1
|
Wang X, Wang X, Su J, Wang D, Feng W, Wang X, Lu H, Wang A, Liu M, Xia G. A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. ACS NANO 2024; 18:27917-27932. [PMID: 39364559 DOI: 10.1021/acsnano.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high recurrence rate. The interaction of chemokine receptor 4/chemokine ligand 12 (CXCR4/CXCL12) mediates homing and adhesion of AML cells in bone marrow, leading to minimal residual disease in patients, which brings a hidden danger for future AML recurrence. Ara-C is a nonselective chemotherapeutic agent against AML. Due to its short half-life and severe side effects, a lipid-like Ara-C derivative (AraN) was synthesized and a dual-function LipoAraN-E5 (135 nm, encapsulation efficiency 99%) was developed, which coloaded AraN and E5, a peptide of the CXCR4 antagonist. LipoAraN-E5 effectively improved the uptake, enhanced the inhibition of leukemia cell proliferation, migration, and adhesion to stromal cells in bone marrow, and mobilized the leukemia cells from bone marrow to peripheral blood via interfering with the CXCR4/CXCL12 axis. LipoAraN-E5 prolonged the plasma half-life of AraN (8.31 vs 0.56 h) and was highly enriched in peripheral blood (3.67 vs 0.05 μmol/g at 8 h) and bone marrow (379 vs 148 μmol/g at 24 h). LipoAraN-E5 effectively prevented the infiltration of leukemia cells in peripheral blood, bone marrow, spleen, and liver, prolonged the mice survival, and showed outstanding antineoplastic efficacy with negligible toxicity, which were attributed to the ingenious design of AraN, the use of a liposomal delivery carrier, and the introduction of E5. Our work revealed that LipoAraN-E5 may be a promising nanocandidate against AML.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
2
|
Martino EA, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Pozzi S, Neri A, Morabito F, Vigna E, Gentile M. Investigational CXCR4 inhibitors in early phase development for the treatment of hematological malignancies. Expert Opin Investig Drugs 2024; 33:915-924. [PMID: 39096094 DOI: 10.1080/13543784.2024.2388567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION CXCR4/CXCL12 axis regulates cell proliferation, survival, and differentiation, as well as the homing and mobilization of hematopoietic stem cells (HSCs) from bone marrow niches to the peripheral blood. Furthermore, CXCR4 and CXCL12 are key mediators of cross-talk between hematological malignancies and their microenvironments. CXCR4 overexpression drives disease progression, boosts tumor cell survival, and promotes chemoresistance, leading to poor prognosis. AREAS COVERED In light of these discoveries, scientific investigations, and clinical trials have underscored the therapeutic promise found in small-molecule antagonists like plerixafor, peptides/peptidomimetics, such as BKT140, monoclonal antibodies like PF-06747143 and ulocuplumab, as well as microRNAs. Their efficacy is evident in reducing tumor burden, inducing apoptosis and sensitizing malignant cells to conventional chemotherapies. This overview delves into the pathogenic role of the CXC4/CXCL12 axis in hematological neoplasms and examines the clinical application of key CXCR4 antagonists. EXPERT OPINION The information collectively emphasizes the potential of CXCR4 antagonists as a therapeutic strategy for hematologic malignancies, showcasing advancements in preclinical and clinical studies. As these therapeutic strategies progress through clinical trials, their potential to reshape the prognosis of hematologic malignancies will become increasingly apparent.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Stefano Pozzi
- Ematologia Azienda USL-IRCSS Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, EmiliaRomagna, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
3
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
4
|
Liu J, Zhao W, Luan Y, Tian Z. FAM189A2 plays a tumour suppressor role in lung adenocarcinoma by influencing cell apoptosis, CXCR4 expression and tight junction proteins. Tissue Cell 2024; 89:102441. [PMID: 38878656 DOI: 10.1016/j.tice.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
Transmembrane proteins play key roles in the development of lung cancer. The family with sequence similarity 189 member A2 (FAM189A2) gene encodes a transmembrane structural protein, yet its involvement in lung adenocarcinoma remains largely unexplored. This study elucidated its role in lung adenocarcinoma and its possible molecular mechanism. Our findings revealed diminished expression levels of FAM189A2 in LUAD tissues. Additionally, the activity of LUAD cells was significantly inhibited by overexpression of FAM189A2. Following FAM189A2 overexpression, the expression of OCLN and TJP2 was upregulated in LUAD cells, while CXCR4 expression experiences a notable decrease. Moreover, the coimmunoprecipitation experiment confirmed the direct interaction between FAM189A2 and CXCR4. The infiltration levels of T cells (CD4+ memory resting, CD8+, regulatory), NK cells, B memory cells, endothelial cells and cancer-associated fibroblasts were significantly correlated with FAM189A2 expression. These results indicate FAM189A2 may act as a tumour suppressor in LUAD through tight junction protein (TJP) and CXCR4 regulation. Moreover, FAM189A2 is significantly correlated with the immune microenvironment of LUAD, which may be involved in prognosis and immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Jiakun Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China; Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, PR China
| | - Wei Zhao
- Department of Prevention and Health Care, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Yanchao Luan
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, PR China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
5
|
Eroz I, Kakkar PK, Lazar RA, El-Jawhari J. Mesenchymal Stem Cells in Myelodysplastic Syndromes and Leukaemia. Biomedicines 2024; 12:1677. [PMID: 39200142 PMCID: PMC11351218 DOI: 10.3390/biomedicines12081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the main residents in the bone marrow (BM) and have an essential role in the regulation of haematopoietic stem cell (HSC) differentiation and proliferation. Myelodysplastic syndromes (MDSs) are a group of myeloid disorders impacting haematopoietic stem and progenitor cells (HSCPs) that are characterised by BM failure, ineffective haematopoiesis, cytopenia, and a high risk of transformation through the expansion of MDS clones together with additional genetic defects. It has been indicated that MSCs play anti-tumorigenic roles such as in cell cycle arrest and pro-tumorigenic roles including the induction of metastasis in MDS and leukaemia. Growing evidence has shown that MSCs have impaired functions in MDS, such as decreased proliferation capacity, differentiation ability, haematopoiesis support, and immunomodulation function and increased inflammatory alterations within the BM through some intracellular pathways such as Notch and Wnt and extracellular modulators abnormally secreted by MSCs, including increased expression of inflammatory factors and decreased expression of haematopoietic factors, contributing to the development and progression of MDSs. Therefore, MSCs can be targeted for the treatment of MDSs and leukaemia. However, it remains unclear what drives MSCs to behave abnormally. In this review, dysregulations in MSCs and their contributions to myeloid haematological malignancies will be discussed.
Collapse
Affiliation(s)
- Ilayda Eroz
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Prabneet Kaur Kakkar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Renal Antoinette Lazar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Jehan El-Jawhari
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Yang J, Zhang P, Mao Y, Chen R, Cheng R, Li J, Sun H, Deng C, Zhong Z. CXCR4-Mediated Codelivery of FLT3 and BCL-2 Inhibitors for Enhanced Targeted Combination Therapy of FLT3-ITD Acute Myeloid Leukemia. Biomacromolecules 2024; 25:4569-4580. [PMID: 38869359 DOI: 10.1021/acs.biomac.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukemia (AML) is often associated with poor prognosis and survival. Small molecule inhibitors, though widening the treatment landscape, have limited monotherapy efficacy. The combination therapy, however, shows suboptimal clinical outcomes due to low bioavailability, overlapping systemic toxicity and drug resistance. Here, we report that CXCR4-mediated codelivery of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor sorafenib (SOR) via T22 peptide-tagged disulfide cross-linked polymeric micelles (TM) achieves synergistic treatment of FLT3-ITD AML. TM-VS with a VEN/SOR weight ratio of 1/4 and T22 peptide density of 20% exhibited an extraordinary inhibitory effect on CXCR4-overexpressing MV4-11 AML cells. TM-VS at a VEN/SOR dosage of 2.5/10 mg/kg remarkably reduced leukemia burden, prolonged mouse survival, and impeded bone loss in orthotopic MV4-11-bearing mice, outperforming the nontargeted M-VS and oral administration of free VEN/SOR. CXCR4-mediated codelivery of BCL-2 and FLT3 inhibitors has emerged as a prospective clinical treatment for FLT3-ITD AML.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Humans
- Mice
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Sorafenib/pharmacology
- Sorafenib/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Micelles
Collapse
Affiliation(s)
- Jiakun Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Peng Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yumin Mao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Ran Chen
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- Soochow College, Soochow University, Suzhou 215123, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Zhang Y, Chen L, Fu T, Xu A, Li K, Hao K, Lyu J, Wang Z, Kong F. Self-Stimulated Photodynamic Nanoreactor in Combination with CXCR4 Antagonists for Antileukemia Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21610-21622. [PMID: 38647446 DOI: 10.1021/acsami.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.
