1
|
J M, Sanji AS, Gurav MJ, Megalamani PH, Vanti G, Kurjogi M, Kaulgud R, Kennedy JF, Chachadi VB. Overexpression of sialyl Lewis a carrying mucin-type glycoprotein in prostate cancer cell line contributes to aggressiveness and metastasis. Int J Biol Macromol 2024; 281:136519. [PMID: 39401629 DOI: 10.1016/j.ijbiomac.2024.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Metastasis-promoting Lewis and sialyl Lewis antigens expressed on glycoproteins such as mucins are frequently displayed on the surface of prostate cancer cells and could thus be ideal candidates as measures of prostate cancer aggressiveness. The current study describes the altered expression of sialyl Lewisa (sLea) antigen attached to glycoproteins and key glycosyltransferases between normal prostate (RWPE-1) and cancerous cell lines (LNCaP and DU145). Our results suggest that the expression of sLea on different glycoproteins correlates with the aggressiveness of prostate cancer cells, as determined by flow cytometry and fluorescence microscopy. Blotting studies revealed that sLea-bearing glycoproteins, similar to mucins, are predominantly expressed in the more aggressive DU145 cells, followed by LNCaP cells. Immunohistochemistry technique showed a gradient of sLea expression, with low levels in low-grade prostate cancer (stage II/III) and increasing levels in high-grade cancer (stage IV), indicating its potential as a prognostic marker. Additionally, in qRT-PCR analysis significant upregulation of the glycosyltransferases GALNT5 and ST3GAL6 was observed, correlating with the increased sLea expression in LNCaP (3.2- and 14.5-fold) and DU145 (3.3- and 23.75-fold) cells. Our data indicates a correlation between sLea selectin ligand expression and prostate cancer aggressiveness. Furthermore, GALNT5 and ST3GAL6 could serve as benchmarks in PCa malignancy.
Collapse
Affiliation(s)
- Manasa J
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Ashwini S Sanji
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Maruti J Gurav
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Prasanna H Megalamani
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Gulamnabi Vanti
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - Mahantesh Kurjogi
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - Ram Kaulgud
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - John F Kennedy
- Chembiotech Ltd, Kyrewood House, Tenbury Wells WR15 8FF, UK
| | - Vishwanath B Chachadi
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
2
|
Paralkar D, Akbari A, Aron M. Prostatic adenocarcinoma: molecular underpinnings and treatment-related options. Urol Oncol 2024; 42:203-210. [PMID: 38508940 DOI: 10.1016/j.urolonc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/28/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Prostate cancer is heterogeneous with varied pathologic features and presents with a wide spectrum of clinical manifestations from indolent to advanced cancer. Interrogation of the molecular landscape of prostate cancer has unveiled the complex genomic alterations in these tumors, which significantly impacts tumor biology. The documented array of chromosomal alterations, gene fusions, and epigenetic changes not only play a crucial role in oncogenesis and disease progression, but also impacts response and resistance to various therapeutic modalities. Various gene expression assays have been developed and are currently recommended in aiding clinical decision making in these clinically and molecularly heterogeneous cancer. In this review, we provide an overview of the molecular underpinnings of prostate cancer, and briefly review the current status of molecular testing and therapeutic options in the management of these tumors.
Collapse
Affiliation(s)
- Divyangi Paralkar
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Amir Akbari
- Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Manju Aron
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California.
| |
Collapse
|
3
|
Orman MV, Sreekanth V, Laajala TD, Cramer SD, Costello JC. ProstaMine: a bioinformatics tool for identifying subtype-specific co-alterations associated with aggressiveness in prostate cancer. Front Pharmacol 2024; 15:1360352. [PMID: 38751776 PMCID: PMC11094266 DOI: 10.3389/fphar.2024.1360352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024] Open
Abstract
Background Prostate cancer is a leading cause of cancer-related deaths among men, marked by heterogeneous clinical and molecular characteristics. The complexity of the molecular landscape necessitates tools for identifying multi-gene co-alteration patterns that are associated with aggressive disease. The identification of such gene sets will allow for deeper characterization of the processes underlying prostate cancer progression and potentially lead to novel strategies for treatment. Methods We developed ProstaMine to systematically identify co-alterations associated with aggressiveness in prostate cancer molecular subtypes defined by high-fidelity alterations in primary prostate cancer. ProstaMine integrates genomic, transcriptomic, and clinical data from five primary and one metastatic prostate cancer cohorts to prioritize co-alterations enriched in metastatic disease and associated with disease progression. Results Integrated analysis of primary tumors defined a set of 17 prostate cancer alterations associated with aggressive characteristics. We applied ProstaMine to NKX3-1-loss and RB1-loss tumors and identified subtype-specific co-alterations associated with metastasis and biochemical relapse in these molecular subtypes. In NKX3-1-loss prostate cancer, ProstaMine identified novel subtype-specific co-alterations known to regulate prostate cancer signaling pathways including MAPK, NF-kB, p53, PI3K, and Sonic hedgehog. In RB1-loss prostate cancer, ProstaMine identified novel subtype-specific co-alterations involved in p53, STAT6, and MHC class I antigen presentation. Co-alterations impacting autophagy were noted in both molecular subtypes. Conclusion ProstaMine is a method to systematically identify novel subtype-specific co-alterations associated with aggressive characteristics in prostate cancer. The results from ProstaMine provide insights into potential subtype-specific mechanisms of prostate cancer progression which can be formed into testable experimental hypotheses. ProstaMine is publicly available at: https://bioinformatics.cuanschutz.edu/prostamine.
Collapse
Affiliation(s)
- Michael V. Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Nørgaard M, Bjerre MT, Fredsøe J, Vang S, Jensen JB, De Laere B, Grönberg H, Borre M, Lindberg J, Sørensen KD. Prognostic Value of Low-Pass Whole Genome Sequencing of Circulating Tumor DNA in Metastatic Castration-Resistant Prostate Cancer. Clin Chem 2023; 69:386-398. [PMID: 36762756 DOI: 10.1093/clinchem/hvac224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Multiple treatments are available for metastatic castration-resistant prostate cancer (mCRPC), including androgen receptor signaling inhibitors (ARSI) enzalutamide and abiraterone, but therapy resistance remains a major clinical obstacle. We examined the clinical utility of low-pass whole-genome sequencing (LPWGS) of circulating tumor DNA (ctDNA) for prognostication in mCRPC. METHODS A total of 200 plasma samples from 143 mCRPC patients collected at the start of first-line ARSI treatment (baseline) and at treatment termination (n = 57, matched) were analyzed by LPWGS (median: 0.50X) to access ctDNA% and copy number alteration (CNA) patterns. The best confirmed prostate specific antigen (PSA) response (≥50% decline [PSA50]), PSA progression-free survival (PFS), and overall survival (OS) were used as endpoints. For external validation, we used plasma LPWGS data from an independent cohort of 70 mCRPC patients receiving first-line ARSI. RESULTS Baseline ctDNA% ranged from ≤3.0% to 73% (median: 6.6%) and CNA burden from 0% to 82% (median: 13.1%) in the discovery cohort. High ctDNA% and high CNA burden at baseline was associated with poor PSA50 response (P = 0.0123/0.0081), poor PFS (P < 0.0001), and poor OS (P < 0.0001). ctDNA% and CNA burden was higher at PSA progression than at baseline in 32.7% and 42.3% of the patients. High ctDNA% and high CNA burden at baseline was also associated with poor PFS and OS (P ≤ 0.0272) in the validation cohort. CONCLUSIONS LPWGS of ctDNA provides clinically relevant information about the tumor genome in mCRPC patients. Using LPWGS data, we show that high ctDNA% and CNA burden at baseline is associated with short PFS and OS in 2 independent cohorts.
Collapse
Affiliation(s)
- Maibritt Nørgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marianne T Bjerre
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark.,Department of Urology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen B Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Sharma S, Cwiklinski K, Sykes DE, Mahajan SD, Chevli K, Schwartz SA, Aalinkeel R. Use of Glycoproteins-Prostate-Specific Membrane Antigen and Galectin-3 as Primary Tumor Markers and Therapeutic Targets in the Management of Metastatic Prostate Cancer. Cancers (Basel) 2022; 14:cancers14112704. [PMID: 35681683 PMCID: PMC9179331 DOI: 10.3390/cancers14112704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Prostate specific membrane antigen and galectins are proteins expressed on cell surface and their expression is associated with cancer growth and spread. The goal of this research was to look at the pattern of these two glycoproteins in the human prostate cancer microenvironment. Prostate specific membrane antigen and galectins-1,3 and 8 were the most frequently detected glycoproteins in various phases of this disease. Furthermore, prostate specific membrane antigen and galectin-3 expression are good indicators of tumor aggressiveness, and their combined expression can be valuable tool for prostate cancer diagnosis and treatment in future. Together, our findings reveal a tightly regulated “Prostate specific membrane antigen-galectin-pattern” that accompanies disease in prostate cancer and point to a key role for combined prostate specific membrane antigen and galectin-3 inhibitors in prostate cancer treatment along with standard chemotherapy. Abstract Galectins and prostate specific membrane antigen (PSMA) are glycoproteins that are functionally implicated in prostate cancer (CaP). We undertook this study to analyze the “PSMA-galectin pattern” of the human CaP microenvironment with the overarching goal of selecting novel-molecular targets for prognostic and therapeutic purposes. We examined CaP cells and biopsy samples representing different stages of the disease and found that PSMA, Gal-1, Gal-3, and Gal-8 are the most abundantly expressed glycoproteins. In contrast, other galectins such as Gal-2, 4–7, 9–13, were uniformly expressed at lower levels across all cell lines. However, biopsy samples showed markedly higher expression of PSMA, Gal-1 and Gal-3. Independently PSA and Gleason score at diagnosis correlated with the expression of PSMA, Gal-3. Additionally, the combined index of PSMA and Gal-3 expression positively correlated with Gleason score and was a better predictor of tumor aggressiveness. Together, our results recognize a tightly regulated “PSMA-galectin- pattern” that accompanies disease in CaP and highlight a major role for the combined PSMA and Gal-3 inhibitors along with standard chemotherapy for prostate cancer treatment. Inhibitor combination studies show enzalutamide (ENZ), 2-phosphonomethyl pentanedioic acid (2-PMPA), and GB1107 as highly cytotoxic for LNCaP and LNCaP-KD cells, while Docetaxel (DOC) + GB1107 show greater efficacy in PC-3 cells. Overall, 2-PMPA and GB1107 demonstrate synergistic cytotoxic effects with ENZ and DOC in various CaP cell lines.
