated suitable for MRM assays from FFPE aorta. CONCLUSIONS AND CLINICAL RELEVANCE Combination of heat and high pressure is an effective method to extract proteins from FFPE aorta for downstream proteomics. This method opens the possibility for use of archival and often rare FFPE aortas and possibly other tissues available to proteomics for biomarker discovery and quantification.
Collapse
Affiliation(s)
- Zongming Fu
- Johns Hopkins School of Medicine, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, 21224
| | - Kun Yan
- Johns Hopkins School of Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224
| | - Avraham Rosenberg
- Johns Hopkins School of Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224
| | - Zhicheng Jin
- Johns Hopkins School of Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224
| | - Barbara Crain
- Johns Hopkins School of Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21224
| | - Grace Athas
- Louisiana State University School of Medicine, New Orleans, LA, 70112
| | - Richard S Vander Heide
- Johns Hopkins School of Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21224
| | - Timothy Howard
- Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Allen D. Everett
- Johns Hopkins School of Medicine, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, 21224
| | - David Herrington
- Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jennifer E. Van Eyk
- Johns Hopkins School of Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224
| |
Collapse
|
14
|
Shi SR, Taylor CR, Fowler CB, Mason JT. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies. Proteomics Clin Appl 2013; 7:264-72. [PMID: 23339100 DOI: 10.1002/prca.201200031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/12/2012] [Accepted: 11/06/2012] [Indexed: 02/01/2023]
Abstract
Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues.
Collapse
Affiliation(s)
- Shan-Rong Shi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
15
|
Betsou F, Gunter E, Clements J, DeSouza Y, Goddard KAB, Guadagni F, Yan W, Skubitz A, Somiari S, Yeadon T, Chuaqui R. Identification of evidence-based biospecimen quality-control tools: a report of the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group. J Mol Diagn 2013; 15:3-16. [PMID: 23195791 PMCID: PMC5707193 DOI: 10.1016/j.jmoldx.2012.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 01/20/2023] Open
Abstract
Control of biospecimen quality that is linked to processing is one of the goals of biospecimen science. Consensus is lacking, however, regarding optimal sample quality-control (QC) tools (ie, markers and assays). The aim of this review was to identify QC tools, both for fluid and solid-tissue samples, based on a comprehensive and critical literature review. The most readily applicable tools are those with a known threshold for the preanalytical variation and a known reference range for the QC analyte. Only a few meaningful markers were identified that meet these criteria, such as CD40L for assessing serum exposure at high temperatures and VEGF for assessing serum freeze-thawing. To fully assess biospecimen quality, multiple QC markers are needed. Here we present the most promising biospecimen QC tools that were identified.
Collapse
|
16
|
Guo H, Liu W, Ju Z, Tamboli P, Jonasch E, Mills GB, Lu Y, Hennessy BT, Tsavachidou D. An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays. Proteome Sci 2012; 10:56. [PMID: 23006314 PMCID: PMC3561137 DOI: 10.1186/1477-5956-10-56] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/10/2012] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED INTRODUCTION Protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues is challenging due to extensive molecular crosslinking that occurs upon formalin fixation. Reverse-phase protein array (RPPA) is a high-throughput technology, which can detect changes in protein levels and protein functionality in numerous tissue and cell sources. It has been used to evaluate protein expression mainly in frozen preparations or FFPE-based studies of limited scope. Reproducibility and reliability of the technique in FFPE samples has not yet been demonstrated extensively. We developed and optimized an efficient and reproducible procedure for extraction of proteins from FFPE cells and xenografts, and then applied the method to FFPE patient tissues and evaluated its performance on RPPA. RESULTS Fresh frozen and FFPE preparations from cell lines, xenografts and breast cancer and renal tissues were included in the study. Serial FFPE cell or xenograft sections were deparaffinized and extracted by six different protein extraction protocols. The yield and level of protein degradation were evaluated by SDS-PAGE and Western Blots. The most efficient protocol was used to prepare protein lysates from breast cancer and renal tissues, which were subsequently subjected to RPPA. Reproducibility was evaluated and Spearman correlation was calculated between matching fresh frozen and FFPE samples.The most effective approach from six protein extraction protocols tested enabled efficient extraction of immunoreactive protein from cell line, breast cancer and renal tissue sample sets. 85% of the total of 169 markers tested on RPPA demonstrated significant correlation between FFPE and frozen preparations (p < 0.05) in at least one cell or tissue type, with only 23 markers common in all three sample sets. In addition, FFPE preparations yielded biologically meaningful observations related to pathway signaling status in cell lines, and classification of renal tissues. CONCLUSIONS With optimized protein extraction methods, FFPE tissues can be a valuable source in generating reproducible and biologically relevant proteomic profiles using RPPA, with specific marker performance varying according to tissue type.
