1
|
Khalil AIS, Khyriem C, Chattopadhyay A, Sanyal A. Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes. BMC Bioinformatics 2020; 21:147. [PMID: 32299346 PMCID: PMC7160937 DOI: 10.1186/s12859-020-3480-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background Detection of DNA copy number alterations (CNAs) is critical to understand genetic diversity, genome evolution and pathological conditions such as cancer. Cancer genomes are plagued with widespread multi-level structural aberrations of chromosomes that pose challenges to discover CNAs of different length scales, and distinct biological origins and functions. Although several computational tools are available to identify CNAs using read depth (RD) signal, they fail to distinguish between large-scale and focal alterations due to inaccurate modeling of the RD signal of cancer genomes. Additionally, RD signal is affected by overdispersion-driven biases at low coverage, which significantly inflate false detection of CNA regions. Results We have developed CNAtra framework to hierarchically discover and classify ‘large-scale’ and ‘focal’ copy number gain/loss from a single whole-genome sequencing (WGS) sample. CNAtra first utilizes a multimodal-based distribution to estimate the copy number (CN) reference from the complex RD profile of the cancer genome. We implemented Savitzky-Golay smoothing filter and Modified Varri segmentation to capture the change points of the RD signal. We then developed a CN state-driven merging algorithm to identify the large segments with distinct copy numbers. Next, we identified focal alterations in each large segment using coverage-based thresholding to mitigate the adverse effects of signal variations. Using cancer cell lines and patient datasets, we confirmed CNAtra’s ability to detect and distinguish the segmental aneuploidies and focal alterations. We used realistic simulated data for benchmarking the performance of CNAtra against other single-sample detection tools, where we artificially introduced CNAs in the original cancer profiles. We found that CNAtra is superior in terms of precision, recall and f-measure. CNAtra shows the highest sensitivity of 93 and 97% for detecting large-scale and focal alterations respectively. Visual inspection of CNAs revealed that CNAtra is the most robust detection tool for low-coverage cancer data. Conclusions CNAtra is a single-sample CNA detection tool that provides an analytical and visualization framework for CNA profiling without relying on any reference control. It can detect chromosome-level segmental aneuploidies and high-confidence focal alterations, even from low-coverage data. CNAtra is an open-source software implemented in MATLAB®. It is freely available at https://github.com/AISKhalil/CNAtra.
Collapse
Affiliation(s)
- Ahmed Ibrahim Samir Khalil
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Costerwell Khyriem
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Anupam Chattopadhyay
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
2
|
Lorber T, Andor N, Dietsche T, Perrina V, Juskevicius D, Pereira K, Greer SU, Krause A, Müller DC, Savic Prince S, Lardinois D, Barrett MT, Ruiz C, Bubendorf L. Exploring the spatiotemporal genetic heterogeneity in metastatic lung adenocarcinoma using a nuclei flow-sorting approach. J Pathol 2018; 247:199-213. [PMID: 30350422 DOI: 10.1002/path.5183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/12/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022]
Abstract
Variable tumor cellularity can limit sensitivity and precision in comparative genomics because differences in tumor content can result in misclassifying truncal mutations as region-specific private mutations in stroma-rich regions, especially when studying tissue specimens of mediocre tumor cellularity such as lung adenocarcinomas (LUADs). To address this issue, we refined a nuclei flow-sorting approach by sorting nuclei based on ploidy and the LUAD lineage marker thyroid transcription factor 1 and applied this method to investigate genome-wide somatic copy number aberrations (SCNAs) and mutations of 409 cancer genes in 39 tumor populations obtained from 16 primary tumors and 21 matched metastases. This approach increased the mean tumor purity from 54% (range 7-89%) of unsorted material to 92% (range 79-99%) after sorting. Despite this rise in tumor purity, we detected limited genetic heterogeneity between primary tumors and their metastases. In fact, 88% of SCNAs and 80% of mutations were propagated from primary tumors to metastases and low allele frequency mutations accounted for much of the mutational heterogeneity. Even though the presence of SCNAs indicated a history of chromosomal instability (CIN) in all tumors, metastases did not have more SCNAs than primary tumors. Moreover, tumors with biallelic TP53 or ATM mutations had high numbers of SCNAs, yet they were associated with a low interlesional genetic heterogeneity. The results of our study thus provide evidence that most macroevolutionary events occur in primary tumors before metastatic dissemination and advocate for a limited degree of CIN over time and space in this cohort of LUADs. Sampling of primary tumors thus may suffice to detect most mutations and SCNAs. In addition, metastases but not primary tumors had seeded additional metastases in three of four patients; this provides a genomic rational for surgical treatment of such oligometastatic LUADs. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thomas Lorber
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Noemi Andor