Collapse
Affiliation(s)
- Satish Sharma
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St., Buffalo, NY 14203, USA; (S.S.); (K.C.); (D.E.S.); (S.D.M.); (S.A.S.)
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Katherine Cwiklinski
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St., Buffalo, NY 14203, USA; (S.S.); (K.C.); (D.E.S.); (S.D.M.); (S.A.S.)
| | - Donald E. Sykes
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St., Buffalo, NY 14203, USA; (S.S.); (K.C.); (D.E.S.); (S.D.M.); (S.A.S.)
| | - Supriya D. Mahajan
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St., Buffalo, NY 14203, USA; (S.S.); (K.C.); (D.E.S.); (S.D.M.); (S.A.S.)
| | - Kent Chevli
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St., Buffalo, NY 14203, USA; (S.S.); (K.C.); (D.E.S.); (S.D.M.); (S.A.S.)
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Ravikumar Aalinkeel
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St., Buffalo, NY 14203, USA; (S.S.); (K.C.); (D.E.S.); (S.D.M.); (S.A.S.)
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Correspondence: ; Tel.: +1-716-888-4778
| |
Collapse
|
6
|
Ko H, Ahn HJ, Kim YI. Methylation and mutation of the inhibin‑α gene in human melanoma cells and regulation of PTEN expression and AKT/PI3K signaling by a demethylating agent. Oncol Rep 2021; 47:37. [PMID: 34958114 DOI: 10.3892/or.2021.8248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Inhibin suppresses the pituitary secretion of follicle‑stimulating hormone and has been reported to act as a tumor suppressor gene in the gonad in mice. Epigenetic modifications, mutations, changes in the loss of heterozygosity (LOH) of the inhibin‑α gene and regulation of gene expression in response to a demethylating agent [5‑aza‑2'‑deoxycytidine (5‑Aza‑dC)] in human melanoma cells were assessed. In addition, the association between a mutation in the 5'‑untranslated region (5'‑UTR) of the inhibin‑α subunit and the expression of phosphatidylinositol 3,4,5‑trisphosphate‑dependent Rac exchanger 2 (PREX2) and phosphatase and tensin homolog (PTEN) as well as AKT/PI3K signaling was determined. The methylation status of the CpG sites of the inhibin‑α promoter was analyzed by methylation‑specific PCR in bisulfite‑treated DNA. Cell viability was counted using the trypan blue assay, mRNA expression was examined via reverse transcription‑quantitative PCR, and protein expression was examined via western blot analysis. The inhibin‑α promoter was hypermethylated in G361, SK‑MEL‑3, SK‑MEL‑24 and SK‑MEL‑28 cells and moderately methylated in SK‑MEL‑5 cells. Inhibin‑α gene mutations were observed in the 5'‑UTR exon 1 of G361, SK‑MEL‑5, SK‑MEL‑24 and SK‑MEL‑28 cells as well as in exon 2 of SK‑MEL‑3 cells. Allelic imbalance, including LOH, in the inhibin‑α gene was detected in human melanoma cells. Treatment with 5‑Aza‑dC increased inhibin‑α mRNA and protein levels, inhibited cell proliferation, and delayed the doubling times of surviving melanoma cells. In 5‑Aza‑dC‑treated cells, PREX2 protein expression was slightly increased in G361 and SK‑MEL‑24 cells and decreased in SK‑MEL3, SK‑MEL‑5 and SK‑MEL‑28 cells. However, the protein expression of PTEN was decreased in melanoma cells. In addition, AKT and PI3K protein phosphorylation levels increased in all melanoma cells, except of G361 cells, demonstrating decreased PI3K protein phosphorylation. These data provided evidence that methylation, mutation and LOH are observed in the inhibin α‑subunit gene and gene locus in human melanoma cells. Furthermore, the demethylating agent reactivated inhibin‑α gene expression and regulated PREX2 expression. AKT/PI3K signaling increased as PTEN expression decreased. In addition, mutations in the tumor suppressor inhibin‑α, PTEN and p53 genes were not associated with transcriptional silencing, gene expression and cell growth as analyzed through experiments and literature reviews. These data demonstrated that methylation and mutations were associated with the inhibin‑α gene in human melanoma cells and indicated the regulation of PTEN expression and AKT/PI3K signaling by a demethylating agent.
Collapse
Affiliation(s)
- Hyunmin Ko
- Department of Surgery, College of Medicine, Kyung Hee University, Dongdaemun, Seoul 02447, Republic of Korea
| | - Hyung Joon Ahn
- Department of Surgery, College of Medicine, Kyung Hee University, Dongdaemun, Seoul 02447, Republic of Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Dongdaemun, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Gjerstorff MF. Novel Insights Into Epigenetic Reprogramming and Destabilization of Pericentromeric Heterochromatin in Cancer. Front Oncol 2020; 10:594163. [PMID: 33251148 PMCID: PMC7674669 DOI: 10.3389/fonc.2020.594163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Pericentromeric heterochromatin is maintained in a condensed structure by repressive epigenetic control mechanisms and perturbation of these may cause diseases. The chromosome 1q12 region harbors the largest pericentromeric heterochromatin domain in the genome and is among the most common breakpoints in both solid and hematopoietic cancers. Furthermore, the 1q arm is frequently amplified in cancer and this may support tumorigenesis by increasing the dosage of the many oncogenes of this genomic region. Recent studies have provided insight into the mechanisms leading to loss of 1q12 stability and 1q amplification and DNA hypomethylation seems to play a prominent role. This may be the result of decreased activity of DNA methyltransferases and instrumental for 1q12 destabilization or arise secondary to perturbation of other important epigenetic mechanisms that control repression of pericentromeric heterochromatin. Polycomb proteins were recently demonstrated to epigenetically reprogram demethylated 1q12 pericentromeric heterochromatin in premalignant and malignant cells to form large subnuclear structures known as polycomb bodies. This may influence the regulation and stability of 1q12 pericentromeric heterochromatin and/or the distribution of polycomb factors to support tumorigenesis. This review will discuss recent insight into the epigenetic perturbations causing the destabilization of 1q12 pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
8
|
Hashmi AA, Mudassir G, Irfan M, Hussain ZF, Hashmi SK, Asif H, Nisar L, Naeem M, Faridi N. Prognostic Significance of High Androgen Receptor Expression in Prostatic Acinar Adenocarcinoma. Asian Pac J Cancer Prev 2019; 20:893-896. [PMID: 30912411 PMCID: PMC6825794 DOI: 10.31557/apjcp.2019.20.3.893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Quantitative immunohistochemical expression of Androgen receptor (AR) has not been evaluated as a prognostic biomarker of prostate cancer in our population, therefore in the current study we aimed to evaluate the association of AR expression in prostatic acinar adenocarcinoma with various prognostic parameters like tumor quantification, Gleason score, WHO grade group and perineural invasion. Methods: Total 121 cases of biopsy proven prostatic acinar adenocarcinoma were selected from records of pathology department archives from January 2013 till December 2017. Hematoxylin and eosin stained slides and paraffin blocks were retrieved and new sections were cut where necessary. Slides of all cases were reviewed by two senior histopathologists and pathologic characteristics like Gleason score, WHO grade, tumor quantification, perineural and lymphovascular invasion were evaluated. Androgen receptor immunohistochemistry was applied on all cases. Results: Low AR expression was noted in 53 cases (43.8%) while high AR expression was seen in 68 cases (56.2%). Significant association of AR expression was noted with total Gleason score, WHO grade and percentage of tissue involvement (tumor quantification). Univariate binary logistic regression showed patients with low Gleason scores (scores 6,7 or 8) and low WHO grade (grade 1, 2 or 3) were less likely to express high AR expression in comparison to high Gleason score (score 9) and high WHO grade group (grade 5) respectively. Similarly, cases with low tissue involvement by carcinoma (<50%) were less likely to show high AR expression in comparison to cases with >50% tissue involvement by carcinoma. Conclusion: Significant association of AR expression was noted with total Gleason score, WHO grade and percentage of tissue involvement (tumor quantification) which are among the most important markers of tumor progression; therefore we suggest that AR expression should be performed in patients with prostatic adenocarcinoma for prognostic stratification of the patients.