Collapse
MESH Headings
- Animals
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Mice
- Photochemotherapy
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Photosensitizing Agents/chemistry
- Photosensitizing Agents/pharmacology
- Photosensitizing Agents/therapeutic use
- Cell Line, Tumor
- Chemokine CXCL12/metabolism
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Yan Zhang
- School of Laboratory Medicine, Hangzhou Medical College, 310053 Hangzhou, Zhejiang, China
| | - Liang Chen
- School of Laboratory Medicine, Hangzhou Medical College, 310053 Hangzhou, Zhejiang, China
| | - Ting Fu
- School of Laboratory Medicine, Hangzhou Medical College, 310053 Hangzhou, Zhejiang, China
| | - Aibo Xu
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Kaiqiang Li
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Ke Hao
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Jianxin Lyu
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Fei Kong
- School of Laboratory Medicine, Hangzhou Medical College, 310053 Hangzhou, Zhejiang, China
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital, Affiliated People's hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
8
|
Liang J, Seghiri M, Singh PK, Seo HG, Lee JY, Jo Y, Song YB, Park C, Zalicki P, Jeong JY, Huh WK, Caculitan NG, Smith AW. The β2-adrenergic receptor associates with CXCR4 multimers in human cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2304897121. [PMID: 38547061 PMCID: PMC10998613 DOI: 10.1073/pnas.2304897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/02/2024] Open
Abstract
While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the β2 adrenergic receptor (β2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-β2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and β2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that β2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-β2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.
Collapse
Affiliation(s)
- Junyi Liang
- Department of Chemistry, University of Akron, Akron, OH44325
| | - Mohamed Seghiri
- Department of Chemistry, University of Akron, Akron, OH44325
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX79409
| | - Pradeep Kumar Singh
- Department of Chemistry, University of Akron, Akron, OH44325
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX79409
| | - Hyeon Gyu Seo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Ji Yeong Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Yoonjung Jo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Yong Bhum Song
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Chulo Park
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Piotr Zalicki
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Republic of Korea
| | | | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH44325
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX79409
| |
Collapse
|
9
|
Dreher N, Hahner S, Fuß CT, Schlötelburg W, Hartrampf PE, Serfling SE, Schirbel A, Samnick S, Higuchi T, Weich A, Lapa C, Rosenwald A, Buck AK, Kircher S, Werner RA. CXCR4-directed PET/CT with [ 68 Ga]Ga-pentixafor in solid tumors-a comprehensive analysis of imaging findings and comparison with histopathology. Eur J Nucl Med Mol Imaging 2024; 51:1383-1394. [PMID: 38082196 PMCID: PMC10957681 DOI: 10.1007/s00259-023-06547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/26/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND C-X-C motif chemokine receptor 4 (CXCR4) is overexpressed in various solid cancers and can be targeted by CXCR4-directed molecular imaging. We aimed to characterize the in-vivo CXCR4 expression in patients affected with solid tumors, along with a comparison to ex-vivo findings. METHODS A total 142 patients with 23 different histologically proven solid tumors were imaged with CXCR4-directed PET/CT using [68 Ga]Ga-pentixafor (total number of scans, 152). A semi-quantitative analysis of the CXCR4-positive tumor burden including maximum standardized uptake values (SUVmax) and target-to-background ratios (TBR) using blood pool was conducted. In addition, we performed histopathological staining to determine the immuno-reactive score (IRS) from patients' tumor tissue and investigated possible correlations with SUVmax (by providing Spearman's rho ρ). Based on imaging, we also assessed the eligibility for CXCR4-targeted radioligand therapy or non-radioactive CXCR4 inhibitory treatment (defined as more than five CXCR4-avid target lesions [TL] with SUVmax above 10). RESULTS One hundred three of 152 (67.8%) scans showed discernible uptake above blood pool (TBR > 1) in 462 lesions (52 primary tumors and 410 metastases). Median TBR was 4.4 (1.05-24.98), thereby indicating high image contrast. The highest SUVmax was observed in ovarian cancer, followed by small cell lung cancer, desmoplastic small round cell tumor, and adrenocortical carcinoma. When comparing radiotracer accumulation between primary tumors and metastases for the entire cohort, comparable SUVmax was recorded (P > 0.999), except for pulmonal findings (P = 0.013), indicative for uniform CXCR4 expression among TL. For higher IRS, a weak, but statistically significant correlation with increased SUVmax was observed (ρ = 0.328; P = 0.018). In 42/103 (40.8%) scans, more than five TL were recorded, with 12/42 (28.6%) exhibiting SUVmax above 10, suggesting eligibility for CXCR4-targeted treatment in this subcohort. CONCLUSIONS In a whole-body tumor read-out, a substantial portion of prevalent solid tumors demonstrated increased and uniform [68 Ga]Ga-pentixafor uptake, along with high image contrast. We also observed a respective link between in- and ex-vivo CXCR4 expression, suggesting high specificity of the PET agent. Last, a fraction of patients with [68 Ga]Ga-pentixafor-positive tumor burden were rendered potentially suitable for CXCR4-directed therapy.
Collapse
Affiliation(s)
- Niklas Dreher
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Stefanie Hahner
- Department of Internal Medicine I, Endocrinology, University Hospital Würzburg, Würzburg, Germany
| | - Carmina T Fuß
- Department of Internal Medicine I, Endocrinology, University Hospital Würzburg, Würzburg, Germany
| | - Wiebke Schlötelburg
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Alexander Weich
- Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Division of Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| |
Collapse
|
10
|
Lu X, Wang X, Cheng H, Wang X, Liu C, Tan X. Anti-triple-negative breast cancer metastasis efficacy and molecular mechanism of the STING agonist for innate immune pathway. Ann Med 2023; 55:2210845. [PMID: 37162544 PMCID: PMC10173802 DOI: 10.1080/07853890.2023.2210845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND With high recurrence and metastatic rates, triple-negative breast cancer (TNBC) has few therapy choices. The innate immune stimulator of interferon genes protein (STING) pathway has emerged as a critical foundation for improving anticancer immunotherapy. Although 2',3'-cGAMP has been shown to have therapeutic potential as a STING agonist in subcutaneous solid tumour treatments in mice, the effect of cGAMP in metastatic malignancies has received less attention. METHODS Bioluminescence imaging technology was applied to monitor TNBC tumour cell metastasis in living mice. Serum biochemical test and blood routine examination of mice were used to demonstrate cGAMP administration had no toxicity. The activation of DCs and CD8+ T cells was demonstrated by flow cytometry. The pharmacological mechanism of cGAMP for suppressing breast tumour metastasis was also explored. RESULTS cGAMP treatment substantially suppressed tumour development and metastasis without adverse effects. cGAMP activated the cGAS-STING-IRF3 pathway, which modified the tumour immune milieu to reverse the Epithelial-Mesenchymal Transition (EMT) and PI3K/AKT pathways and prevent tumour metastasis. It was postulated and proven that cGAMP had a pharmacological mechanism for reducing breast tumour metastasis. CONCLUSION The findings suggest that cGAMP could be useful in the immunotherapy of immune-insensitive metastatic breast cancer.