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tanja Dietsche
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Valeria Perrina
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Darius Juskevicius
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karen Pereira
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arthur Krause
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David C Müller
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Michael T Barrett
- Division of Hematology and Molecular Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Christian Ruiz
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Zaman GJR, de Roos JADM, Libouban MAA, Prinsen MBW, de Man J, Buijsman RC, Uitdehaag JCM. TTK Inhibitors as a Targeted Therapy for CTNNB1 ( β-catenin) Mutant Cancers. Mol Cancer Ther 2017; 16:2609-2617. [PMID: 28751540 DOI: 10.1158/1535-7163.mct-17-0342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
Abstract
The spindle assembly checkpoint kinase TTK (Mps1) is a key regulator of chromosome segregation and is the subject of novel targeted therapy approaches by small-molecule inhibitors. Although the first TTK inhibitors have entered phase I dose escalating studies in combination with taxane chemotherapy, a patient stratification strategy is still missing. With the aim to identify a genomic biomarker to predict the response of tumor cells to TTK inhibitor therapy, we profiled a set of preclinical and clinical TTK inhibitors from different chemical series on a panel of 66 genetically characterized cell lines derived from different tumors (Oncolines). Cell lines harboring activating mutations in the CTNNB1 gene, encoding the Wnt pathway signaling regulator β-catenin, were on average up to five times more sensitive to TTK inhibitors than cell lines wild-type for CTNNB1 The association of CTNNB1-mutant status and increased cancer cell line sensitivity to TTK inhibition was confirmed with isogenic cell line pairs harboring either mutant or wild-type CTNNB1 Treatment of a xenograft model of a CTNNB1-mutant cell line with the TTK inhibitor NTRC 0066-0 resulted in complete inhibition of tumor growth. Mutations in CTNNB1 occur at relatively high frequency in endometrial cancer and hepatocellular carcinoma, which are known to express high TTK levels. We propose mutant CTNNB1 as a prognostic drug response biomarker, enabling the selection of patients most likely to respond to TTK inhibitor therapy in proof-of-concept clinical trials. Mol Cancer Ther; 16(11); 2609-17. ©2017 AACR.
Collapse
Affiliation(s)
- Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, the Netherlands.
| | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | |
Collapse
|
4
|
|
5
|
Gottschling S, Jauch A, Kuner R, Herpel E, Mueller-Decker K, Schnabel PA, Xu EC, Muley T, Sültmann H, Bender C, Granzow M, Efferth T, Hoffmann H, Dienemann H, Herth FJF, Meister M. Establishment and comparative characterization of novel squamous cell non-small cell lung cancer cell lines and their corresponding tumor tissue. Lung Cancer 2012; 75:45-57. [PMID: 21684623 DOI: 10.1016/j.lungcan.2011.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/28/2011] [Accepted: 05/23/2011] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cell lines play an important role for studying tumor biology and novel therapeutic agents. Particularly in pulmonary squamous cell carcinoma (SCC) the availability of cell lines is limited and knowledge about their representativeness for corresponding tumor tissue is scanty. MATERIALS AND METHODS We established three novel SCC cell lines from fresh tumor tissue of 28 donors, including 8 SCC. Two cell lines were derived from different localizations of the same donor, i.e. primary tumor and lymph node metastasis. This represents a so far unique combination in lung cancer. The genotypes, gene expression profiles and mutational status of epidermal growth factor receptor (EGF-R) and Kirsten rat sarcoma (k-ras) of the cell lines and their corresponding tumor tissue were analyzed and compared. Moreover, the molecular characteristics were related to functional properties of the cell lines. Those comprised proliferation, motility and chemosensitivity. The cell lines were authenticated by single tandem repeat DNA typing. Tumorigenicity was analyzed in a murine xenograft model. RESULTS Comparative genomic hybridization and multiplex fluorescence in situ hybridization revealed essential genetic similarities between the cell lines and their corresponding tumor tissue, but indicated also some genetic evolution and clonal selection. EGF-R or k-ras mutations were not detected. Gene expression profiling showed various differences between tumor tissue and cell lines affecting gene clusters associated with immune response, adhesion, proliferation, differentiation and angiogenesis. However, there were also common gene expression patterns reflecting the relationship between cell lines and their corresponding tumor tissue. Moreover, the molecular characteristics of the tumor tissue and the descendent cell line were associated with functional properties of the latter. All cell lines showed a unique, heterozygous human DNA profile and one cell line displayed rapid tumor formation in mice. CONCLUSIONS Here, we demonstrate that cell lines represent a useful in vitro system for studying basic mechanisms in lung cancer, but cover only distinct molecular characteristics of the original tumor. Moreover, we present three novel, comprehensively characterized SCC cell lines.