Collapse
Affiliation(s)
- Atif Ali Hashmi
- Department of Histopathology, Liaquat National Hospital and Medical College, Karachi, Pakistan.
| | - Ghazala Mudassir
- Department of Pathology, Shifa College of Medicine, Islamabad, Pakistan
| | - Muhammad Irfan
- Department of Statistics, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Zubaida Fida Hussain
- Department of Histopathology, Liaquat National Hospital and Medical College, Karachi, Pakistan.
| | | | - Huda Asif
- CMH Institute of Medical Sciences, Multan, Pakistan
| | - Laila Nisar
- Liaquat National School of Diagnostic Laboratory Sciences, Karachi, Pakistan
| | - Maheen Naeem
- Liaquat National School of Diagnostic Laboratory Sciences, Karachi, Pakistan
| | - Naveen Faridi
- Department of Histopathology, Liaquat National Hospital and Medical College, Karachi, Pakistan.
| |
Collapse
|
9
|
Lu X, Pan X, Wu CJ, Zhao D, Feng S, Zang Y, Lee R, Khadka S, Amin SB, Jin EJ, Shang X, Deng P, Luo Y, Morgenlander WR, Weinrich J, Lu X, Jiang S, Chang Q, Navone NM, Troncoso P, DePinho RA, Wang YA. An In Vivo Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Res 2018; 78:3823-3833. [PMID: 29769196 PMCID: PMC6381393 DOI: 10.1158/0008-5472.can-17-3564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/27/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Advanced prostate cancer displays conspicuous chromosomal instability and rampant copy number aberrations, yet the identity of functional drivers resident in many amplicons remain elusive. Here, we implemented a functional genomics approach to identify new oncogenes involved in prostate cancer progression. Through integrated analyses of focal amplicons in large prostate cancer genomic and transcriptomic datasets as well as genes upregulated in metastasis, 276 putative oncogenes were enlisted into an in vivo gain-of-function tumorigenesis screen. Among the top positive hits, we conducted an in-depth functional analysis on Pygopus family PHD finger 2 (PYGO2), located in the amplicon at 1q21.3. PYGO2 overexpression enhances primary tumor growth and local invasion to draining lymph nodes. Conversely, PYGO2 depletion inhibits prostate cancer cell invasion in vitro and progression of primary tumor and metastasis in vivo In clinical samples, PYGO2 upregulation associated with higher Gleason score and metastasis to lymph nodes and bone. Silencing PYGO2 expression in patient-derived xenograft models impairs tumor progression. Finally, PYGO2 is necessary to enhance the transcriptional activation in response to ligand-induced Wnt/β-catenin signaling. Together, our results indicate that PYGO2 functions as a driver oncogene in the 1q21.3 amplicon and may serve as a potential prognostic biomarker and therapeutic target for metastatic prostate cancer.Significance: Amplification/overexpression of PYGO2 may serve as a biomarker for prostate cancer progression and metastasis. Cancer Res; 78(14); 3823-33. ©2018 AACR.
Collapse
Affiliation(s)
- Xin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Xiaolu Pan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Feng
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Yong Zang
- Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunada Khadka
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samirkumar B Amin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eun-Jung Jin
- Department of Biological Science, Wonkwang University, Cheonbuk, Iksan, South Korea
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanting Luo
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - William R Morgenlander
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Jacqueline Weinrich
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Xuemin Lu
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Chang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
Xiao L, Wang Y, Xu K, Hu H, Xu Z, Wu D, Wang Z, You W, Ng CF, Yu S, Chan FL. Nuclear Receptor LRH-1 Functions to Promote Castration-Resistant Growth of Prostate Cancer via Its Promotion of Intratumoral Androgen Biosynthesis. Cancer Res 2018; 78:2205-2218. [PMID: 29438990 DOI: 10.1158/0008-5472.can-17-2341] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/27/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022]
Abstract
Targeting of steroidogenic enzymes (e.g., abiraterone acetate targeting CYP17A1) has been developed as a novel therapeutic strategy against metastatic castration-resistant prostate cancer (CRPC). However, resistance to steroidal inhibitors inevitably develops in patients, the mechanisms of which remain largely unknown. Liver receptor homolog-1 (LRH-1, NR5A2) is a nuclear receptor, originally characterized as an important regulator of some liver-specific metabolic genes. Here, we report that LRH-1, which exhibited an increased expression pattern in high-grade prostate cancer and CRPC xenograft models, functions to promote de novo androgen biosynthesis via its direct transactivation of several key steroidogenic enzyme genes, elevating intratumoral androgen levels and reactivating AR signaling in CRPC xenografts as well as abiraterone-treated CRPC tumors. Pharmacologic inhibition of LRH-1 activity attenuated LRH-1-mediated androgen deprivation and anti-androgen resistance of prostate cancer cells. Our findings not only demonstrate the significant role of LRH-1 in the promotion of intratumoral androgen biosynthesis in CRPC via its direct transcriptional control of steroidogenesis, but also suggest targeting LRH-1 could be a potential therapeutic strategy for CRPC management.Significance: These findings not only demonstrate the significant role of the nuclear receptor LRH-1 in the promotion of intratumoral androgen biosynthesis in CRPC via its direct transcriptional control of steroidogenesis, but also suggest targeting LRH-1 could be a potential therapeutic strategy for CRPC management. Cancer Res; 78(9); 2205-18. ©2018 AACR.
Collapse
Affiliation(s)
- Lijia Xiao
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.,Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuliang Wang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhenyu Xu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhu Wang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wenxing You
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- Department of Surgery, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Stankiewicz E, Mao X, Mangham DC, Xu L, Yeste-Velasco M, Fisher G, North B, Chaplin T, Young B, Wang Y, Kaur Bansal J, Kudahetti S, Spencer L, Foster CS, Møller H, Scardino P, Oliver RT, Shamash J, Cuzick J, Cooper CS, Berney DM, Lu YJ. Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer. Sci Rep 2017; 7:5124. [PMID: 28698647 PMCID: PMC5505985 DOI: 10.1038/s41598-017-05209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/24/2017] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. By analysing prostate cancer bone metastases using high density microarrays, we found a common genomic copy number loss at 6q16.1-16.2, containing the FBXL4 gene, which was confirmed in larger series of bone metastases by fluorescence in situ hybridisation (FISH). Loss of FBXL4 was also detected in primary tumours and it was highly associated with prognostic factors including high Gleason score, clinical stage, prostate-specific antigen (PSA) and extent of disease, as well as poor patient survival, suggesting that FBXL4 loss contributes to prostate cancer progression. We also demonstrated that FBXL4 deletion is detectable in circulating tumour cells (CTCs), making it a potential prognostic biomarker by 'liquid biopsy'. In vitro analysis showed that FBXL4 plays a role in regulating the migration and invasion of prostate cancer cells. FBXL4 potentially controls cancer metastasis through regulation of ERLEC1 levels. Therefore, FBXL4 could be a potential novel prostate cancer suppressor gene, which may prevent cancer progression and metastasis through controlling cell invasion.
Collapse
Affiliation(s)
- Elzbieta Stankiewicz
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Xueying Mao
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - D Chas Mangham
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Pathology, Oswestry, Shropshire, SY10 7AG, UK
| | - Lei Xu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marc Yeste-Velasco
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabrielle Fisher
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Bernard North
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Tracy Chaplin
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bryan Young
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yuqin Wang
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jasmin Kaur Bansal
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sakunthala Kudahetti
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Lucy Spencer
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christopher S Foster
- Division of Cellular and Molecular Pathology, University of Liverpool, Liverpool, L69 3BX, UK
- HCA Pathology Laboratories, Shropshire House, Capper Street, London, WC1E6JA, UK
| | - Henrik Møller
- King's College London, Cancer Epidemiology and Population Health, London, SE1 9RT, UK
| | - Peter Scardino
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - R Tim Oliver
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonathan Shamash
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jack Cuzick
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Colin S Cooper
- School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Daniel M Berney
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yong-Jie Lu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Kim YI, Park SW, Kwon HS, Yang HS, Cho SY, Kim YJ, Lee HJ. Inhibin-α gene mutations and mRNA levels in human lymphoid and myeloid leukemia cells. Int J Oncol 2017; 50:1403-1412. [PMID: 28260095 DOI: 10.3892/ijo.2017.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
The inhibin-α gene was identified as a tumor suppressor gene in the gonads and adrenal glands by functional studies using knockout mice. Methylation of CpG sites within the regulatory regions of tumor suppressor gene is frequently associated with their transcriptional silencing. We investigated epigenetic modifications, changes in loss of heterozygosity (LOH), and mutation of the inhibin-α gene, and regulation of transcriptional expression in response to inhibitors of DNA methylation (5-aza-2'-deoxycytidine, 5-AzaC) in human lymphoid (Jurkat, Molt-4, Raji, and IM-9) and myeloid (HL-60, Kasumi-1, and K562) leukemia cells. The inhibin-α promoter was hypermethylated in lymphoid (Molt-4 and Raji) and myeloid (HL-60 and Kasumi-1) leukemia cells. Inhibin-α gene mutations differed significantly between lymphoid (heterozygote) and myeloid (homozygote) leukemia cells. LOH in the inhibin-α gene was detected in lymphoid and myeloid leukemia cells, with the exception of Jurkat cells. Treatment with 5-AzaC, a demethylating agent, resulted in increased inhibin-α mRNA and protein levels in most of the cell lines. Also, 5-AzaC treatment inhibited cell proliferation and induced apoptosis. Taken together, our results reveal that the inhibin-α gene is transcriptionally silenced in human leukemia cells and that reactivation is suppressed by a demethylating agent. In addition, mutations in, and expression levels of, the inhibin-α gene differed between human lymphoid and myeloid leukemia cells.