Collapse
Affiliation(s)
- Xing Lu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Cheng
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoqing Wang
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chang Liu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangshi Tan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Klement L, Drube J. The interplay of FLT3 and CXCR4 in acute myeloid leukemia: an ongoing debate. Front Oncol 2023; 13:1258679. [PMID: 37849810 PMCID: PMC10577206 DOI: 10.3389/fonc.2023.1258679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
FLT3 mutations are very frequent in AML and utilization of FLT3 inhibitors as approved treatment options are very common. Despite the initial success of inhibitor treatment, the development of resistances against this treatment is a major challenge in AML therapy. One of the mechanisms causing resistance is the homing of the leukemic cells in the protective niche of the bone marrow microenvironment (BMM). A pathway mediating homing to the BMM and leukemic cell survival is the CXCL12/CXCR4 axis. The analysis of patient samples in several independent studies indicated that FLT3-ITD expression led to higher CXCR4 surface expression. However, several in vitro studies reported contradictory findings, suggesting that FLT3-ITD signaling negatively influenced CXCR4 expression. In this commentary, we provide an overview summarizing the studies dealing with the relationship of FLT3 and CXCR4. Taken together, the current research status is not sufficient to answer the question whether FLT3 and CXCR4 act together or independently in leukemia progression. Systematic analyses in model cell systems are needed to understand the interplay between FLT3 and CXCR4, since this knowledge could lead to the development of more effective treatment strategies for AML patients.
Collapse
Affiliation(s)
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
12
|
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH, Al-Gazally ME, Kiasari BA, Tavakoli-Far B, Sidikov AA, Mustafa YF, Akhavan-Sigari R. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol 2023; 149:7945-7968. [PMID: 36905421 DOI: 10.1007/s00432-022-04444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 03/12/2023]
Abstract
CXC chemokine receptor type 4 (CXCR4) is a member of the G protein-coupled receptors (GPCRs) superfamily and is specific for CXC chemokine ligand 12 (CXCL12, also known as SDF-1), which makes CXCL12/CXCR4 axis. CXCR4 interacts with its ligand, triggering downstream signaling pathways that influence cell proliferation chemotaxis, migration, and gene expression. The interaction also regulates physiological processes, including hematopoiesis, organogenesis, and tissue repair. Multiple evidence revealed that CXCL12/CXCR4 axis is implicated in several pathways involved in carcinogenesis and plays a key role in tumor growth, survival, angiogenesis, metastasis, and therapeutic resistance. Several CXCR4-targeting compounds have been discovered and used for preclinical and clinical cancer therapy, most of which have shown promising anti-tumor activity. In this review, we summarized the physiological signaling of the CXCL12/CXCR4 axis and described the role of this axis in tumor progression, and focused on the potential therapeutic options and strategies to block CXCR4.
Collapse
Affiliation(s)
- Shunshun Bao
- The First Clinical Medical College, Xuzhou Medical University, 221000, Xuzhou, China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Maysoon T Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Indrajit Patra
- An Independent Researcher, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Akmal A Sidikov
- Rector, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
13
|
Chaudhuri D, Lu T, Jacob B, Abraham S, Shankar P, Poss MA, Neamati N, Camarero JA. Lipidation of a bioactive cyclotide-based CXCR4 antagonist greatly improves its pharmacokinetic profile in vivo. J Control Release 2023; 359:26-32. [PMID: 37236320 PMCID: PMC10527528 DOI: 10.1016/j.jconrel.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The CXCR4 chemokine is a key molecular regulator of many biological functions controlling leukocyte functions during inflammation and immunity, and during embryonic development. Overexpression of CXCR4 is also associated with many types of cancer where its activation promotes angiogenesis, tumor growth/survival, and metastasis. In addition, CXCR4 is involved in HIV replication, working as a co-receptor for viral entry, making CXCR4 a very attractive target for developing novel therapeutic agents. Here we report the pharmacokinetic profile in rats of a potent CXCR4 antagonist cyclotide, MCo-CVX-5c, previously developed in our group that displayed a remarkable in vivo resistance to biological degradation in serum. This bioactive cyclotide, however, was rapidly eliminated through renal clearance. Several lipidated versions of cyclotide MCo-CVX-5c showed a significant increase in the half-life when compared to the unlipidated form. The palmitoylated version of cyclotide MCo-CVX-5c displayed similar CXCR4 antagonistic activity as the unlipidated cyclotide, while the cyclotide modified with octadecanedioic (18-oxo-octadecanoic) acid exhibited a remarkable decrease in its ability to antagonize CXCR4. Similar results were also obtained when tested for its ability to inhibit growth in two cancer cell lines and HIV infection in cells. These results show that the half-life of cyclotides can be improved by lipidation although it can also affect their biological activity depending on the lipid employed.
Collapse
Affiliation(s)
- Dipankar Chaudhuri
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tiangong Lu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79430, USA
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79430, USA
| | - Michael A Poss
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ 08543, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033, USA.
| |
Collapse
|
14
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Park HK, Nguyen LP, Nguyen TU, Cho M, Nguyen HT, Hurh S, Kim HR, Seong JY, Lee CS, Ham BJ, Hwang JI. The N-terminus of CXCR4 splice variants determines expression and functional properties. PLoS One 2023; 18:e0283015. [PMID: 37141381 PMCID: PMC10159351 DOI: 10.1371/journal.pone.0283015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023] Open
Abstract
C-X-C motif chemokine ligand 12(CXCL12) is an essential chemokine for organ development and homeostasis in multiple tissues. Its receptor, C-X-C chemokine receptor type 4(CXCR4), is expressed on the surface of target cells. The chemokine and receptor are expressed almost ubiquitously in human tissues and cells throughout life, and abnormal expression of CXCL12 and CXCR4 is observed in pathological conditions, such as inflammation and cancer. CXCR4 is reportedly translated into five splicing variants of different lengths, which each have different amino acids in the N-terminus. As the N-terminus is the first recognition site for chemokines, CXCR4 variants may respond differently to CXCL12. Despite these differences, the molecular and functional properties of CXCR4 variants have not been thoroughly described or compared. Here, we explored the expression of CXCR4 variants in cell lines and analyzed their roles in cellular responses using biochemical approaches. RT-PCR revealed that most cell lines express more than one CXCR4 variant. When expressed in HEK293 cells, the CXCR4 variants differed in protein expression efficiency and cell surface localization. Although variant 2 demonstrated the strongest expression and cell surface localization, variants 1, 3, and 5 also mediated chemokine signaling and induced cellular responses. Our results demonstrate that the N-terminal sequences of each CXCR4 variant determine the expression of the receptor and affect ligand recognition. Functional analyses revealed that CXCR4 variants may also affect each other or interact during CXCL12-stimulated cellular responses. Altogether, our results suggest that CXCR4 variants may have distinct functional roles that warrant additional investigation and could contribute to future development of novel drug interventions.