Collapse
Affiliation(s)
- Sandra Gottschling
- Dept. of Thoracic Oncology, Thoraxklinik/University of Heidelberg, Amalienstr. 5, 69126 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Petersen I. Morphologische und molekulare Pathologie des Lungenkarzinoms. DER PATHOLOGE 2010; 31 Suppl 2:204-10. [DOI: 10.1007/s00292-010-1371-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Shen H, Gao W, Wu YJ, Qiu HR, Shu YQ. Multicolor fluorescence in situ hybridization and comparative genomic hybridization reveal molecular events in lung adenocarcinomas and squamous cell lung carcinomas. Biomed Pharmacother 2009; 63:396-403. [DOI: 10.1016/j.biopha.2008.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 08/24/2008] [Indexed: 01/03/2023] Open
|
8
|
Shen H, Zhu Y, Wu YJ, Qiu HR, Shu YQ. Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. ACTA ACUST UNITED AC 2008; 181:100-7. [PMID: 18295661 DOI: 10.1016/j.cancergencyto.2007.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/18/2007] [Accepted: 11/27/2007] [Indexed: 11/25/2022]
Abstract
We used two molecular cytogenetic techniques, multicolor fluorescence in situ hybridization (M-FISH) and comparative genomic hybridization (CGH), to analyze three established lung adenocarcinoma cell lines (A549, H1650, and SPC-A-1) and primary lung adenocarcinoma samples, to identify common chromosomal aberrations. M-FISH revealed numerous complex chromosomal rearrangements. Chromosomes 5, 6, 11, 12, and 17 were most frequently involved in interchromosomal translocations. CGH revealed regions on 1q, 2p, 3q, 5p, 5q, 7p, 8q, 11q, 12q, 14q, 16p, 17p, 19q, 20q, 21q, and 22q to be commonly overrepresented and regions on 2q, 3p, 4p, 5q, 7q, 8p, 9p, 13q, 14q, and 17p to be underrepresented. The most common gains were found in 16p13 (in 50% of samples), and 16p13 amplification was associated with relatively poor differentiation and late stage. M-FISH and CGH can be a powerful tool in identification of genomic alterations in lung cancer, as well as in diagnosis. The overrepresented regions may harbor potential candidate genes involved in lung adenocarcinoma pathogenesis.