Collapse
Affiliation(s)
- Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Daegu 38430, Republic of Korea
| | - Hye Shin Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yang
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Young Cho
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Joo Lee
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Silva MP, Barros-Silva JD, Ersvær E, Kildal W, Hveem TS, Pradhan M, Vieira J, Teixeira MR, Danielsen HE. Cancer Prognosis Defined by the Combined Analysis of 8q, PTEN and ERG. Transl Oncol 2016; 9:575-582. [PMID: 27916292 PMCID: PMC5143339 DOI: 10.1016/j.tranon.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
Overtreatment is a major concern in men diagnosed with prostate cancer. The aim of this study was to evaluate the combined prognostic role of three frequent molecular alterations in prostate cancer, namely relative 8q gain, ERG overexpression, and loss of PTEN expression, in a series of 136 patients with prostate cancer treated with prostatectomy and with a long follow-up. Fluorescent in situ hybridization was used to detect the relative copy number of 8q and immunohistochemistry was used for quantitative assessment of ERG and PTEN expression. During a median follow-up period of 117.8 months, 66 (49%) patients had disease recurrence. Relative 8q gain, ERG overexpression, and loss of PTEN expression were observed in 18%, 56%, and 33% of the cases, respectively. No association with patient recurrence-free survival was found for relative 8q gain or ERG overexpression on their own, whereas loss of PTEN expression was associated with worse recurrence-free survival (P=.006). Interestingly, in the subgroup of patients with normal PTEN expression, we found that the combined relative 8q gain/ERG overexpression is associated with high risk of recurrence (P=.008), suggesting that alternative mechanisms exist for progression into clinically aggressive disease. Additionally, in intermediate-risk patients with normal PTEN expression in their tumors, the combination of 8q gain/ERG overexpression was associated with a poor recurrence-free survival (P<.001), thus indicating independent prognostic value. This study shows that the combined analysis of 8q, ERG and PTEN contributes to an improved clinical outcome stratification of prostate cancer patients treated with radical prostatectomy.
Collapse
Affiliation(s)
- Maria P Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Elin Ersvær
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Tarjei Sveinsgjerd Hveem
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, University of Oslo, Oslo, Norway; Department of Informatics, University of Oslo, 0310 Oslo, Norway
| | - Manohar Pradhan
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Joana Vieira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Håvard E Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, University of Oslo, Oslo, Norway; Department of Informatics, University of Oslo, 0310 Oslo, Norway; Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Moss ML, Miller MA, Vujanovic N, Yoneyama T, Rasmussen FH. Fluorescent substrates for ADAM15 useful for assaying and high throughput screening. Anal Biochem 2016; 514:42-47. [PMID: 27637923 DOI: 10.1016/j.ab.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
A disintegrin and metalloproteinase 15 (ADAM15), also known as metargidin, plays important roles in regulating inflammation, wound healing, neovascularization, and is an attractive drug target. Fluorescence resonance energy transfer (FRET)-based peptide substrates were tested to identify candidate reagents for high throughput screening and detection of ADAM15 in biological samples. ADAM15 exhibits a unique and diverse activity profile compared to other metalloproteinases. Two FRET substrates, Dabcyl-Gly-Pro-Leu-Gly-Met-Arg-Gly-Lys(FAM)-NH2 (PEPDAB011) and Dabcyl-Ala-Pro-Arg-Trp-Ile-Gln-Asp-Lys(FAM)-NH2 (PEPDAB017), which also detect activities of several matrix metalloproteinases (MMPs -2, -9, and -13), were efficiently cleaved by ADAM15 with specificity constants of 5800 M-1 s-1 and 4300 M-1 s-1, respectively. Additionally, ADAM15 efficiently processed Dabcyl-Leu-Arg-Glu-Gln-Gln-Arg-Leu-Lys-Ser-Lys(FAM)-NH2 (PEPDAB022), which is based on a physiological CD23 cleavage site, with a specificity constant (kcat/Km) of 5200 M-1 s-1. PEPDAB022 was used to screen the ability of known metalloproteinase inhibitors including TAPI-2, marimastat, GI-254023, and the Tissue Inhibitor of Metalloproteinases(TIMPs) 1 and 3 to block ADAM15 activity. Even though ADAM15 exhibits similar substrate preferences to other metalloproteinases, many broad spectrum inhibitors failed to block ADAM15 activity at concentrations as high as 50 μM. Thus, a clear need exists to develop potent and selective ADAM15 inhibitors, and the FRET substrates described herein should aid future research efforts towards this aim.
Collapse
Affiliation(s)
- Marcia L Moss
- BioZyme Inc, 1513 Old White Oak Church Rd., Apex, NC 27523, USA.
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nikola Vujanovic
- University of Pittsburgh Cancer Institute, Departments of Pathology, VA Healthcare System, Pittsburgh, PA, USA
| | - Toshie Yoneyama
- University of Pittsburgh Cancer Institute, Departments of Pathology, VA Healthcare System, Pittsburgh, PA, USA
| | | |
Collapse
|
15
|
Silva MP, Barros-Silva JD, Vieira J, Lisboa S, Torres L, Correia C, Vieira-Coimbra M, Martins AT, Jerónimo C, Henrique R, Paulo P, Teixeira MR. NCOA2 is a candidate target gene of 8q gain associated with clinically aggressive prostate cancer. Genes Chromosomes Cancer 2016; 55:365-74. [PMID: 26799514 DOI: 10.1002/gcc.22340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
Abstract
Prostate carcinomas harboring 8q gains are associated with poor clinical outcome, but the target genes of this genomic alteration remain to be unveiled. In this study, we aimed to identify potential 8q target genes associated with clinically aggressive prostate cancer (PCa) using fluorescence in situ hybridization (FISH), genome-wide mRNA expression, and protein expression analyses. Using FISH, we first characterized the relative copy number of 8q (assessed with MYC flanking probes) of a series of 50 radical prostatectomy specimens, with available global gene expression data and typed for E26 transformation specific (ETS) rearrangements, and then compared the gene expression profile of PCa subsets with and without 8q24 gain using Significance Analysis of Microarrays. In the subset of tumors with ERG fusion genes (ERG+), five genes were identified as significantly overexpressed (false discovery rate [FDR], ≤ 5%) in tumors with relative 8q24 gain, namely VN1R1, ZNF417, CDON, IKZF2, and NCOA2. Of these, only NCOA2 is located in 8q (8q13.3), showing a statistically higher mRNA expression in the subgroup with relative 8q gain, both in the ERG+ subgroup and in the whole series (P = 0.000152 and P = 0.008, respectively). Combining all the cases with NCOA2 overexpression, either at the mRNA or at the protein level, we identified a group of tumors with NCOA2 copy-number increase, independently of ETS status and relative 8q24 gain. Furthermore, for the first time, we detected a structural rearrangement involving NCOA2 in PCa. These findings warrant further studies with larger series to evaluate if NCOA2 relative copy-number gain presents prognostic value independently of the well-established poor prognosis associated with MYC relative copy-number gain.
Collapse
Affiliation(s)
- Maria P Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Joana Vieira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Susana Lisboa
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Lurdes Torres
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Cecília Correia
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Ana T Martins
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Paula Paulo
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Race-associated biological differences among Luminal A breast tumors. Breast Cancer Res Treat 2015; 152:437-48. [PMID: 26109344 DOI: 10.1007/s10549-015-3474-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023]
Abstract
African-American (AA) women have higher breast cancer-specific mortality rates. A higher prevalence of the worse outcome Basal-like breast cancer subtype contributes to this, but AA women also have higher mortality even within the more favorable outcome Luminal A breast cancers. These differences may reflect treatment or health care access issues, inherent biological differences, or both. To identify potential biological differences by race among Luminal A breast cancers, gene expression data from 108 CAU and 57 AA breast tumors were analyzed. Race-associated genes were evaluated for associations with survival. Finally, expression of race- and survival-associated genes was evaluated in normal tissue of AA and CAU women. Six genes (ACOX2, MUC1, CRYBB2, PSPH, SQLE, TYMS) were differentially expressed by race among Luminal A breast cancers and were associated with survival (HR <0.8, HR >1.25). For all six genes, tumors in AA had higher expression of poor prognosis genes (CRYBB2, PSPH, SQLE, TYMS) and lower expression of good prognosis genes (ACOX2, MUC1). A score based on all six genes predicted survival in a large independent dataset (HR = 1.9 top vs. bottom quartile, 95% CI: 1.4-2.5). For four genes, normal tissue of AA and CAU women showed similar expression (ACOX2, MUC1, SQLE, TYMS); however, the poor outcome-associated genes CRYBB2 and PSPH were more highly expressed in AA versus CAU women's normal tissue. This analysis identified gene expression differences that may contribute to mortality disparities and suggests that among Luminal A breast tumors there are biological differences between AA and CAU patients. Some of these differences (CRYBB2 and PSPH) may exist from the earliest stages of tumor development, or may even precede malignancy.
Collapse
|
17
|
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J 2015; 6:9. [PMID: 25908947 PMCID: PMC4407842 DOI: 10.1186/s13167-015-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Gyeonggi, 410-769 Republic of Korea
| | - Rostyslav Bubnov
- Clinical Hospital 'Pheophania' of State Management of Affairs Department, Kyiv, Ukraine ; Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Suzanne Hagan
- Dept of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Dominic M Desiderio
- Department of Neurology, University of Tennessee Center for Health Science, Memphis, USA
| |
Collapse
|
18
|
Garritano S, Romanel A, Ciribilli Y, Bisio A, Gavoci A, Inga A, Demichelis F. In-silico identification and functional validation of allele-dependent AR enhancers. Oncotarget 2015; 6:4816-28. [PMID: 25693204 PMCID: PMC4467117 DOI: 10.18632/oncotarget.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022] Open
Abstract
Androgen Receptor (AR) and Estrogen Receptors (ERs) are key nuclear receptors that can cooperate in orchestrating gene expression programs in multiple tissues and diseases, targeting binding elements in promoters and distant enhancers. We report the unbiased identification of enhancer elements bound by AR and ER-α whose activity can be allele-specific depending on the status of nearby Single Nucleotide Polymorphisms (SNP). ENCODE data were computationally mined to nominate genomic loci with: (i) chromatin signature of enhancer activity from activation histone marks, (ii) binding evidence by AR and ER-α, (iii) presence of a SNP. Forty-one loci were identified and two, on 1q21.3 and 13q34, selected for characterization by gene reporter, Chromatin immunoprecipitation (ChIP) and RT-qPCR assays in breast (MCF7) and prostate (PC-3) cancer-derived cell lines. We observed allele-specific enhancer activity, responsiveness to ligand-bound AR, and potentially influence on the transcription of closely located genes (RAB20, ING1, ARHGEF7, ADAM15). The 1q21.3 variant, rs2242193, showed impact on AR binding in MCF7 cells that are heterozygous for the SNP. Our unbiased genome-wide search proved to be an efficient methodology to discover new functional polymorphic regulatory regions (PRR) potentially acting as risk modifiers in hormone-driven cancers and overall nominated SNPs in PRR across 136 transcription factors.