Collapse
Affiliation(s)
- Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Thai Uy Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minyeong Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sunghoon Hurh
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
17
|
Kogue Y, Kobayashi H, Nakamura Y, Takano T, Furuta C, Kawano O, Yasuma T, Nishimura T, D’Alessandro-Gabazza CN, Fujimoto H, Gabazza EC, Kobayashi T, Fukai I. Prognostic Value of CXCL12 in Non-Small Cell Lung Cancer Patients Undergoing Tumor Resection. Pharmaceuticals (Basel) 2023; 16:255. [PMID: 37227446 PMCID: PMC9967107 DOI: 10.3390/ph16020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 08/30/2023] Open
Abstract
Adjuvant chemotherapy is commonly indicated in lung cancer patients undergoing surgical therapy because tumor recurrence is frequent. A biomarker that can predict tumor recurrence in the postoperative period is currently unavailable. CXCR4 receptor and its ligand CXCL12 play important roles in metastasis. This study investigated the value of tumor CXCL12 expression to predict prognosis and indicate adjuvant chemotherapy in non-small cell lung cancer patients. This study enrolled 82 non-small cell lung cancer patients. The expression of CXCL12 was evaluated by immunohistochemistry. The degree of CXCL12 expression was assessed using the Allred score system. Among all subjects, the progression-free survival and overall survival were significantly prolonged in cancer patients with low tumor expression of CXCL12 compared to patients with high tumor expression. Multivariate analysis showed that the increased level of CXCL12 is a significant predictor of progression-free survival and overall survival in NSCLC patients. Among subjects with high tumor CXCL12 expression, progression-free survival and overall survival were significantly improved in patients treated with adjuvant chemotherapy compared to untreated patients. These results suggest the potential value of tumor CXCL12 expression as a marker to predict prognosis and to indicate adjuvant chemotherapy after surgical tumor resection in non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Yurie Kogue
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Hiroyasu Kobayashi
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Yutaka Nakamura
- Department of Pathology, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Takatsugu Takano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Chihiro Furuta
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Osamu Kawano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tadashi Nishimura
- Department of Pulmonary Medicine, Mie Chuo Medical Center, Hisaimyojincho, Tsu 514-1101, Japan
| | | | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Ichiro Fukai
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| |
Collapse
|
18
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Laurenge A, Huillard E, Bielle F, Idbaih A. Cell of Origin of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:85-101. [PMID: 36587383 DOI: 10.1007/978-3-031-14732-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A better understanding of cellular and molecular biology of primary central nervous system (CNS) tumors is a critical step toward the design of innovative treatments. In addition to improving knowledge, identification of the cell of origin in tumors allows for sharp and efficient targeting of specific tumor cells promoting and driving oncogenic processes. The World Health Organization identifies approximately 150 primary brain tumor subtypes with various ontogeny and clinical outcomes. Identification of the cell of origin of each tumor type with its lineage and differentiation level is challenging. In the current chapter, we report the suspected cell of origin of various CNS primary tumors including gliomas, glioneuronal tumors, medulloblastoma, meningioma, atypical teratoid rhabdoid tumor, germinomas, and lymphoma. Most of them have been pinpointed through transgenic mouse models and analysis of molecular signatures of tumors. Identification of the cell or cells of origin in primary brain tumors will undoubtedly open new therapeutic avenues, including the reactivation of differentiation programs for therapeutic perspectives.
Collapse
Affiliation(s)
- Alice Laurenge
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- INSERM, CNRS, APHP, Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Paris, France
| | - Franck Bielle
- AP-HP, SIRIC CURAMUS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de La Moelle Épinière, ICM, Service de Neuropathologie Escourolle, 75013, Paris, France
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
20
|
Marayati R, Julson J, Bownes LV, Quinn CH, Stafman LL, Beierle AM, Markert HR, Hutchins SC, Stewart JE, Crossman DK, Hjelmeland AB, Mroczek-Musulman E, Beierle EA. PIM3 kinase promotes tumor metastasis in hepatoblastoma by upregulating cell surface expression of chemokine receptor cxcr4. Clin Exp Metastasis 2022; 39:899-912. [PMID: 36315303 PMCID: PMC9753553 DOI: 10.1007/s10585-022-10186-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Patients presenting with metastatic hepatoblastoma have limited treatment options and survival rates as low as 25%. We previously demonstrated that Proviral Integration site in Maloney murine leukemia virus 3 (PIM3) kinase promotes tumorigenesis and cancer cell stemness in hepatoblastoma. In this study, we assessed the role of PIM3 kinase in promoting hepatoblastoma metastasis. We utilized a tail vein injection model of metastasis to evaluate the effect of CRISPR/Cas9-mediated PIM3 knockout, stable overexpression of PIM3, and pharmacologic PIM inhibition on the formation of lung metastasis. In vivo studies revealed PIM3 knockout impaired the formation of lung metastasis: 5 out of 6 mice injected with wild type hepatoblastoma cells developed lung metastasis while none of the 7 mice injected with PIM3 knockout hepatoblastoma cells developed lung metastasis. PIM3 overexpression in hepatoblastoma increased the pulmonary metastatic burden in mice and mechanistically, upregulated the phosphorylation and cell surface expression of CXCR4, a key receptor in the progression of cancer cell metastasis. CXCR4 blockade with AMD3100 decreased the metastatic phenotype of PIM3 overexpressing cells, indicating that CXCR4 contributed to PIM3's promotion of hepatoblastoma metastasis. Clinically, PIM3 expression correlated positively with CXCR4 expression in primary hepatoblastoma tissues. In conclusion, we have shown PIM3 kinase promotes the metastatic phenotype of hepatoblastoma cells through upregulation of CXCR4 cell surface expression and these findings suggest that targeting PIM3 kinase may provide a novel therapeutic strategy for metastatic hepatoblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Janet Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Sara C Hutchins
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | | | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA.
- , 1600 7th Ave South Lowder Room 300, 35233, Birmingham, AL, USA.
| |
Collapse
|
21
|
Zhang M, Ge Y, Xu S, Fang X, Meng J, Yu L, Wang C, Liu J, Wen T, Yang Y, Wang C, Xu H. Nanomicelles co-loading CXCR4 antagonist and doxorubicin combat the refractory acute myeloid leukemia. Pharmacol Res 2022; 185:106503. [DOI: 10.1016/j.phrs.2022.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
|
22
|
Nader M, Herrmann K, Kunkel F, Zarrad F, Pacelli A, Fendler W, Koplin S. Improved production of 68Ga-Pentixafor using cartridge mediated cation exchange purification. Appl Radiat Isot 2022; 189:110447. [DOI: 10.1016/j.apradiso.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
23
|
Development and Evaluation of a Peptide Heterodimeric Tracer Targeting CXCR4 and Integrin α vβ 3 for Pancreatic Cancer Imaging. Pharmaceutics 2022; 14:pharmaceutics14091791. [PMID: 36145541 PMCID: PMC9503769 DOI: 10.3390/pharmaceutics14091791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, pancreatic cancer is still a formidable disease to diagnose. The CXC chemokine receptor 4 (CXCR4) and integrin αvβ3 play important roles in tumor development, progression, invasion, and metastasis, which are overexpressed in many types of human cancers. In this study, we developed a heterodimeric tracer 68Ga-yG5-RGD targeting both CXCR4 and integrin αvβ3, and evaluated its feasibility and utility in PET imaging of pancreatic cancer. The 68Ga-yG5-RGD could accumulate in CXCR4/integrin αvβ3 positive BxPC3 tumors in a high concentration and was much higher than that of 68Ga-yG5 (p < 0.001) and 68Ga-RGD (p < 0.001). No increased uptake of 68Ga-yG5-RGD was found in MX-1 tumors (CXCR4/integrin αvβ3, negative). In addition, the uptake of 68Ga-yG5-RGD in BxPC3 was significantly blocked by excess amounts of AMD3100 (an FDA-approved CXCR4 antagonist) and/or unlabeled RGD (p < 0.001), confirming its dual-receptor targeting properties. The ex vivo biodistribution and immunohistochemical results were consistent with the in vivo imaging results. The dual-receptor targeting strategy achieved improved tumor-targeting efficiency and prolonged tumor retention in BxPC3 tumors, suggesting 68Ga-yG5-RGD is a promising tracer for the noninvasive detection of tumors that express either CXCR4 or integrin αvβ3 or both, and therefore may have good prospects for clinical translation.