Collapse
Affiliation(s)
- Hua Shen
- Cancer Biotherapy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
9
|
Fischer RS, Yarmola EG, Weber KL, Speicher KD, Speicher DW, Bubb MR, Fowler VM. Tropomodulin 3 binds to actin monomers. J Biol Chem 2006; 281:36454-65. [PMID: 17012745 DOI: 10.1074/jbc.m606315200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the actin cytoskeleton by filament capping proteins is critical to myriad dynamic cellular functions. The ability of these proteins to bind both filaments as well as monomers is often central to their cellular functions. The ubiquitous pointed end capping protein Tmod3 (tropomodulin 3) acts as a negative regulator of cell migration, yet mechanisms behind its cellular functions are not understood. Analysis of Tmod3 effects on kinetics of actin polymerization and steady state monomer levels revealed that Tmod3, unlike previously characterized tropomodulins, sequesters actin monomers with an affinity similar to its affinity for capping pointed ends. Furthermore, Tmod3 is found bound to actin in high speed supernatant cytosolic extracts, suggesting that Tmod3 can bind to monomers in the context of other cytosolic monomer binding proteins. The Tmod3-actin complex can be efficiently cross-linked with 1-ethyl-3-(dimethylaminopropyl)carbodiimide/N-hydroxylsulfosuccinimide in a 1:1 complex. Subsequent tryptic digestion and liquid chromatography/tandem mass spectrometry revealed two binding interfaces on actin, one distinct from other actin monomer binding proteins, and two potential binding sites in Tmod3, which are independent of the previously characterized leucine-rich repeat structure involved in pointed end capping. These data suggest that the Tmod3 isoform may regulate actin dynamics differently in cells than the previously described tropomodulin isoforms.
Collapse
Affiliation(s)
- Robert S Fischer
- Department of Cell Biology, The Scripps Research Institute, La, Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kearney L. Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenet Genome Res 2006; 114:189-98. [PMID: 16954655 DOI: 10.1159/000094202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/06/2006] [Indexed: 01/08/2023] Open
Abstract
Multiplex FISH (M-FISH) represents one of the most significant developments in molecular cytogenetics of the past decade. Originally designed to generate 24 colour karyotyping, the technique has spawned many variations and an equally diverse range of applications. In tumour and leukaemia cytogenetics, the two groups that have been targeted represent both ends of the cytogenetic spectrum: those with an apparently normal karyotype (suspected of harbouring small rearrangements not detectable by conventional cytogenetics) and those with a complex aberrant karyotype (which are difficult to karyotype accurately due to the sheer number of aberrations). In research, mouse M-FISH provides a powerful tool to characterize mouse models of a disease. In addition, the ability to accurately karyotype single metaphases without selection makes M-FISH the perfect tool in chromosome breakage studies and for characterizing clonal evolution of tumours. Finally, M-FISH has emerged as the perfect partner for the developing genomic microarray (array CGH) technologies, providing a powerful approach to gene discovery.
Collapse
Affiliation(s)
- L Kearney
- Section of Haemato-Oncology, Institute of Cancer Research, London, UK.
| |
Collapse
|
11
|
Grigorova M, Lyman RC, Caldas C, Edwards PAW. Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series analyzed with spectral karyotyping. ACTA ACUST UNITED AC 2005; 162:1-9. [PMID: 16157194 DOI: 10.1016/j.cancergencyto.2005.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/01/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
The karyotypes of 10 lung cancer cell lines of the NCI-H series were analyzed with spectral karyotyping (SKY): 7 non-small lung cancer (NSCLC) lines and 3 small cell lung cancer (SCLC) lines. Modal chromosome number ranged from 42 (NCI-H2171) to 72 (NCI-H2126). All lines showed at least six structural abnormalities, and most had amplifications visible as double minutes or homogeneously staining regions (HSRs). Four reciprocal translocations were found: t(1;17)(p10;p10) in NCI-H82, t(3;6)(q24;q21) and t(12;17)(p10;p10) in NCI-H2009, and a complex t(2;6) in NCI-H1437. NCI-H1770 had a striking HSR containing many copies of the NMYC region. Karyotypes showed a wide range of relationship between numerical and structural change. Two of the lines showed little numerical change but many structural rearrangements (NCI-H209 with mode 46, but 12 rearrangements, and NCI-H2009 with mode 48 but 27 rearrangements). A second group had karyotypes that appeared to have evolved by unbalanced translocation leading to proportionate loss of chromosomes, with or without endoreduplication. In other lines, notably NCI-H2122, the structurally abnormal chromosomes appeared to have been added to a near-diploid karyotype. The karyotypes contribute to a full genomic characterization of these lines, almost all of which have matching normal lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Mira Grigorova
- Cancer Genomics Program, Hutchison-MRC Research Centre, Departments of Pathology and Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| | | | | | | |
Collapse
|
12
|
Speicher MR. Monitoring chromosome rearrangements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:19-41. [PMID: 18727497 DOI: 10.1007/1-4020-3764-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
13
|
Sy SMH, Fan B, Lee TW, Mok TSK, Pang E, Yim A, Wong N. Spectral karyotyping indicates complex rearrangements in lung adenocarcinoma of nonsmokers. ACTA ACUST UNITED AC 2004; 153:57-9. [PMID: 15325095 DOI: 10.1016/j.cancergencyto.2003.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 11/25/2003] [Accepted: 11/26/2003] [Indexed: 10/26/2022]
Abstract
Adenocarcinoma (AdC) of the lung represents a common histologic subtype of non-small cell lung cancer. While there is a rising incidence of AdC in nonsmoking women, information on the cytogenetic changes involved has been minimal to date. In the present study, spectral karyotyping analysis uncovered the genome-wide chromosomal aberrations in two AdC tumors derived from women who were lifelong nonsmokers. Simple and complex structural rearrangements were indicated. A ploidy status of hypertetraploidy was suggested in both cases, with recurring derivative translocations involving chromosome arms 3q, 8q, 12q, 15q, 22q, and Xq.