Collapse
MESH Headings
- Alleles
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Chromatin Immunoprecipitation
- Computer Simulation
- Enhancer Elements, Genetic/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Humans
- Male
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonia Garritano
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alessandro Romanel
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Antoneta Gavoci
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Francesca Demichelis
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, USA
- Institute for Precision Medicine, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
19
|
Romanel A, Lago S, Prandi D, Sboner A, Demichelis F. ASEQ: fast allele-specific studies from next-generation sequencing data. BMC Med Genomics 2015; 8:9. [PMID: 25889339 PMCID: PMC4363342 DOI: 10.1186/s12920-015-0084-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background Single base level information from next-generation sequencing (NGS) allows for the quantitative assessment of biological phenomena such as mosaicism or allele-specific features in healthy and diseased cells. Such studies often present with computationally challenging burdens that hinder genome-wide investigations across large datasets that are now becoming available through the 1,000 Genomes Project and The Cancer Genome Atlas (TCGA) initiatives. Results We present ASEQ, a tool to perform gene-level allele-specific expression (ASE) analysis from paired genomic and transcriptomic NGS data without requiring paternal and maternal genome data. ASEQ offers an easy-to-use set of modes that transparently to the user takes full advantage of a built-in fast computational engine. We report its performances on a set of 20 individuals from the 1,000 Genomes Project and show its detection power on imprinted genes. Next we demonstrate high level of ASE calls concordance when comparing it to AlleleSeq and MBASED tools. Finally, using a prostate cancer dataset we report on a higher fraction of ASE genes with respect to healthy individuals and show allele-specific events nominated by ASEQ in genes that are implicated in the disease. Conclusions ASEQ can be used to rapidly and reliably screen large NGS datasets for the identification of allele specific features. It can be integrated in any NGS pipeline and runs on computer systems with multiple CPUs, CPUs with multiple cores or across clusters of machines. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0084-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Romanel
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Sara Lago
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Davide Prandi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA. .,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA. .,Institute for Precision Medicine, Weill Cornell Medical College & New York Presbyterian Hospital, New York, USA.
| | - Francesca Demichelis
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy. .,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA. .,Institute for Precision Medicine, Weill Cornell Medical College & New York Presbyterian Hospital, New York, USA.
| |
Collapse
|
20
|
Yin Y, Zheng K, Eid N, Howard S, Jeong JH, Yi F, Guo J, Park CM, Bibian M, Wu W, Hernandez P, Park H, Wu Y, Luo JL, LoGrasso PV, Feng Y. Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J Med Chem 2015; 58:1846-61. [PMID: 25621531 DOI: 10.1021/jm501680m] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (>400-fold), potent inhibition of cofilin phosphorylation in A7r5, PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors.
Collapse
Affiliation(s)
- Yan Yin
- Medicinal Chemistry, ‡Discovery Biology, §Crystallography/Modeling Facility, Translational Research Institute, ∥Department of Molecular Therapeutics, and ⊥Department of Cancer Biology, The Scripps Research Institute, Scripps Florida , 130 Scripps Way, No. 2A1, Jupiter, Florida 33458, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhuo YJ, Xi M, Wan YP, Hua W, Liu YL, Wan S, Zhou YL, Luo HW, Wu SL, Zhong WD, Wu CL. Enhanced expression of centromere protein F predicts clinical progression and prognosis in patients with prostate cancer. Int J Mol Med 2015; 35:966-72. [PMID: 25647485 DOI: 10.3892/ijmm.2015.2086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/22/2015] [Indexed: 11/05/2022] Open
Abstract
Centromere protein F (CENPF) is a protein associated with the centromere-kinetochore complex and chromosomal segregation during mitosis. Previous studies have demonstrated that the upregulation of CENPF may be used as a proliferation marker of malignant cell growth in tumors. The overexpression of CENPF has also been reported to be associated with a poor prognosis in human cancers. However, the clinical significance of CENPF in prostate cancer (PCa) has not yet been fully elucidated. Thus, the aim of the present study was to determine the association of CENPF with tumor progression and prognosis in patients with PCa. The expression of CENPF at the protein level in human PCa and non-cancerous prostate tissues was detected by immunohistochemical analysis, which was further validated using a microarray-based dataset (NCBI GEO accession no: GSE21032) at the mRNA level. Subsequently, the association of CENPF expression with the clinicopathological characteristics of the patients with PCa was statistically analyzed. Immunohistochemistry and dataset analysis revealed that CENPF expression was significantly increased in the PCa tissues compared with the non-cancerous prostate tissues [immunoreactivity score (IRS): PCa, 177.98 ± 94.096 vs. benign, 121.30 ± 89.596, P < 0.001; mRNA expression in the dataset: PCa, 5.67 ± 0.47 vs. benign, 5.40 ± 0.11; P < 0.001]. Additionally, as revealed by the dataset, the upregulation of CENPF mRNA expression in the PCa tissues significantly correlated with a higher Gleason score (GS, P = 0.005), an advanced pathological stage (P = 0.008), the presence of metastasis (P < 0.001), a shorter overall survival (P=0.003) and prostate-specific antigen (PSA) failure (P < 0.001). Furthermore, both univariate and multivariate analyses revealed that the upregulation of CENPF was an independent predictor of poor biochemical recurrence (BCR)-free survival (P < 0.001 and P = 0.012, respectively). Our data suggest that the increased expression of CENPF plays an important role in the progression of PCa. More importantly, the increased expression of CENPF may efficiently predict poor BCR-free survival in patients with PCa.
Collapse
Affiliation(s)
- Yang-Jia Zhuo
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yue-Ping Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Wei Hua
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yuan-Ling Liu
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Song Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yu-Lin Zhou
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Hong-Wei Luo
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu-Lin Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wei-De Zhong
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
22
|
Zhou J, Richardson M, Reddy V, Menon M, Barrack ER, Reddy GPV, Kim SH. Structural and functional association of androgen receptor with telomeres in prostate cancer cells. Aging (Albany NY) 2013; 5:3-17. [PMID: 23363843 PMCID: PMC3616228 DOI: 10.18632/aging.100524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Telomeres protect the ends of linear chromosomes from being recognized as damaged DNA, and telomere stability is required for genome stability. Here we demonstrate that telomere stability in androgen receptor (AR)-positive LNCaP human prostate cancer cells is dependent on AR and androgen, as AR inactivation by AR antagonist bicalutamide (Casodex), AR-knockdown, or androgen-depletion caused telomere dysfunction, and the effect of androgen-depletion or Casodex was blocked by the addition of androgen. Notably, neither actinomycin D nor cycloheximide blocked the DNA damage response to Casodex, indicating that the role of AR in telomere stability is independent of its role in transcription. We also demonstrate that AR is a component of telomeres, as AR-bound chromatin contains telomeric DNA, and telomeric chromatin contains AR. Importantly, AR inactivation by Casodex caused telomere aberrations, including multiple abnormal telomere signals, remindful of a fragile telomere phenotype that has been described previously to result from defective telomere DNA replication. We suggest that AR plays an important role in telomere stability and replication of telomere DNA in prostate cancer cells, and that AR inactivation-mediated telomere dysfunction may contribute to genomic instability and progression of prostate cancer cells.
Collapse
Affiliation(s)
- Junying Zhou
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Haddad BR, Gu L, Mirtti T, Dagvadorj A, Vogiatzi P, Hoang DT, Bajaj R, Leiby B, Ellsworth E, Blackmon S, Ruiz C, Curtis M, Fortina P, Ertel A, Liu C, Rui H, Visakorpi T, Bubendorf L, Lallas CD, Trabulsi EJ, McCue P, Gomella L, Nevalainen MT. STAT5A/B gene locus undergoes amplification during human prostate cancer progression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2264-75. [PMID: 23660011 DOI: 10.1016/j.ajpath.2013.02.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms underlying progression of prostate cancer (PCa) to castrate-resistant (CR) and metastatic disease are poorly understood. Our previous mechanistic work shows that inhibition of transcription factor Stat5 by multiple alternative methods induces extensive rapid apoptotic death of Stat5-positive PCa cells in vitro and inhibits PCa xenograft tumor growth in nude mice. Furthermore, STAT5A/B induces invasive behavior of PCa cells in vitro and in vivo, suggesting involvement of STAT5A/B in PCa progression. Nuclear STAT5A/B protein levels are increased in high-grade PCas, CR PCas, and distant metastases, and high nuclear STAT5A/B expression predicts early disease recurrence and PCa-specific death in clinical PCas. Based on these findings, STAT5A/B represents a therapeutic target protein for advanced PCa. The mechanisms underlying increased Stat5 protein levels in PCa are unclear. Herein, we demonstrate amplification at the STAT5A/B gene locus in a significant fraction of clinical PCa specimens. STAT5A/B gene amplification was more frequently found in PCas of high histologic grades and in CR distant metastases. Quantitative in situ analysis revealed that STAT5A/B gene amplification was associated with increased STAT5A/B protein expression in PCa. Functional studies showed that increased STAT5A/B copy numbers conferred growth advantage in PCa cells in vitro and as xenograft tumors in vivo. The work presented herein provides the first evidence of somatic STAT5A/B gene amplification in clinical PCas.