Collapse
|
24
|
Nkandeu DS, Basson C, Joubert AM, Serem JC, Bipath P, Nyakudya T, Hlophe Y. The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. Cell Biochem Funct 2022; 40:608-622. [PMID: 35789495 DOI: 10.1002/cbf.3731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022]
Abstract
Cancer is the second leading cause of mortality worldwide. Skin cancer is the most common cancer in South Africa with nearly 20,000 reported cases every year and 700 deaths. If diagnosed early, the 5-year survival rate is about 90%, however, when diagnosed late, the 5-year survival rate decreases to about 20%. Melanoma is a type of skin cancer with an estimated 5-year survival rate of approximately 90%. Neuroblastoma is a paediatric cancer with a low survival rate. Sixty percent of patients with metastatic disease do not survive 5 years after diagnosis. Despite recent advances in targeted therapies, there is a crucial need to identify reliable prognostic biomarkers which will be able to contribute to the development of more precision-based chemotherapeutic strategies to prevent tumour migration and metastasis. The compound, CTCE-9908 inhibits the binding of CXC chemokine ligand 12 (CXCL12) to the CXC chemokine receptor 4 (CXCR4) receptor leading to reduced metastasis. Kynurenine metabolites are derived tryptophan, which is an essential amino acid. Kynurenine metabolites inhibit T-cell proliferation resulting in cell growth arrest. For this reason, chemokines receptors represent potential targets for the treatment of cancer growth and metastasis. In this review paper, the role of the CXCL12/CXCR4 signalling pathway in the development of cancer is highlighted together with the current available treatments involving the CTCE-9908 compound in combination with microtubule inhibitors like paclitaxel and docetaxel.
Collapse
Affiliation(s)
- Danielle Sandra Nkandeu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Charlize Basson
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
Ren X, He X, Xu C, Han D, Cheng S. Functional Tumor Targeting Nano-Systems for Reprogramming Circulating Tumor Cells with In Situ Evaluation on Therapeutic Efficiency at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105806. [PMID: 35595716 PMCID: PMC9313495 DOI: 10.1002/advs.202105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Indexed: 05/03/2023]
Abstract
Tumor heterogeneity is primarily responsible for treatment resistance and cancer relapses. Being critically important to address this issue, the timely evaluation of the appropriateness of therapeutic actions at the single-cell level is still facing challenges. By using multi-functionalized nano-systems with the delivery vector composed of histone for plasmids loading, hyaluronic acid for tumor targeting, and a fusion peptide for C-X-C motif chemokine receptor 4 (CXCR4) targeting as well as nuclear localization, the reprogramming of circulating tumor cells (CTCs) with in situ detection on biomarkers at the single-cell level is realized. By efficient co-delivery of the genome editing plasmid for CXCR4 knockout and molecular beacons for detection of upregulated mRNA biomarkers into CTCs in unprocessed whole blood, the therapeutic outcomes of genome editing at the single-cell level can be in situ evaluated. The single-cell analysis shows that CXCR4 in CTCs of cancer patients is efficiently downregulated, resulting in upregulated anticancer biomarkers such as p53 and p21. The study provides a facile strategy for in-depth profiling of cancer cell responses to therapeutic actions at single-cell resolution to evaluate the outcomes of treatments timely and conveniently.
Collapse
Affiliation(s)
- Xiao‐He Ren
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Xiao‐Yan He
- School of Life SciencesAnhui Medical UniversityHefei230032P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Si‐Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
26
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
27
|
Skroblyn T, Joedicke JJ, Pfau M, Krüger K, Bourquin JP, Izraeli S, Eckert C, Höpken UE. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment. J Pathol 2022; 258:12-25. [PMID: 35522562 DOI: 10.1002/path.5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
The testis is the second most frequent extramedullary site of relapse in pediatric acute lymphoblastic leukemia (ALL). The mechanism for B-cell (B) ALL cell migration towards and survival within the testis remains elusive. Here, we identified CXCL12-CXCR4 as the leading signaling axis for B-ALL cell migration and survival in the testicular leukemic niche. We combined analysis of primary human ALL with a novel patient-derived xenograft (PDX)-ALL mouse model with testicular involvement. Prerequisites for leukemic cell infiltration in the testis were pre-pubertal age of the recipient mice, high surface expression of CXCR4 on PDX-ALL cells, and CXCL12 secretion from the testicular stroma. Analysis of primary pediatric patient samples revealed that CXCR4 was the only chemokine receptor being robustly expressed on B-ALL cells both at the time of diagnosis and relapse. In affected patient testes, leukemic cells localized within the interstitial space in close proximity to testicular macrophages. Mouse macrophages isolated from affected testes, in the PDX model, revealed a macrophage polarization towards a M2-like phenotype in the presence of ALL cells. Therapeutically, blockade of CXCR4-mediated functions using an anti-CXCR4 antibody treatment completely abolished testicular infiltration of PDX-ALL cells and strongly impaired the overall development of leukemia. Collectively, we identified a pre-pubertal condition together with high CXCR4 expression as factors affecting the leukemia permissive testicular microenvironment. We propose CXCR4 as a promising target for therapeutic prevention of testicular relapses in childhood B-ALL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tessa Skroblyn
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany.,Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - Jara J Joedicke
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Translational Tumorimmunology, 13125, Berlin, Germany
| | - Madlen Pfau
- Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - Kerstin Krüger
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany
| | - Jean P Bourquin
- Department of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Shai Izraeli
- Schneider Children's Medical Center of Israel, Petach Tiqva, and Tel Aviv University, Israel
| | - Cornelia Eckert
- Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany.,German Cancer Consortium, and German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany
| |
Collapse
|
28
|
Epperly R, Talleur AC, Li Y, Schell S, Tuggle M, Métais JY, Huang S, Pei D, Cheng C, Madden R, Mamcarz E, Naik S, Qudeimat A, Sharma A, Srinivasan A, Suliman A, Gottschalk S, Triplett BM. Sub-myeloablative Second Transplantations with Haploidentical Donors and Post-Transplant Cyclophosphamide have limited Anti-Leukemic Effects in Pediatric Patients. Transplant Cell Ther 2022; 28:262.e1-262.e10. [PMID: 35151936 PMCID: PMC9081211 DOI: 10.1016/j.jtct.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
Pediatric patients with high-risk hematologic malignancies who experience relapse after a prior allogeneic hematopoietic cell transplant (HCT) have an exceedingly poor prognosis. A second allogeneic HCT offers the potential for long-term cure but carries high risks of both subsequent relapse and HCT-related morbidity and mortality. Using haploidentical donors for HCT (haploHCT) can expand the donor pool and potentially enhance the graft-versus-leukemia effect but is accompanied by a risk of graft-versus-host disease (GVHD). The goal of this protocol was to intensify the antileukemia effect of haploHCT for pediatric patients with hematologic malignancies that relapsed after prior allogeneic HCT, while limiting regimen-associated toxicities. This phase II clinical trial evaluated a sub-myeloablative preparative regimen consisting of anti-thymocyte globulin, clofarabine, cytarabine, busulfan, and cyclophosphamide, in combination with plerixafor to sensitize leukemic blasts. Participants received a mobilized peripheral blood unmanipulated haploidentical donor graft with one dose of post-transplant cyclophosphamide as GVHD prophylaxis, followed by natural killer (NK) cell addback. Here we report the clinical outcomes and immune reconstitution of 17 participants treated on the study and 5 additional patients treated on similar single-patient treatment plans. Of the 22 participants analyzed, 12 (55%) had active disease at the time of HCT. The regimen provided robust immune reconstitution, with 21 participants (95%) experiencing neutrophil engraftment at a median of 14 days after HCT. In this high-risk population, the overall survival was 45% (95% confidence interval [CI], 24%-64%), with a 12-month event-free survival of 31% (95% CI, 14%-51%) and cumulative incidence of relapse at 12 months of 50% (95% CI, 27%-69%). Four participants (18%) remain in remission at >5 years follow-up. Expected HCT-related organ-specific toxicities were observed, and 13 participants (59%) experienced acute or chronic GVHD. This intensified but sub-myeloablative regimen, followed by a high-dose unmanipulated haploidentical graft, post-transplantation cyclophosphamide, and NK cell infusion, resulted in adequate immune reconstitution but failed to overcome the elevated risks of relapse and treatment-related morbidity in this high-risk population.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Li
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah Schell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - MaCal Tuggle
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sujuan Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Renee Madden
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Swati Naik
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amr Qudeimat
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashok Srinivasan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ali Suliman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon M Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
29
|
Zippel S, Dilger N, Chatterjee C, Raic A, Brenner-Weiß G, Schadzek P, Rapp BE, Lee-Thedieck C. A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication 2022; 14. [PMID: 35472717 DOI: 10.1088/1758-5090/ac6a7e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Leukemia patients undergo chemotherapy to combat the leukemic cells (LCs) in the bone marrow. During therapy not only the LCs, but also the blood-producing hematopoietic stem and progenitor cells (HSPCs) may be destroyed. Chemotherapeutics targeting only the LCs are urgently needed to overcome this problem and minimize life-threatening side-effects. Predictive in vitro drug testing systems allowing simultaneous comparison of various experimental settings would enhance the efficiency of drug development. Here, we present a 3D human leukemic bone marrow model perfused using a magnetic, parallelized culture system to ensure media exchange. Chemotherapeutic treatment of the acute myeloid leukemia cell line KG-1a in 3D magnetic hydrogels seeded with mesenchymal stem/stromal cells (MSCs) revealed a greater resistance of KG-1a compared to 2D culture. In 3D tricultures with HSPCs, MSCs and KG-1a, imitating leukemic bone marrow, HSPC proliferation decreased while KG-1a cells remained unaffected post treatment. Non-invasive metabolic profiling enabled continuous monitoring of the system. Our results highlight the importance of using biomimetic 3D platforms with proper media exchange and co-cultures for creating in vivo-like conditions to enable in vitro drug testing. This system is a step towards drug testing in biomimetic, parallelized in vitro approaches, facilitating the discovery of new anti-leukemic drugs.