Collapse
Affiliation(s)
- Huifang Guo
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pheroze Tamboli
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan T Hennessy
- Department of Medical Oncology, Beaumont Hospital, Royal College of Surgeons of Ireland, Dublin, Ireland
| | - Dimitra Tsavachidou
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Fowler CB, Waybright TJ, Veenstra TD, O'Leary TJ, Mason JT. Pressure-assisted protein extraction: a novel method for recovering proteins from archival tissue for proteomic analysis. J Proteome Res 2012; 11:2602-8. [PMID: 22352854 PMCID: PMC3320745 DOI: 10.1021/pr201005t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories
represent a valuable resource for the retrospective study of disease
progression and response to therapy. However, the proteomic analysis
of FFPE tissues has been hampered by formaldehyde-induced protein
modifications, which reduce protein extraction efficiency and may
lead to protein misidentification. Here, we demonstrate the use of
heat augmented with high hydrostatic pressure (40,000 psi) as a novel
method for the recovery of intact proteins from FFPE mouse liver.
When FFPE mouse liver was extracted using heat and elevated pressure,
there was a 4-fold increase in protein extraction efficiency, a 3-fold
increase in the extraction of intact proteins, and up to a 30-fold
increase in the number of nonredundant proteins identified by mass
spectrometry, compared to matched tissue extracted with heat alone.
More importantly, the number of nonredundant proteins identified in
the FFPE tissue was nearly identical to that of matched fresh-frozen
tissue.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland, United States
| | | | | | | | | |
Collapse
|
18
|
Abstract
Systems biologists frequently seek to integrate complex data sets of diverse analytes into a comprehensive picture of an organism's biological state under defined environmental conditions. Although one would prefer to collect these data from the same sample, technical limitations with traditional sample preparation methods often commit the investigator to extracting one type of analyte at the expense of losing all others. Often, volume further constrains the range of experiments that can be collected from a single sample. The practical solution employed to date has been to rely on information collected from multiple replicate experiments and similar historical or reported data. While this approach has been popular, the integration of information collected from disparate single-analyte sample preparation streams increases uncertainty due to nonalignment during comparative analysis, and such gaps accumulate quickly when combining multiple data sets. Regrettably, discontinuities between separate data streams can confound a whole understanding of the biological system being investigated. This difficulty is further compounded for researchers handling highly pathogenic samples, in which it is often necessary to use harsh chemicals or high-energy sterilization procedures that damage the target analytes. Ultra-high pressure cycling technology (PCT), also known as barocycling, is an emerging sample preparation strategy that has distinct advantages for systems biology studies because it neither commits the researcher to pursuing a specific analyte nor leads to the degradation of target material. In fact, samples prepared under pressure cycling conditions have been shown to yield a more complete set of analytes due to uniform disruption of the sample matrix coupled with an advantageous high pressure solvent environment. Fortunately, PCT safely sterilizes and extracts complex or pathogenic viral, bacterial, and spore samples without adversely affecting the constituent biomolecules valued as informative and meaningful analytes. This chapter provides procedures and findings associated with incorporating PCT into systems biology as a new and enabling approach to preanalytical sample treatment.
Collapse
|
19
|
Tanca A, Pagnozzi D, Addis MF. Setting proteins free: Progresses and achievements in proteomics of formalin-fixed, paraffin-embedded tissues. Proteomics Clin Appl 2011; 6:7-21. [DOI: 10.1002/prca.201100044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 12/25/2022]
|
20
|
Ly L, Barnett MH, Zheng YZ, Gulati T, Prineas JW, Crossett B. Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions. J Proteome Res 2011; 10:4855-68. [PMID: 21870854 DOI: 10.1021/pr200672n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Formalin-fixed (FF) autopsy tissue comprises the bulk of existing Multiple Sclerosis (MSc) pathology archives, providing a rich pool of material for biomarker discovery and disease characterization. Here, we present the development of a heat-induced extraction protocol for the proteomic analysis of FF brain tissue, its application to the study of lesion remyelination and its failure in MSc. A 4-round extraction strategy was optimized using FF tissue leading to a 35% increase in the number of proteins identified compared to a single extraction; and a 65% increase in proteins identified with ≥4 peptides. Histological staining of sections with oil red O and luxol fast blue-periodic acid Schiff, required to characterize MSc lesions was found to have minimal effect on LC-MS/MS. The application of the optimized protocol to chronic demyelinated and remyelinated FF MSc lesions and the adjacent periplaque white matter, isolated through laser guided manual dissection from 3 patients, identified 428 unique proteins (0.2% FDR) using LC-MS/MS. Comparison of the lesion types using iTRAQ and 2-D LC-MS/MS revealed 82 differentially expressed proteins. Protein quantitation by iTRAQ and spectral counting was well-correlated (r(s)= 0.7653; p < 10(-30)). The data generated from this work illustrates the scope of the methodology and provides insights into the pathogenesis of MSc and remyelination.