Collapse
Affiliation(s)
- Bassem R Haddad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stahl PR, Kilgué A, Tennstedt P, Minner S, Krohn A, Simon R, Krause GV, Izbicki J, Graefen M, Sauter G, Schlomm T, Wilczak W. Y chromosome losses are exceedingly rare in prostate cancer and unrelated to patient age. Prostate 2012; 72:898-903. [PMID: 21956681 DOI: 10.1002/pros.21492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/01/2011] [Indexed: 11/12/2022]
Abstract
BACKGROUND Loss of the Y chromosome is a frequently reported chromosomal abnormality in many tumor types. This study was undertaken to investigate the frequency of Y chromosome losses and this chromosomal abnormality might play a potential role in prostate cancer. METHODS A preexisting prostate cancer tissue microarray (TMA) containing samples of 3,261 patients treated by radical prostatectomy with clinical follow-up data was used in this study. TMA sections were analyzed by fluorescence in situ hybridization (FISH) using a dual labeling probe for the centromeres of the X and Y chromosome. RESULTS Unequivocal losses of the Y chromosome were seen in only 12 of 2,053 analyzable cases. No significant associations were found between Y loss and patient age, pT stage, and the risk of PSA recurrence. Interestingly, in our study the presence of Y losses was significantly associated with high Gleason grade (P = 0.0034). CONCLUSIONS Loss of the Y chromosome is a rare event in prostate cancer. Y losses occur in much higher rates in most other cancer types. For this reason, we suggest that the expression of at least one Y chromosome gene is essential for prostate epithelial cells and it is possible that such a gene could represent a suitable target for future therapy of prostate cancer.
Collapse
Affiliation(s)
- Phillip R Stahl
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52,20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction, and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues.
Collapse
Affiliation(s)
- Sylvan C. Baca
- Harvard Medical School, Boston,MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute,Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge,MA, USA
| | - Levi A. Garraway
- Harvard Medical School, Boston,MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute,Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge,MA, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute,Boston, MA, USA
- *Correspondence: Levi A. Garraway, Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA. e-mail:
| |
Collapse
|
26
|
Barnabas N, Xu L, Savera A, Hou Z, Barrack ER. Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3-1 gene. Prostate 2011; 71:857-71. [PMID: 21456068 DOI: 10.1002/pros.21302] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/05/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Radical prostatectomy (RP) is not curative if patients have undetected metastatic prostate cancer. Markers that indicate the presence of metastatic disease would identify men who may benefit from systemic adjuvant therapy. Our approach was to analyze the primary tumors of men with metastatic disease versus organ-confined disease to identify molecular changes that distinguish between these groups. METHODS Patients were identified based on long-term follow-up of serum prostate specific antigen (PSA) levels following RP. We compared the tumors of African American (AA) men with undetectable serum PSA for >9 year after RP (good outcome) versus those of AA men with a rising PSA and recurrence after radiation or androgen ablation or both (poor outcome). We used real-time quantitative PCR to assay gene copy number alterations in tumor DNA relative to patient-matched non-tumor DNA isolated from paraffin-embedded tissue. We assayed several genes located in the specific regions of chromosome 8p and 8q that frequently undergo loss and/or gain, respectively, in prostate cancer, and the androgen receptor gene at Xq12. RESULTS Gain of the MIR151 gene at 8q24.3 (in 33% of poor outcome vs. 6% of good outcome tumors) and/or loss of the NKX3-1 gene at 8p21.2 (in 39% of poor outcome vs. 11% of good outcome tumors) affected 67% of poor outcome tumors, compared to only 17% of good outcome tumors. CONCLUSIONS Copy number gain of the MIR151 gene and/or loss of the NKX3-1 gene in the primary tumor may indicate the presence of metastatic disease.
Collapse
Affiliation(s)
- Nandita Barnabas
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202-3450, USA
| | | | | | | | | |
Collapse
|
27
|
McCabe MG, Bäcklund LM, Leong HS, Ichimura K, Collins VP. Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma. Neuro Oncol 2011; 13:376-83. [PMID: 21292688 PMCID: PMC3064691 DOI: 10.1093/neuonc/noq192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Current risk stratification schemas for medulloblastoma, based on combinations of clinical variables and histotype, fail to accurately identify particularly good- and poor-risk tumors. Attempts have been made to improve discriminatory power by combining clinical variables with cytogenetic data. We report here a pooled analysis of all previous reports of chromosomal copy number related to survival data in medulloblastoma. We collated data from previous reports that explicitly quoted survival data and chromosomal copy number in medulloblastoma. We analyzed the relative prognostic significance of currently used clinical risk stratifiers and the chromosomal aberrations previously reported to correlate with survival. In the pooled dataset metastatic disease, incomplete tumor resection and severe anaplasia were associated with poor outcome, while young age at presentation was not prognostically significant. Of the chromosomal variables studied, isolated 17p loss and gain of 1q correlated with poor survival. Gain of 17q without associated loss of 17p showed a trend to improved outcome. The most commonly reported alteration, isodicentric chromosome 17, was not prognostically significant. Sequential multivariate models identified isolated 17p loss, isolated 17q gain, and 1q gain as independent prognostic factors. In a historical dataset, we have identified isolated 17p loss as a marker of poor outcome and 17q gain as a novel putative marker of good prognosis. Biological markers of poor-risk and good-risk tumors will be critical in stratifying treatment in future trials. Our findings should be prospectively validated independently in future clinical studies.
Collapse
Affiliation(s)
- Martin G McCabe
- Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, The Christie NHS Foundation Trust, Withington, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
28
|
da Motta VP, Malafaia O, Ribas-Filho JM, Czeczko NG, Ribas CAPM, Cuenca RM. CASPASE-3 and CD-34 expression in prostate adenocarcinoma. Rev Col Bras Cir 2010; 36:223-9. [PMID: 20076902 DOI: 10.1590/s0100-69912009000300008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE 1. To evaluate the percentage of caspase-3 and CD-34 expression on adenocarcinoma; 2. to quantify caspase-3 and CD-34 in tumor cells; 3. to verify the relationship between biomarkers and its malignancy; 4. to correlate biomarkers themselves. METHODS Thirty-eight human malignant prostate specimens, Gleason's score, were immunohistochemically stained for caspase-3 and CD-34 protein. Quantification was done under Samba 4000 Immuno System reading, yielding two variables: label index and optical density. Statistical analyses were based on cross-methods involving univariate and bivariate as well as correlation factors among independent variables. RESULTS Immunostaining was revealed in 25 plates for caspase-3 and 34 for CD-34. Caspase-3 expression for label index was over 50 in 76%, while for optical density was below 50 in 96%. CD-34 expression demonstrated label index over 50 in 59% and optical density below 50 in 56%. Correlation among expression and severity did not demonstrate to be statistically significant. There was no correlation between protein expression and Gleason's score. CONCLUSION 1. Caspase-3 and CD-34 were present respectively in 73.5% and 100% of samples; 2. caspase-3 and CD-34 showed high expression regarding label index and low expression in optical density; 3. there was no statistical significance among expressions and tumor severity according to Gleason's score; 4. no significant correlation could be set between the biomarkers themselves.
Collapse
Affiliation(s)
- Vicente Paulo da Motta
- Principles of Surgery Post-Graduate Program, Evangelical Medical School, Curitiba, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Carvalho R, Pinheiro MF, Medeiros R. Localization of Candidate Genes in a Region of High Frequency of Microvariant Alleles for Prostate Cancer Susceptibility: The Chromosome Region Yp11.2 Genetic Variation. DNA Cell Biol 2010; 29:3-7. [DOI: 10.1089/dna.2009.0905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Raquel Carvalho
- Molecular Oncology Group, Portuguese Institute of Oncology (IPO), Porto, Portugal
- National Institute of Legal Medicine, North Branch, Porto, Portugal
| | - Maria Fátima Pinheiro
- National Institute of Legal Medicine, North Branch, Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology Group, Portuguese Institute of Oncology (IPO), Porto, Portugal
- National Institute of Legal Medicine, North Branch, Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
- Department of Virology, Portuguese Institute of Oncology (IPO), Porto, Portugal
| |
Collapse
|
30
|
Humbert L, Chevrette M. Somatic Molecular Genetics of Prostate Cancer. MALE REPRODUCTIVE CANCERS 2010:143-180. [DOI: 10.1007/978-1-4419-0449-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
El Gammal AT, Brüchmann M, Zustin J, Isbarn H, Hellwinkel OJC, Köllermann J, Sauter G, Simon R, Wilczak W, Schwarz J, Bokemeyer C, Brümmendorf TH, Izbicki JR, Yekebas E, Fisch M, Huland H, Graefen M, Schlomm T. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res 2009; 16:56-64. [PMID: 20028754 DOI: 10.1158/1078-0432.ccr-09-1423] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Deletions of 8p and gains of 8q belong to the most frequent cytogenetic alterations in prostate cancer. The target genes of these alterations and their biological significance are unknown. EXPERIMENTAL DESIGN To determine the relationship between chromosome 8 changes, and prostate cancer phenotype and prognosis, a set of 1.954 fully annotated prostate cancers were analyzed in a tissue microarray format by fluorescence in situ hybridization. RESULTS Both 8p deletions and 8q gains increased in number during different stages of prostate cancer progression. 8p deletions/8q gains were found in 26.1%/4.8% of 1,239 pT(2) cancers, 38.5%/9.8% of 379 pT(3a) cancers, 43.5%/8.9% of 237 pT(3b) cancers, 40.7%/14.8% of 27 pT(4) cancers, 39.1%/34.8% of 23 nodal metastases, 51.9%/33.3% of 27 bone metastases, and 45.5%/59.9% of 22 hormone refractory cancers (P < 0.0001 each). Both 8p deletions and 8q gains were also significantly associated with high Gleason grade and with each other (P < 0.0001 each). In primary tumors, 8p deletions were seen in only 27.3% of 1,882 cancers without 8q gain but in 57.4% of 122 tumors with 8q gain (P < 0.0001). Among cancers treated with radical prostatectomy, 8p deletions (P = 0.003) and 8q gains (P = 0.02) were associated with biochemical tumor recurrence. However, multivariate analysis (including prostate-specific antigen, pT/pN stage, Gleason score, and surgical margin status) did not reveal any statistically independent effect of 8p or 8q alterations on biochemical tumor recurrence. CONCLUSIONS 8p deletions and 8q gains are relatively rare in early stage prostate cancer but often develop during tumor progression. The prognostic effect does not seem to be strong enough to warrant clinical application.