Collapse
Affiliation(s)
- Sabrina Zippel
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Nadine Dilger
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Chandralekha Chatterjee
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Annamarija Raic
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Gerald Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, GERMANY
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Stadtfelddamm 34, Hannover, Niedersachsen, 30625, GERMANY
| | - Bastian E Rapp
- Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universitat Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| |
Collapse
|
30
|
von Hinten J, Kircher M, Dierks A, Pfob CH, Higuchi T, Pomper MG, Rowe SP, Buck AK, Samnick S, Werner RA, Lapa C. Molecular Imaging in Multiple Myeloma-Novel PET Radiotracers Improve Patient Management and Guide Therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:801792. [PMID: 39354963 PMCID: PMC11440847 DOI: 10.3389/fnume.2022.801792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 10/03/2024]
Abstract
Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [11C]methionine and [11C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [68Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.
Collapse
Affiliation(s)
- Johannes von Hinten
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H. Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
31
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Murad HAS, Alqurashi TMA, Hussien MA. Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: a molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study. BMC Complement Med Ther 2022; 22:35. [PMID: 35120520 PMCID: PMC8817505 DOI: 10.1186/s12906-021-03488-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.
Collapse
Affiliation(s)
- Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Mostafa Aly Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
| |
Collapse
|
33
|
Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Eur J Pharmacol 2022; 920:174831. [DOI: 10.1016/j.ejphar.2022.174831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
34
|
Moore CA, Ferrer AI, Alonso S, Pamarthi SH, Sandiford OA, Rameshwar P. Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:67-89. [PMID: 34888844 DOI: 10.1007/978-3-030-83282-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a complex organ that sustains hematopoiesis via mechanisms involving the microenvironment. The microenvironment includes several cell types, neurotransmitters from innervated fibers, growth factors, extracellular matrix proteins, and extracellular vesicles. The main function of the BM is to regulate hematopoietic function to sustain the production of blood and immune cells. However, the BM microenvironment can also accommodate the survival of malignant cells. A major mechanism by which the cancer cells communicate with cells of the BM microenvironment is through the exchange of exosomes, a subset of extracellular vesicles that deliver molecular signals bidirectionally between malignant and healthy cells. The field of exosomes is an active area of investigation since an understanding of how the exosomal packaging, cargo, and production can be leveraged therapeutically to deter cancer progression and sensitize malignant cells to other therapies. Altogether, this chapter discusses the crucial role of exosomes in the development and progression of BM-associated cancers, such as hematologic malignancies and marrow-metastatic breast cancer. Exosome-based therapeutic strategies and their limitations are also considered.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alejandra I Ferrer
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sara Alonso
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Oleta A Sandiford
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
35
|
Pallarès V, Unzueta U, Falgàs A, Aviñó A, Núñez Y, García-León A, Sánchez-García L, Serna N, Gallardo A, Alba-Castellón L, Álamo P, Sierra J, Cedó L, Eritja R, Villaverde A, Vázquez E, Casanova I, Mangues R. A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model. Biomaterials 2021; 280:121258. [PMID: 34847435 DOI: 10.1016/j.biomaterials.2021.121258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4+ AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4+ AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4+ leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients.
Collapse
Affiliation(s)
- Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Anna Aviñó
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, 08034, Spain
| | - Yáiza Núñez
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain
| | - Annabel García-León
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain
| | - Laura Sánchez-García
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Naroa Serna
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Lorena Alba-Castellón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain
| | - Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Jorge Sierra
- Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Lídia Cedó
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029, Spain
| | - Ramon Eritja
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, 08034, Spain
| | - Antonio Villaverde
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Esther Vázquez
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain.
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain.
| |
Collapse
|
36
|
Identification of Protein Biomarker Signatures for Acute Myeloid Leukemia (AML) Using Both Nontargeted and Targeted Approaches. Proteomes 2021; 9:proteomes9040042. [PMID: 34842843 PMCID: PMC8628952 DOI: 10.3390/proteomes9040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an increasing number of clonal myeloid blast cells which are incapable of differentiating into mature leukocytes. AML risk stratification is based on genetic background, which also serves as a means to identify the optimal treatment of individual patients. However, constant refinements are needed, and the inclusion of significant measurements, based on the various omics approaches that are currently available to researchers/clinicians, have the potential to increase overall accuracy with respect to patient management. Using both nontargeted (label-free mass spectrometry) and targeted (multiplex immunoassays) proteomics, a range of proteins were found to be significantly changed in AML patients with different genetic backgrounds. The inclusion of validated proteomic biomarker panels could be an important factor in the prognostic classification of AML patients. The ability to measure both cellular and secreted analytes, at diagnosis and during the course of treatment, has advantages in identifying transforming biological mechanisms in patients, assisting important clinical management decisions.