Collapse
Affiliation(s)
- Linda Ly
- Central Clinical School, The University of Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Shi SR, Shi Y, Taylor CR. Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem 2011; 59:13-32. [PMID: 21339172 DOI: 10.1369/jhc.2010.957191] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As a review for the 20th anniversary of publishing the antigen retrieval (AR) technique in this journal, the authors intend briefly to summarize developments in AR-immunohistochemistry (IHC)-based research and diagnostics, with particular emphasis on current challenges and future research directions. Over the past 20 years, the efforts of many different investigators have coalesced in extending the AR approach to all areas of anatomic pathology diagnosis and research and further have led to AR-based protein extraction techniques and tissue-based proteomics. As a result, formalin-fixed paraffin-embedded (FFPE) archival tissue collections are now seen as a literal treasure of materials for clinical and translational research to an extent unimaginable just two decades ago. Further research in AR-IHC is likely to focus on tissue proteomics, developing a more efficient protocol for protein extraction from FFPE tissue based on the AR principle, and combining the proteomics approach with AR-IHC to establish a practical, sophisticated platform for identifying and using biomarkers in personalized medicine.
Collapse
Affiliation(s)
- Shan-Rong Shi
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
22
|
Fowler CB, O'Leary TJ, Mason JT. Protein mass spectrometry applications on FFPE tissue sections. Methods Mol Biol 2011; 724:281-295. [PMID: 21370020 DOI: 10.1007/978-1-61779-055-3_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue archives and their associated diagnostic records represent an invaluable source of proteomic information on diseases where the patient outcomes are already known. Over the last few years, advances in methodology have made it possible to recover peptides from FFPE tissues that yield a reasonable representation of the proteins recovered from identical fresh or frozen specimens. These new methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, have developed sufficiently to allow at least a qualitative analysis of the proteome of FFPE archival tissues. This chapter describes the approaches for performing proteomic analysis on FFPE tissues by liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Armed Forces Institute of Pathology, Washington, DC, USA.
| | | | | |
Collapse
|
23
|
Fowler CB, Chesnick IE, Moore CD, O'Leary TJ, Mason JT. Elevated pressure improves the extraction and identification of proteins recovered from formalin-fixed, paraffin-embedded tissue surrogates. PLoS One 2010; 5:e14253. [PMID: 21170380 PMCID: PMC2999528 DOI: 10.1371/journal.pone.0014253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing. Principal Findings In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates. Conclusions These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form suitable for proteomic analysis.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
24
|
Applications of ultra-high pressure in biotechnology: a symposium. Expert Rev Proteomics 2010. [DOI: 10.1586/epr.10.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Xiao Z, Li G, Chen Y, Li M, Peng F, Li C, Li F, Yu Y, Ouyang Y, Xiao Z, Chen Z. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J Histochem Cytochem 2010; 58:517-27. [PMID: 20124091 DOI: 10.1369/jhc.2010.955526] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue specimens represent a potentially valuable resource for protein biomarker investigations. In this study, proteins were extracted by a heat-induced antigen retrieval technique combined with a retrieval solution containing 2% SDS from FFPE tissues of normal nasopharyngeal epithelial tissues (NNET) and three histological types of nasopharyngeal carcinoma (NPC) with diverse differentiation degrees. Then two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins among the types of NPC FFPE tissues. Our study resulted in the identification of 730 unique proteins, the distributions of subcellular localizations and molecular functions of which were similar to those of the proteomic database of human NPC and NNET that we had set up based on the frozen tissues. Additionally, the relative expression levels of cathepsin D, keratin8, SFN, and stathmin1 identified and quantified in this report were consistent with the immunohistochemistry results acquired in our previous study. In conclusion, we have developed an effective approach to identifying protein changes in FFPE NPC tissues utilizing iTRAQ technology in conjunction with an economical and easily accessible sample preparation method.