Collapse
Affiliation(s)
- Alexander T El Gammal
- Departments of Gynecology, Institute of Pathology, Martini-Clinic, Prostate Cancer Center, University Medical Center, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Miyoshi N, Ishii H, Sekimoto M, Doki Y, Mori M. RGS16 is a marker for prognosis in colorectal cancer. Ann Surg Oncol 2009; 16:3507-14. [PMID: 19760045 DOI: 10.1245/s10434-009-0690-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND The RGS family, comprising 22 homologues of proteins, plays a role in cellular proliferation, differentiation, membrane trafficking, and embryonic development through the involvement of the mitogen-activated protein kinase signaling pathway. METHODS In order to demonstrate the importance of RGS16 expression for the prediction of prognosis of colorectal cancer (CRC), we analyzed RGS16 gene expression in 22 human gastrointestinal cell lines and 124 paired cases of CRC and noncancerous regions. RESULTS RGS16 was expressed in 17 human gastrointestinal cancer cell lines examined in this study. RGS16 expression was higher in colorectal cancer tissue than in corresponding normal tissue (P < 0.001) in messenger RNA (mRNA) and protein levels. Patients in the RGS16 high-expression group showed a poorer overall survival rate than those in the low-expression group (P < 0.001), indicating that high RGS16 expression was an independent prognostic factor. CONCLUSION The present study suggests that RGS16 is useful as a predictive marker for patient prognosis of CRC.
Collapse
Affiliation(s)
- Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
33
|
Swennenhuis JF, Tibbe AGJ, Levink R, Sipkema RCJ, Terstappen LWMM. Characterization of circulating tumor cells by fluorescence in situ hybridization. Cytometry A 2009; 75:520-7. [PMID: 19291800 DOI: 10.1002/cyto.a.20718] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tumor cells in blood of patients with metastatic carcinomas have been associated with poor survival prospects. Further characterization of these cells may provide further insights into the metastatic process. Circulating Tumor Cells (CTC) were enumerated in 7.5 mL of blood with the CellSearch system. After enumeration of Cytokeratin+, CD45-, nucleated cells, the cells are fixed in the cartridge while maintaining their original position. Cartridges were hybridized with FISH probes against the centromeric regions of chromosome 1, 7, 8, and 17. Next fluorescence images of the FISH probes of the previous identified CTC were acquired. Leukocytes surrounding the CTC were used as internal controls. The number of copies of chromosome 1, 7, 8, and 17 could be determined in 118 CTC containing blood samples from 59 metastatic prostate cancer patients. The samples contained a total of 21,751 CTC (mean 184, median 16, SD 650). Chromosome counts were obtained in 61% of the relocated CTC. On an average, these CTC contained 2.8 copies of chromosome 1, 2.7 copies of chromosome 7, 3.1 copies of chromosome 8, and 2.3 copies of chromosome 17. CTC in which no chromosome count was obtained most likely underwent apoptosis indicated by the expression of M30. In 6/59 patients only diploid CTC were detected these samples, however, only contained 1-5 CTC. Heterogeneity in the chromosomal abnormalities was observed between CTC of different patients as well as among CTC of the same patient. Cytogenetic composition of CTC can be reliably assessed after they have been identified by the CellSearch system. The majority of CTC in hormone refractory prostate cancer are aneuploid confirming that they indeed are cancer cells. An extensive heterogeneity in the copy number of each of the chromosomes was observed.
Collapse
Affiliation(s)
- Joost F Swennenhuis
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays. Biochem J 2009; 420:105-13. [PMID: 19207106 DOI: 10.1042/bj20082127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADAM15 (a disintegrin and metalloproteinase 15) is a membrane-anchored metalloproteinase, which is overexpressed in several human cancers and has been implicated in pathological neovascularization and prostate cancer metastasis. Yet, little is known about the catalytic properties of ADAM15. Here, we purified soluble recombinant ADAM15 to test for its ability to cleave a library of peptide substrates. However, we found no processing of any of the peptide substrates tested here, and therefore turned to cell-based assays to characterize the catalytic properties of ADAM15. Overexpression of full-length membrane-anchored ADAM15 or the catalytically inactive ADAM15E-->A together with various membrane proteins resulted in increased release of the extracellular domain of the fibroblast growth factor receptor 2iiib (FGFR2iiib) by ADAM15, but not ADAM15E-->A. This provided a robust assay for a characterization of the catalytic properties of ADAM15 in intact cells. We found that increased expression of ADAM15 resulted in increased FGFR2iiib shedding, but that ADAM15 was not stimulated by phorbol esters or calcium ionophores, two commonly used activators of ectodomain shedding. Moreover, ADAM15-dependent processing of FGFR2iiib was inhibited by the hydroxamate-based metalloproteinase inhibitors marimastat, TAPI-2 and GM6001, and by 50 nM TIMP-3 (tissue inhibitor of metalloproteinases 3), but not by 100 nM TIMP-1, and only weakly by 100 nM TIMP-2. These results define key catalytic properties of ADAM15 in cells and its response to stimulators and inhibitors of ectodomain shedding. A cell-based assay for the catalytic activity of ADAM15 could aid in identifying compounds, which could be used to block the function of ADAM15 in pathological neovascularization and cancer.
Collapse
|
35
|
Lucas N, Day ML. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. J Cell Biochem 2009; 106:967-74. [DOI: 10.1002/jcb.22087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Genomic aberrations in squamous cell lung carcinoma related to lymph node or distant metastasis. Lung Cancer 2009; 66:372-8. [PMID: 19324446 DOI: 10.1016/j.lungcan.2009.02.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/12/2009] [Accepted: 02/15/2009] [Indexed: 11/22/2022]
Abstract
About 50% of patients presenting with resectable lung cancer develop distant metastases within 5 years. Genomic markers predicting metastatic behaviour of squamous cell lung carcinoma (SCC) are currently underexposed. We analyzed a cohort of patients with primary SCC using array-based comparative genomic hybridization (aCGH) to identify which genomic aberrations are related to metastatic behaviour. The cohort consisted of 34 patients with a follow-up of at least 5 years, 8 with metastases in regional lymph nodes only and 26 patients without any metastases at the time of surgery. Eleven of the latter 26 developed metastases in distant organs within 3 years after surgery. Copy number changes observed in at least 40% of all SCC included gains at chromosomal arms 3q, 5p, 8q, 19q, 20p, 22q and losses at 3p, 4p, 4q, 5q, 8p and 9p. High copy number amplifications were observed at 2p15-p16, 3q24-q29, 8p11-p12, 8q23-q24, and 12p12, containing candidate oncogenes such as BCL11A, REL, ECT2, PIK3CA, ADAM9, MYC and KRAS. Amplification of 2p15-p16 is a novel finding in SCC. Another novel finding is the homozygous deletion observed at 4q33-34.1 in 15% of the SCC cases. Gains at 7q36, 8p12, 10q22, 12p12, loss at 4p14 and the homozygous deletions at 4q occurred significantly more frequent in SCC from patients with lymph node metastases only. SCC from patients with distant metastases showed a significantly higher gain frequency at 8q22-q24 and loss at 8p23 and 13q21, and a significantly lower gain frequency at 2p12 and 2p16 and loss at 11q25 compared with SCC from patients without metastases. Of these, gains at 7q, 8p and 10q were restricted to SCC with lymph node metastasis and gain at 8q was restricted to patients with distant metastasis. Two genomic aberrations, i.e. loss of 4p and gain of 19q12 were observed more frequently in SCC with only lymph node metastases as compared to SCC with distant metastases. In conclusion, we identified genomic aberrations in primary SCC that were related to lymph node or distant metastases.
Collapse
|
37
|
Bianchi NO. Y chromosome structural and functional changes in human malignant diseases. Mutat Res 2009; 682:21-7. [PMID: 19699459 DOI: 10.1016/j.mrrev.2009.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/01/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
The main Y chromosome abnormalities found in testicular cancer and other malignant diseases are microdeletions, entire chromosome loss and transcription deregulation of several genes mapping in the non-recombinant part of the Y chromosome. Yet, the role of these changes in the origin or evolution of malignancies is uncertain. The Y chromosome has experienced a long and intricate evolutionary history of deleterious, compensatory, and advantageous mutations. It is proposed that the compensatory mechanisms preventing Y decay in cancer cells are no longer working, and that deletions and gene down-expression reflect a very fast process of Y attrition. From this perspective, Y chromosome aberrations, mutations and unbalanced gene expression very likely play no role in the etiology of cell transformation, although in some forms of cancer, Y abnormalities may influence tumor progression.