Collapse
|
37
|
Safety and Effectiveness of Plerixafor for Peripheral Blood Stem Cell Mobilization in Autologous Stem Cell Transplantation: Results of a Post-Marketing Surveillance Study. Drugs Real World Outcomes 2021; 9:63-78. [PMID: 34455570 PMCID: PMC8844333 DOI: 10.1007/s40801-021-00276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background Plerixafor was approved in Japan in 2016 for peripheral blood stem cell (PBSC) mobilization in autologous stem cell transplantation (A-SCT). Objective Our objective was to evaluate the safety and effectiveness of plerixafor in Japanese patients undergoing A-SCT for various indications in real-world practice. Patients and Methods This post-marketing surveillance study included Japanese patients initiating PBSC mobilization with plerixafor for A-SCT. Safety assessments included the incidence of adverse events (AEs) including serious AEs, adverse drug reactions (ADRs), and laboratory variables. Effectiveness assessments were the proportion of patients with the target CD34+ cell yield (≥2 × 106 cells/kg) ≤4 days after plerixafor administration and the number of days required to reach the target CD34+ cell yield. Results In total, 785 patients were registered, and the safety and effectiveness analysis sets comprised 764 and 717 patients, respectively. ADRs occurred in 12.2% of patients, with gastrointestinal disorders (5.5%), laboratory investigations (4.5%), and blood and lymphatic system disorders (3.0%) being the most common. A total of 71.1% of patients had the target CD34+ cell yield within ≤4 days of treatment, with a mean (standard deviation) of 1.3 (0.7) days to reach the target CD34+ cell yield. Over 80% of patients with a baseline CD34+ cell count >2 cells/μL had a target CD34+ cell yield within ≤4 days of treatment. Conclusions This large post-marketing surveillance study provided real-world evidence detailing the safety and effectiveness of plerixafor for PBSC mobilization in Japanese patients undergoing A-SCT. Importantly, no new safety concerns were identified, and the safety profile of plerixafor was consistent with the established profile of this drug. Supplementary Information The online version contains supplementary material available at 10.1007/s40801-021-00276-1.
Collapse
|
38
|
Pandey S, Malviya G, Chottova Dvorakova M. Role of Peptides in Diagnostics. Int J Mol Sci 2021; 22:ijms22168828. [PMID: 34445532 PMCID: PMC8396325 DOI: 10.3390/ijms22168828] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- Correspondence:
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G611BD, UK;
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic;
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| |
Collapse
|
39
|
Gao X, Qin S, Wu Y, Chu C, Jiang B, Johnson RH, Kuang D, Zhang J, Wang X, Mehta A, Tew KD, Leone GW, Yu XZ, Wang H. Nuclear PFKP promotes CXCR4-dependent infiltration by T cell acute lymphoblastic leukemia. J Clin Invest 2021; 131:e143119. [PMID: 34255748 DOI: 10.1172/jci143119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
PFKP (phosphofructokinase, platelet), the major isoform of PFK1 expressed in T cell acute lymphoblastic leukemia (T-ALL), is predominantly expressed in the cytoplasm to carry out its glycolytic function. Our study showed that PFKP is a nucleocytoplasmic shuttling protein with functional nuclear export and nuclear localization sequences (NLSs). Cyclin D3/CDK6 facilitated PFKP nuclear translocation by dimerization and by exposing the NLS of PFKP to induce the interaction between PFKP and importin 9. Nuclear PFKP stimulated the expression of C-X-C chemokine receptor type 4 (CXCR4), a chemokine receptor regulating leukemia homing/infiltration, to promote T-ALL cell invasion, which depended on the activity of c-Myc. In vivo experiments showed that nuclear PFKP promoted leukemia homing/infiltration into the bone marrow, spleen, and liver, which could be blocked with CXCR4 antagonists. Immunohistochemical staining of tissues from a clinically well-annotated cohort of T cell lymphoma/leukemia patients showed nuclear PFKP localization in invasive cancers, but not in nonmalignant T lymph node or reactive hyperplasia. The presence of nuclear PFKP in these specimens correlated with poor survival in patients with T cell malignancy, suggesting the potential utility of nuclear PFKP as a diagnostic marker.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute and.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute and
| | - Roger H Johnson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gustavo W Leone
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
40
|
Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc Natl Acad Sci U S A 2021; 118:2017282118. [PMID: 33627402 DOI: 10.1073/pnas.2017282118] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.
Collapse
|
41
|
Maia A, Wiemann S. Cancer-Associated Fibroblasts: Implications for Cancer Therapy. Cancers (Basel) 2021; 13:3526. [PMID: 34298736 PMCID: PMC8307167 DOI: 10.3390/cancers13143526] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumour cells do not exist as an isolated entity. Instead, they are surrounded by and closely interact with cells of the environment they are emerged in. The tumour microenvironment (TME) is not static and several factors, including cancer cells and therapies, have been described to modulate several of its components. Fibroblasts are key elements of the TME with the capacity to influence tumour progression, invasion and response to therapy, which makes them attractive targets in cancer treatment. In this review, we focus on fibroblasts and their numerous roles in the TME with a special attention to recent findings describing their heterogeneity and role in therapy response. Furthermore, we explore how different therapies can impact these cells and their communication with cancer cells. Finally, we highlight potential strategies targeting this cell type that can be employed for improving patient outcome.
Collapse
Affiliation(s)
- Ana Maia
- German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Stefan Wiemann
- German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Liu LC, Ho MY, Su BH, Wang SY, Hsu MT, Tseng YJ. PanGPCR: predictions for multiple targets, repurposing and side effects. Bioinformatics 2021; 37:1184-1186. [PMID: 32915954 DOI: 10.1093/bioinformatics/btaa766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 11/14/2022] Open
Abstract
SUMMARY Drug discovery targeting G protein-coupled receptors (GPCRs), the largest known class of therapeutic targets, is challenging. To facilitate the rapid discovery and development of GPCR drugs, we built a system, PanGPCR, to predict multiple potential GPCR targets and their expression locations in the tissues, side effects and possible repurposing of GPCR drugs. With PanGPCR, the compound of interest is docked to a library of 36 experimentally determined crystal structures comprising of 46 docking sites for human GPCRs, and a ranked list is generated from the docking studies to assess all GPCRs and their binding affinities. Users can determine a given compound's GPCR targets and its repurposing potential accordingly. Moreover, potential side effects collected from the SIDER (Side-Effect Resource) database and mapped to 45 tissues and organs are provided by linking predicted off-targets and their expressed sequence tag profiles. With PanGPCR, multiple targets, repurposing potential and side effects can be determined by simply uploading a small ligand. AVAILABILITY AND IMPLEMENTATION PanGPCR is freely accessible at https://gpcrpanel.cmdm.tw/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lu-Chi Liu
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Yang Ho
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Bo-Han Su
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 106, Taiwan
| | - Ming-Tsung Hsu
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan
| | - Yufeng J Tseng
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
43
|
Walker KL, Rinella SP, Hess NJ, Turicek DP, Kabakov SA, Zhu F, Bouchlaka MN, Olson SL, Cho MM, Quamine AE, Feils AS, Gavcovich TB, Rui L, Capitini CM. CXCR4 allows T cell acute lymphoblastic leukemia to escape from JAK1/2 and BCL2 inhibition through CNS infiltration. Leuk Lymphoma 2021; 62:1167-1177. [PMID: 33843403 DOI: 10.1080/10428194.2021.1910684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeting the JAK/STAT and BCL2 pathways in patients with relapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect on T-ALL individually, but combination treatment reduces survival and proliferation of T-ALL in vitro. Using a xenograft model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS) as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that ruxolitinib and venetoclax insufficiently cross into the CNS. The addition of the CXCR4 inhibitor plerixafor with ruxolitinib and venetoclax reduces clinical scores and enhances survival. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis may be needed to maximize the possibility of complete remission.