Collapse
Affiliation(s)
- Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gräntzdörffer I, Yumlu S, Gioeva Z, von Wasielewski R, Ebert MPA, Röcken C. Comparison of different tissue sampling methods for protein extraction from formalin-fixed and paraffin-embedded tissue specimens. Exp Mol Pathol 2009; 88:190-6. [PMID: 19782068 DOI: 10.1016/j.yexmp.2009.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 09/01/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022]
Abstract
AIMS Protein extracts from formalin-fixed and paraffin-embedded (FFPE) tissue for proteomic analysis has recently gained attention. In this study, we explored the possibility to standardize tissue sampling from paraffin blocks and compared the protein extracts with those obtained from fresh frozen material. MATERIALS AND METHODS Fresh frozen and FFPE material was obtained from five patients with pancreatic ductal adenocarcinoma either by cutting sections with a microtome or by stamping a cylinder with tissue micro-array technology. All samples were weighed, forwarded to protein extraction and analyzed by polyacrylamide gel electrophoresis and Western blotting. Immunohistochemistry allocated proteins in tissue sections. RESULTS Sampling of tissue was highly reproducible, as assessed by sample weight. While protein concentrations were significantly higher in fresh frozen material compared to FFPE material, equal amounts of protein were extracted from FFPE using either paraffin sections or core cylinders in SDS-PAGE, all three procedures showed comparable protein patterns. In Western blotting, annexin I had the same molecular weight independent of the sample source and sampling procedure. CONCLUSIONS The sampling of FFPE specimens for protein extraction and analysis can be standardized, uncovering equal amounts of tissue and protein. In addition, the proteins extracted from FFPE tissue seem to be the same compared with those extracted from fresh frozen tissue.
Collapse
Affiliation(s)
- Ilona Gräntzdörffer
- Department of Pathology, Charité University Hospital, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Waybright TJ, Veenstra TD. Bringing protein biomarker discovery to the clinic. Expert Rev Mol Diagn 2009; 9:305-7. [PMID: 19435451 DOI: 10.1586/erm.09.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Mojica WD. Importance of cell-procurement methods in transforming personalized cancer treatment from concept to reality. Per Med 2009; 6:33-43. [PMID: 29783382 DOI: 10.2217/17410541.6.1.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The much-anticipated promise of personalized cancer care is to deliver therapies best suited for a patient based on the knowledge of that individual's genetics and tumor characteristics. This transformative approach will require many changes in the scientific and medical community, one of the most fundamental being the direct study of human tissue biospecimens. Biospecimens will be integral to the elucidation of biomarkers that will help identify and serve as potential diagnostic, prognostic and therapeutic targets in cancer. Despite the vast repositories of fixed-tissue biospecimens that are in existence, a number of flaws exist that hinder their reliable use as instruments from which to enable personalized cancer research and clinical care. A new view of biospecimen worth in the future will mandate that the molecules within its cells are reflective of their in vivo state, and not altered by external variables introduced during the excision and processing of the biospecimen. Research on biospecimen collection is a legitimate field of study that will be necessary for personalized cancer care to become a reality.
Collapse
Affiliation(s)
- Wilfrido D Mojica
- University at Buffalo, State University of New York, Department of Pathology, 100 High Street, Buffalo NY 14203, USA.
| |
Collapse
|
29
|
Fowler CB, O'Leary TJ, Mason JT. Modeling formalin fixation and histological processing with ribonuclease A: effects of ethanol dehydration on reversal of formaldehyde cross-links. J Transl Med 2008; 88:785-91. [PMID: 18490897 DOI: 10.1038/labinvest.2008.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the chemistry of protein modification by formaldehyde fixation and subsequent tissue processing is central to developing improved methods for antigen retrieval in immunohistochemistry and for recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissues for proteomic analysis. Our initial studies of single proteins, such as bovine pancreatic ribonuclease A (RNase A), in 10% buffered formalin solution revealed that upon removal of excess formaldehyde, monomeric RNase A exhibiting normal immunoreactivity could be recovered by heating at 60 degrees C for 30 min at pH 4. We next studied tissue surrogates, which are gelatin-like plugs of fixed proteins that have sufficient physical integrity to be processed using normal tissue histology. Following histological processing, proteins could be extracted from the tissue surrogates by combining heat, detergent, and a protein denaturant. However, gel electrophoresis revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins. This suggested that during the subsequent steps of tissue processing protein-formaldehyde adducts undergo further modifications that are not observed in aqueous proteins. As a first step toward understanding these additional modifications we have performed a comparative evaluation of RNase A following fixation in buffered formaldehyde alone and after subsequent dehydration in 100% ethanol by combining gel electrophoresis, chemical modification, and circular dichroism spectroscopic studies. Our results reveal that ethanol-induced rearrangement of the conformation of fixed RNase A leads to protein aggregation through the formation of large geometrically compatible hydrophobic beta-sheets that are likely stabilized by formaldehyde cross-links, hydrogen bonds, and van der Waals interactions. It requires substantial energy to reverse the formaldehyde cross-links within these sheets and regenerate protein monomers free of formaldehyde modifications. Accordingly, the ethanol-dehydration step in tissue histology may be important in confounding the successful recovery of proteins from FFPE tissues for immunohistochemical and proteomic analysis.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, MD 20850, USA
| | | | | |
Collapse
|