Collapse
Affiliation(s)
- Shirley Ming-Hui Sy
- Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., SAR Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Sy SMH, Wong N, Lee TW, Tse G, Mok TSK, Fan B, Pang E, Johnson PJ, Yim A. Distinct patterns of genetic alterations in adenocarcinoma and squamous cell carcinoma of the lung. Eur J Cancer 2004; 40:1082-94. [PMID: 15093586 DOI: 10.1016/j.ejca.2004.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/12/2004] [Accepted: 01/15/2004] [Indexed: 01/03/2023]
Abstract
Squamous cell carcinoma (SqC) and adenocarcinoma (AdC) are the two most common subtypes of non-small cell lung cancer (NSCLC). Cumulative information suggests that the SqC and AdC subtypes progress through different carcinogenic pathways, but the genetic aberrations promoting such differences remain unclear. Here we have assessed the overall genomic imbalances and structural abnormalities in SqC and AdC. By parallel analyses with comparative genomic hybridisation (CGH) on tumorous lung tissues and spectral karyotyping (SKY) on short-term cultured primary tumours, genome-wide characterisation was carried out on 69 NSCLC (35 SqC, 34 AdC). Molecular cytogenetic characterisation indicated common and distinct genetic changes in SqC and AdC. Common events of +1q21-q24, +5p15-p14, and +8q22-q24.1, and -17p13-p12 were found in both groups, although hierarchical clustering simulation on CGH findings depicted +2p13-p11.2, +3q25-q29, +9q13-q34, +12p, +12q12-q15 and +17q21, and -8p in preferential association with SqC pathogenesis (P<0.05). Corresponding SKY analysis suggested that these changes occur in simple and complex rearrangements, and further indicated the clonal presence of translocation partners leading to chromosomal over-representations. These recurring rearrangements involved chromosome pairs of t(1;13), t(1;15), t(7;8), t(8;15), t(8;9), t(2;17) and t(15;20). Of particular interest was the finding that the t(8;12) translocation partner was exclusive to AdC. The combined application of SKY and CGH has thus uncovered the genome-wide chromosomal aberrations in NSCLC. Specific chromosomal imbalances and translocation partners found in SqC and AdC have highlighted regions for further molecular investigation into gene(s) that may hold importance in the carcinogenesis of NSCLC.