Collapse
Affiliation(s)
- Néstor O Bianchi
- Laboratory of Molecular Population Genetics, IMBICE, CC 403, 1900 La Plata, Argentina.
| |
Collapse
|
38
|
Legrier ME, Guyader C, Céraline J, Dutrillaux B, Oudard S, Poupon MF, Auger N. Hormone escape is associated with genomic instability in a human prostate cancer model. Int J Cancer 2009; 124:1103-11. [PMID: 19058198 DOI: 10.1002/ijc.24073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lack of hormone dependency in prostate cancers is an irreversible event that occurs through generation of genomic instability induced by androgen deprivation. Indeed, the cytogenetic profile of hormone-dependent (HD) prostate cancer remains stable as long as it received a hormone supply, whereas the profile of hormone-independent (HID) variants acquired new and various alterations. This is demonstrated here using a HD xenografted model of a human prostate cancer, PAC120, transplanted for 11 years into male nude mice and 4 HID variants obtained by surgical castration. Cytogenetic analysis, done by karyotype, FISH, CGH and array-CGH, shows that PAC120 at early passage presents numerous chromosomal alterations. Very few additional alterations were found between the 5th and 47th passages, indicating the stability of the parental tumor. HID variants largely maintained the core of chromosomal alterations of PAC120 - losses at 6q, 7p, 12q, 15q and 17q sites. However, each HID variant displayed a number of new alterations, almost all being specific to each variant and very few shared by all. None of the HID had androgen receptor mutations. Our study indicates that hormone castration is responsible for genomic instability generating new cytogenetic abnormalities susceptible to alter the properties of cancer cell associated with tumor progression, such as increased cell survival and ability to metastasize.
Collapse
Affiliation(s)
- Marie-Emmanuelle Legrier
- Institut Curie, Laboratoire d'Investigation Préclinique, Translational Research Department, Quadrilatère Historique porte 13, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Sirintrapun SJ, Parwani AV. Molecular Pathology of the Genitourinary Tract: Prostate and Bladder. Surg Pathol Clin 2008; 1:211-36. [PMID: 26837907 DOI: 10.1016/j.path.2008.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The knowledge of cellular mechanisms in tumors of the prostate and bladder has grown exponentially. Molecular technologies have led to the discovery of TMPRSS2 in prostate cancer and the molecular pathways distinguishing low- and high-grade urothelial neoplasms. UroVysion with fluorescence in situ hybridization is already commonplace as an adjunct to cytologic diagnosis of urothelial neoplasms. This trend portends the future in which classification and diagnosis of tumors of the prostate and bladder through morphologic analysis will be supplemented by molecular information correlating with prognosis and targeted therapy. This article outlines tumor molecular pathology of the prostate and bladder encompassing current genomic, epigenomic, and proteonomic findings.
Collapse
Affiliation(s)
- S Joseph Sirintrapun
- Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anil V Parwani
- Department of Pathology, University of Pittsburgh Medical Center Shadyside Hospital, Room WG 07, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
40
|
Jung V, Saar M, Grobholz R, Stöckle M, Unteregger G, Kamradt J. [Development of a three-dimensional primary prostate cancer cell culture model]. Urologe A 2008; 47:1199-204. [PMID: 18682911 DOI: 10.1007/s00120-008-1835-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Much prostate cancer research is based on cell culture results. Recent genomic studies found major differences between primary prostate cancer tissue and established prostate cancer cell lines, which calls into question the clinical relevance of study results based on cell cultures.Using primary cultures of prostate cancer cells from prostatectomy specimens seems to be a reasonable solution, but primary cell cultures are much more difficult to establish. In this study, a primary cell culture model was combined with an invasion assay. With this combination it was possible not only to select invasive cell clones from the primary culture but also to culture these cells in a three-dimensional model, forming spheroids. A further characterization of this cell population was done by comparative genomic hybridization, showing numerous genetic alterations. The presented cell culture model offers, for the first time, an opportunity to isolate invasive growing cells from primary prostate cancer tissue and cultivate these cells for further analyses.
Collapse
Affiliation(s)
- V Jung
- Klink für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes , Homburg/Saar, Deutschland
| | | | | | | | | | | |
Collapse
|
41
|
Gallucci M, Merola R, Leonardo C, De Carli P, Farsetti A, Sentinelli S, Sperduti I, Mottolese M, Carlini P, Vico E, Simone G, Cianciulli A. Genetic profile identification in clinically localized prostate carcinoma. Urol Oncol 2008; 27:502-8. [PMID: 18534873 DOI: 10.1016/j.urolonc.2008.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/27/2008] [Accepted: 04/02/2008] [Indexed: 11/16/2022]
Abstract
PURPOSE To confirm our previously obtained results, we genetically characterized prostate cancer from patients undergo radical prostatectomy in a retrospective study. MATERIALS AND METHODS Histological sections were evaluated for 106 patients treated with surgery from 1991 to 2004. With fluorescence in situ hybridization (FISH) method, the status of LPL (8p22), c-MYC (8q24) genes and 7, 8, X chromosomes was evaluated. RESULTS Chromosomes 7, 8, X aneusomy was demonstrated in 91.5%, 78.3%, and 51.9% of the samples, respectively, whereas LPL deletion and MYC amplification were found in 76.0% and 1.6%. A genetic profile was considered as unfavorable when at least two aneusomic chromosomes and one altered gene were present. Tumors with an adverse genetic profile were more frequently present in patients with higher stages (P = 0.02), biochemical/clinical progression (P = 0.03), and Gleason grade 4 + 3 (P = 0.02). Multiple correspondence analysis identified one tumor group characterized by chromosome 8 aneusomy, X polysomy, LPL gene deletion, Gleason > 7 and 4 + 3 associated with progression. CONCLUSIONS In this study, we recognized the predictive power of previously identified cytogenetic profiles. Assessment of genetic set may characterize each patient and have influence on postoperative therapeutic strategies.
Collapse
Affiliation(s)
- Michele Gallucci
- Department of Urology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wiechec E, Overgaard J, Hansen LL. A fragile site within the HPC1 region at 1q25.3 affecting RGS16, RGSL1, and RGSL2 in human breast carcinomas. Genes Chromosomes Cancer 2008; 47:766-80. [DOI: 10.1002/gcc.20578] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Tan SH, Nevalainen MT. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer 2008; 15:367-90. [PMID: 18508994 PMCID: PMC6036917 DOI: 10.1677/erc-08-0013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2-STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone-refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium. In addition, present data suggest that activation of STAT5A/B in breast cancer predicts favorable clinical outcome. The dual nature of STAT5A/B action in breast cancer makes the therapeutic use of STAT5 A/B more complex.
Collapse
Affiliation(s)
- Shyh-Han Tan
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 309, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
44
|
Najy AJ, Day KC, Day ML. The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem 2008; 283:18393-401. [PMID: 18434311 DOI: 10.1074/jbc.m801329200] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Urology and Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
45
|
Samaratunga H, Epstein JI. What is the molecular pathology of low-risk prostate cancer? World J Urol 2008; 26:431-6. [DOI: 10.1007/s00345-008-0260-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/21/2008] [Indexed: 11/29/2022] Open
|
46
|
Najy AJ, Day KC, Day ML. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res 2008; 68:1092-9. [PMID: 18281484 DOI: 10.1158/0008-5472.can-07-2432] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Urology, Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0944, USA
| | | | | |
Collapse
|
47
|
Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, Stephens RM, Caporaso NE, Loffredo CA, Ambs S. Tumor Immunobiological Differences in Prostate Cancer between African-American and European-American Men. Cancer Res 2008; 68:927-36. [DOI: 10.1158/0008-5472.can-07-2608] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Transcription Factors STAT5 and STAT3. Prostate Cancer 2008. [DOI: 10.1007/978-1-60327-079-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
van Duin M, van Marion R, Vissers K, Hop W, Dinjens W, Tilanus H, Siersema P, van Dekken H. High-resolution array comparative genomic hybridization of chromosome 8q: evaluation of putative progression markers for gastroesophageal junction adenocarcinomas. Cytogenet Genome Res 2007; 118:130-7. [DOI: 10.1159/000108293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/27/2006] [Indexed: 12/28/2022] Open
|
50
|
Maeda G, Chiba T, Kawashiri S, Satoh T, Imai K. Epigenetic Inactivation of IκB Kinase-α in Oral Carcinomas and Tumor Progression. Clin Cancer Res 2007; 13:5041-7. [PMID: 17785555 DOI: 10.1158/1078-0432.ccr-07-0463] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The loss of epithelial phenotypes in the process of carcinoma progression correlates with clinical outcome, and genetic/epigenetic changes accumulate aggressive clones toward uncurable disease. IkappaB kinase-alpha (IKKalpha) has a decisive role in the development of the skin and establishes keratinocyte phenotypes. We assessed clinical implications of IKKalpha expression in oral carcinomas and epigenetic aberrations for the loss of expression. EXPERIMENTAL DESIGN We examined IKKalpha expression in oral carcinomas by immunostaining (n = 64) and genetic instability by microsatellite PCR (n = 46). Promoter methylation status was analyzed by bisulfite-modified sequence (n = 11). RESULTS IKKalpha was expressed in the nucleus of basal cells of normal oral epithelium, but not or marginally detected in 32.8% of carcinomas. The immunoreactivity was significantly decreased in less differentiated carcinomas (P < 0.05) and correlated to long-term survival of patients (P < 0.01) with an independent prognostic value (P < 0.05). Although allelic/biallelic loss of the gene was limited to four cases, we detected microsatellite instability in 63.0% cases in which the immunoreactivities were decreased and the promoter was hypermethylated. CONCLUSION These results showed that oral carcinomas exhibiting genetic instability and promoter hypermethylation down-regulate expression of IKK and suggest that the epigenetic loss of the expression closely associates with disease progression toward unfavorable prognosis.
Collapse
Affiliation(s)
- Genta Maeda
- Department of Biochemistry, School of Life Dentistry, Nippon Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|