Collapse
Affiliation(s)
- S M-H Sy
- Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, SAR Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Berrieman HK, Ashman JNE, Cowen ME, Greenman J, Lind MJ, Cawkwell L. Chromosomal analysis of non-small-cell lung cancer by multicolour fluorescent in situ hybridisation. Br J Cancer 2004; 90:900-5. [PMID: 14970871 PMCID: PMC2410166 DOI: 10.1038/sj.bjc.6601569] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The cytogenetic abnormalities in non-small-cell lung cancer remain elusive due primarily to the difficulty in obtaining metaphase spreads from solid tumours. We have used the molecular cytogenetic techniques of multicolour fluorescent in situ hybridisation (M-FISH) and comparative genomic hybridisation (CGH) to analyse four primary non-small-cell lung cancer samples and two established cell lines (COR-L23 and COR-L105) in order to identify common chromosomal aberrations. CGH revealed regions on 5p, 3q, 8q, 11q, 2q, 12p and 12q to be commonly over-represented and regions on 9p, 3p, 6q, 17p, 22q, 8p, 10p, 10q and 19p to be commonly under-represented. M-FISH revealed numerous complex chromosomal rearrangements. Translocations between chromosomes 5 and 14, 5 and 11 and 1 and 6 were observed in three of the six samples, with a further 14 translocations being observed in two samples each. Loss of the Y chromosome and gains of chromosomes 20 and 5p were also frequent. Chromosomes 4, 5, 8, 11, 12 and 19 were most frequently involved in interchromosomal translocations. Further investigation of the recurrent aberrations will be necessary to identify the specific breakpoints involved and any role they may have in the aetiology, diagnosis and prognosis of non-small-cell lung cancer.
Collapse
Affiliation(s)
- H K Berrieman
- Postgraduate Medical Institute, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
- Hull York Medical School, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - J N E Ashman
- Postgraduate Medical Institute, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
- Hull York Medical School, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - M E Cowen
- Cardiothoracic Unit, Castle Hill Hospital, Hull HU16 5JQ, UK
| | - J Greenman
- Postgraduate Medical Institute, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
- Hull York Medical School, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - M J Lind
- Postgraduate Medical Institute, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
- Hull York Medical School, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - L Cawkwell
- Postgraduate Medical Institute, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
- Hull York Medical School, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
- R&D Building, Castle Hill Hospital, Hull HU16 5JQ, UK. E-mail:
| |
Collapse
|
16
|
Fauth C, O'Hare MJ, Lederer G, Jat PS, Speicher MR. Order of genetic events is critical determinant of aberrations in chromosome count and structure. Genes Chromosomes Cancer 2004; 40:298-306. [PMID: 15188452 DOI: 10.1002/gcc.20051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A sequential acquisition of genetic events is critical in tumorigenesis. A key step is the attainment of infinite proliferative potential. Acquisition of this immortalization requires the activation of telomerase in addition to other activities, including inactivation of TP53 and the retinoblastoma family of tumor-suppressor proteins. However, the importance of the order in which these genetic events occur has not been established. To address this question, we used a panel of normal mammary fibroblasts and endothelial cultures that were immortalized after transduction with the catalytic subunit of telomerase (hTERT) and a temperature-sensitive mutant of the SV40 large-tumor (tsLT) oncoprotein in different orders in early- and late-passage stocks. These lines were maintained in continuous culture for up to 90 passages, equivalent to >300 population doublings (PDs) post-explantation during 3 years of continuous propagation. We karyotyped the cultures at different passages. Cultures that received hTERT first followed by tsLT maintained a near-diploid karyotype for more than 150 PDs. However, in late-passage stocks (>200 PDs), metaphase cells were mostly aneuploid. In contrast, the reverse order of gene transduction resulted in a marked early aneuploidy and chromosomal instability, already visible after 50 PDs. These results suggest that the order of genetic mutations is a critical determinant of chromosome count and structural aberration events.
Collapse
Affiliation(s)
- Christine Fauth
- Institute of Human Genetics, Technical University, Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
Wiegant J, van Hall T, van der Burg M, Colombo M, Tanke HJ, Offringa R, Rosenberg C. Application of multicolor fluorescence in situ hybridization analysis for detection of cross-contamination and in vitro progression in commonly used murine tumor cell lines. CANCER GENETICS AND CYTOGENETICS 2002; 139:126-32. [PMID: 12550772 DOI: 10.1016/s0165-4608(02)00623-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Murine tumor models are potent tools for cancer studies, most of which make use of a limited number of murine tumor cell lines that are exchanged by many research groups around the world. Although cross-contamination and in vitro karyotypic progression are well-known risks with respect to the identity of tumor cell lines, these parameters are rarely evaluated. Notably, routine karyotyping of murine cell lines is laborious and technically demanding because mouse chromosomes are morphologically similar. We therefore used a 21-color fluorescence in situ hybridization (FISH) approach (COBRA) for screening two groups of frequently used murine tumor cell lines, each of which shares known immunologic determinants. Multicolor analysis revealed that the sharing of immunologic determinants among three murine lymphoma cell lines (EL-4, MBL-2, and RBL-5) is directly related to their common origin. In several of the cell lines, the chromosomal derivatives had rearranged further, suggesting that the cross-contamination events were not recent. In contrast, karyotypic analysis of three murine colon cancer cell lines (C26, CC36, and C51) showed that these constituted independent tumor clones despite the sharing of immunologic determinants. Our data point out that cross-contamination and in vitro evolution of murine tumor cell lines are a common phenomenon, and that multicolor FISH analysis is an efficient tool for verifying the origin and tracking the evolution of murine cell lines.
Collapse
Affiliation(s)
- Joop Wiegant
- Laboratory for Cytochemistry and Cytometry, Department Molecular Cell Biology, Leiden University Medical Center, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Liehr T, Heller A, Starke H, Claussen U. FISH banding methods: applications in research and diagnostics. Expert Rev Mol Diagn 2002; 2:217-25. [PMID: 12050860 DOI: 10.1586/14737159.2.3.217] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, several chromosome banding techniques based on fluorescence in situ hybridization (FISH) have been developed for the human and the mouse genome. In contrast to the standard chromosome banding techniques presently used, giving a protein-related banding pattern, those FISH techniques are DNA-specific. Currently the FISH banding methods are still under development and no high resolution banding technique is available that can be used for a whole genome in one hybridization. Nevertheless, FISH banding methods were used successfully for research in evolution- and radiation-biology, as well as for studies on the nuclear architecture. Moreover, their suitability for diagnostic purposes has been proven in prenatal, postnatal and tumor cytogenetics, indicating that they are an important tool with the potential to partly replace the conventional banding techniques in future.
Collapse
Affiliation(s)
- Thomas Liehr
- Institut fur Humangenetik und Anthropologie, D-07740 Jena, Germany.
| | | | | | | |
Collapse
|
19
|
Goeze A, Schlüns K, Wolf G, Thäsler Z, Petersen S, Petersen I. Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol 2002; 196:8-16. [PMID: 11748636 DOI: 10.1002/path.1009] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Comparative genomic hybridization (CGH) was used to screen 83 lung adenocarcinomas of 60 patients for chromosomal imbalances. The most common alteration was DNA overrepresentation on chromosome 1q, with a peak incidence at 1q22-q23 in 73% of the primary tumours, followed by DNA overrepresentation on chromosomes 8q and 20q, and deletions on chromosomes 3p, 4q, 6q, 9p, 9q, and 13q, in at least 60%. The generation of a difference histogram of metastasizing versus non-metastasizing tumours and a case-by-case histogram for the comparison of 23 paired samples of primary tumours and corresponding metastases suggested that deletions on chromosomes 3p12-p14, 3p22-p24, 4p13-15.1, 4q21-qter, 6q21-qter, 8p, 10q, 14q21, 17p12-p13, 20p12, and 21q, and overrepresentations on chromosomes 1q21-q25, 7q11.2, 9q34, 11q12-q13, 14q11-q13, and 17q25 are associated with the metastatic phenotype. In contrast, losses on chromosome 19 and gains on 3p, 4q, 5p, and 6q were preferentially found in non-metastasizing tumours. The analysis of the paired samples revealed considerable chromosomal instability, but indicated a clonal relationship in each case. The primary tumours often showed additional deletions, suggesting that loss of function mutations are critical in the initial phase of tumour dissemination, whereas the metastases preferentially acquired DNA gains, probably modulating the metastatic phenotype. The primary data from this study (ratio profiles, clinicopathological parameters, histograms) are also available at http://amba.charite.de/cgh.
Collapse
Affiliation(s)
- Almut Goeze
- Institute of Pathology, Charité Hospital, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Jentsch I, Adler ID, Carter NP, Speicher MR. Karyotyping mouse chromosomes by multiplex-FISH (M-FISH). Chromosome Res 2001; 9:211-4. [PMID: 11330395 DOI: 10.1023/a:1016696303479] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Karyotyping of mouse chromosomes is a skillful art, which is laborious work even for experienced cytogeneticists. With the growing number of mouse models for human diseases, there is an increasing demand for automated mouse karyotyping systems. Here, such a karyotyping system for mouse chromosomes based on the multiplex-fluorescence in-situ hybridization (M-FISH) technology is shown. The system was tested on a number of individual mice with numerical and structural aberrations and its reproducibility and robustness verified. Mouse M-FISH should be a valuable tool for the analysis of chromosomal rearrangements in mice.
Collapse
Affiliation(s)
- I Jentsch
- Institut für Anthropologie und Humangenetik, Ludwig-Maximilians-Universität München, Germany
| | | | | | | |
Collapse
|
21
|
Luk C, Tsao MS, Bayani J, Shepherd F, Squire JA. Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. ACTA ACUST UNITED AC 2001; 125:87-99. [PMID: 11369051 DOI: 10.1016/s0165-4608(00)00363-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The overall pattern of chromosomal changes detected by spectral karyotype (SKY) analysis of two cell lines of each major histological subtype of NSCLC, namely squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), indicated a greater degree of chromosomal rearrangement, than was present or predicted by either comparative genomic hybridization (CGH) or G-banding analysis alone. To investigate these observations, CGH was used to screen DNA derived from 8 primary tumors and 15 cell lines. The results indicated that the most frequently gained chromosome arms were 5p (70%), 8q (65%), 15q (52%), 20q (48%), 1q (43%), 19q (39%), 3q (35%), and 11q (35%). Chromosomal losses were less frequently observed, and included 18q (39%), 9 (35%), 6q (30%), 13q (21%), 5q12-q32 (17%), and 19p (17%). Amplifications were found on 2p23-p24, 3q24-q27, 5p, 6cen-p21.1, 6q26, 7p21, 7q31, 8q, 11q13-qter, 20q12-q13.2. Comparison between CGH findings of the two major histological subtypes showed that gains at 1q22-q32.2, 15q, 20q, and losses at 6q, 13q, and 18q was common in ADCs, whereas SQCCs exhibited gains/amplifications at 3q. Distal 8q was gained by CGH in 65% of tumors of both subtypes. Low level MYCC amplification was confirmed by direct fluorescence in situ hybridization (FISH) analysis. The pattern of overall chromosomal changes detected using combinations of molecular cytogenetic analytical methods suggests that it will be easier to detect recurrent subtype-dependent aberrations in NSCLC.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Chromosome Aberrations
- Chromosome Banding
- Chromosome Deletion
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- DNA, Neoplasm/genetics
- Gene Amplification
- Genes, myc
- Humans
- Image Processing, Computer-Assisted
- In Situ Hybridization, Fluorescence
- Karyotyping/methods
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Nucleic Acid Hybridization
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Luk
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Thiagalingam S, Laken S, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B, Lengauer C. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci U S A 2001; 98:2698-702. [PMID: 11226302 PMCID: PMC30201 DOI: 10.1073/pnas.051625398] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2000] [Indexed: 12/11/2022] Open
Abstract
Losses of heterozygosity are the most common molecular genetic alteration observed in human cancers. However, there have been few systematic studies to understand the mechanism(s) responsible for losses of heterozygosity in such tumors. Here we report a detailed investigation of the five chromosomes lost most frequently in human colorectal cancers. A total of 10,216 determinations were made with 88 microsatellite markers, revealing 245 chromosomal loss events. The mechanisms of loss were remarkably chromosome-specific. Some chromosomes displayed complete loss such as that predicted to result from mitotic nondisjunction. However, more than half of the losses were associated with losses of only part of a chromosome rather than a whole chromosome. Surprisingly, these losses were due largely to structural alterations rather than to mitotic recombination, break-induced replication, or gene conversion, suggesting novel mechanisms for the generation of much of the aneuploidy in this common tumor type.
Collapse
Affiliation(s)
- S Thiagalingam
- Oncology Center, Program in Molecular Biology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|