Collapse
Affiliation(s)
- Kirsti L Walker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean P Rinella
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas J Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David P Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sabrina A Kabakov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Myriam N Bouchlaka
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sydney L Olson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aicha E Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Arika S Feils
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tara B Gavcovich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lixin Rui
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
44
|
Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 2021; 10:1889-1916. [PMID: 34012800 PMCID: PMC8107755 DOI: 10.21037/tlcr-20-1241] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the deadliest malignancy worldwide. An inflammatory microenvironment is a key factor contributing to lung tumor progression. Tumor-Associated Macrophages (TAMs) are prominent components of the cancer immune microenvironment with diverse supportive and inhibitory effects on growth, progression, and metastasis of lung tumors. Two main macrophage phenotypes with different functions have been identified. They include inflammatory or classically activated (M1) and anti-inflammatory or alternatively activated (M2) macrophages. The contrasting functions of TAMs in relation to lung neoplasm progression stem from the presence of TAMs with varying tumor-promoting or anti-tumor activities. This wide spectrum of functions is governed by a network of cytokines and chemokines, cell-cell interactions, and signaling pathways. TAMs are promising therapeutic targets for non-small cell lung cancer (NSCLC) treatment. There are several strategies for TAM targeting and utilizing them for therapeutic purposes including limiting monocyte recruitment and localization through various pathways such as CCL2-CCR2, CSF1-CSF1R, and CXCL12-CXCR4, targeting the activation of TAMs, genetic and epigenetic reprogramming of TAMs to antitumor phenotype, and utilizing TAMs as the carrier for anti-cancer drugs. In this review, we will outline the role of macrophages in the lung cancer initiation and progression, pathways regulating their function in lung cancer microenvironment as well as the role of these immune cells in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Sadat Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
45
|
Wagner N, Mott K, Upcin B, Stegner D, Schulze H, Ergün S. CXCL12-Abundant Reticular (CAR) Cells Direct Megakaryocyte Protrusions across the Bone Marrow Sinusoid Wall. Cells 2021; 10:722. [PMID: 33804965 PMCID: PMC8063926 DOI: 10.3390/cells10040722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Megakaryocytes (MKs) release platelets into the lumen of bone marrow (BM) sinusoids while remaining to reside within the BM. The morphogenetic events of this complex process are still not fully understood. We combined confocal laser scanning microscopy with transmission and serial block-face scanning electron microscopy followed by 3D-reconstruction on mouse BM tissue sections. These analyses revealed that MKs in close vicinity to BM sinusoid (BMS) wall first induce the lateral retraction of CXCL12-abundant reticular (CAR) cells (CAR), followed by basal lamina (BL) degradation enabling direct MK-sinusoidal endothelial cells (SECs) interaction. Subsequently, an endothelial engulfment starts that contains a large MK protrusion. Then, MK protrusions penetrate the SEC, transmigrate into the BMS lumen and form proplatelets that are in direct contact to the SEC surface. Furthermore, such processes are induced on several sites, as observed by 3D reconstructions. Our data demonstrate that MKs in interaction with CAR-cells actively induce BMS wall alterations, including CAR-cell retraction, BL degradation, and SEC engulfment containing a large MK protrusion. This results in SEC penetration enabling the migration of MK protrusion into the BMS lumen where proplatelets that are adherent to the luminal SEC surface are formed and contribute to platelet release into the blood circulation.
Collapse
Affiliation(s)
- Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany; (N.W.); (B.U.)
| | - Kristina Mott
- Institute of Experimental Biomedicine, Chair I, University Hospital Würzburg, 97080 Würzburg, Germany; (K.M.); (D.S.)
| | - Berin Upcin
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany; (N.W.); (B.U.)
| | - David Stegner
- Institute of Experimental Biomedicine, Chair I, University Hospital Würzburg, 97080 Würzburg, Germany; (K.M.); (D.S.)
| | - Harald Schulze
- Institute of Experimental Biomedicine, Chair I, University Hospital Würzburg, 97080 Würzburg, Germany; (K.M.); (D.S.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany; (N.W.); (B.U.)
| |
Collapse
|
46
|
Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, Jamal M, Zhang Q, Shao L. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol 2021; 14:48. [PMID: 33743810 PMCID: PMC7981899 DOI: 10.1186/s13045-021-01060-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by the malignant clonal expansion of lymphoid hematopoietic precursors. It is regulated by various signaling molecules such as cytokines and adhesion molecules in its microenvironment. Chemokines are chemotactic cytokines that regulate migration, positioning and interactions of cells. Many chemokine axes such as CXCL12/CXCR4 and CCL25/CCR9 have been proved to play important roles in leukemia microenvironment and further affect ALL outcomes. In this review, we summarize the chemokines that are involved in ALL progression and elaborate on their roles and mechanisms in leukemia cell proliferation, infiltration, drug resistance and disease relapse. We also discuss the potential of targeting chemokine axes for ALL treatments, since many related inhibitors have shown promising efficacy in preclinical trials, and some of them have entered clinical trials.
Collapse
Affiliation(s)
- Zixi Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lin Fu
- The First Clinical School of Wuhan University, Wuhan, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China.
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
47
|
Aronovich A, Moyal L, Gorovitz B, Amitay-Laish I, Naveh HP, Forer Y, Maron L, Knaneh J, Ad-El D, Yaacobi D, Barel E, Erez N, Hodak E. Cancer-Associated Fibroblasts in Mycosis Fungoides Promote Tumor Cell Migration and Drug Resistance through CXCL12/CXCR4. J Invest Dermatol 2021; 141:619-627.e2. [DOI: 10.1016/j.jid.2020.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
|
48
|
Liu X, Jiang J, Liao Y, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei K, Liu Q, Chang CH, Wainberg ZA, Nel AE, Meng H. Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002147. [PMID: 33747719 PMCID: PMC7967046 DOI: 10.1002/advs.202002147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/24/2020] [Indexed: 05/07/2023]
Abstract
There is an urgent need to develop new life-prolonging therapy for pancreatic ductal adenocarcinoma (PDAC). It is demonstrated that improved irinotecan delivery by a lipid bilayer coated mesoporous silica nanoparticle, also known as a silicasome, can improve PDAC survival through a chemo-immunotherapy response in an orthotopic Kras-dependent pancreatic cancer model. This discovery is premised on the weak-basic properties of irinotecan, which neutralizes the acidic lysosomal pH in PDAC cells. This effect triggers a linked downstream cascade of events that include autophagy inhibition, endoplasmic reticulum stress, immunogenic cell death (ICD), and programmed death-ligand 1 (PD-L1) expression. ICD is characterized by calreticulin expression and high-mobility group box 1 (HMGB1) release in dying Kras-induced pancreatic cancer (KPC) cells, which is demonstrated in a vaccination experiment to prevent KPC tumor growth on the contralateral site. The improved delivery of irinotecan by the silicasome is accompanied by robust antitumor immunity, which can be synergistically enhanced by anti-PD-1 in the orthotopic model. Immunophenotyping confirms the expression of calreticulin, HMGB1, PD-L1, and an autophagy marker, in addition to perforin and granzyme B deposition. The chemo-immunotherapy response elicited by the silicasome is more robust than free or a liposomal drug, Onivyde. The silicasome plus anti-PD-1 leads to significantly enhanced survival improvement, and is far superior to anti-PD-1 plus either free irinotecan or Onivyde.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
- Present address:
The Cancer Hospital of the University of Chinese Academy of SciencesInstitute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Jinhong Jiang
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Yu‐Pei Liao
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Ivanna Tang
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Emily Zheng
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Waveley Qiu
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Matthew Lin
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Xiang Wang
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Ying Ji
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Kuo‐Ching Mei
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Qi Liu
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Chong Hyun Chang
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Zev A. Wainberg
- Division of Hematology OncologyDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Andre E. Nel
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Huan Meng
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
49
|
Kaiser LM, Harms M, Sauter D, Rawat VPS, Glitscher M, Hildt E, Tews D, Hunter Z, Münch J, Buske C. Targeting of CXCR4 by the Naturally Occurring CXCR4 Antagonist EPI-X4 in Waldenström's Macroglobulinemia. Cancers (Basel) 2021; 13:826. [PMID: 33669329 PMCID: PMC7920274 DOI: 10.3390/cancers13040826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
CXCR4 expression and downstream signaling have been identified as key factors in malignant hematopoiesis. Thus, up to 40% of all patients with Waldenström's macroglobulinemia (WM) carry an activating mutation of CXCR4 that leads to a more aggressive clinical course and inferior outcome upon treatment with the Bruton's tyrosine kinase inhibitor ibrutinib. Nevertheless, little is known about physiological mechanisms counteracting CXCR4 signaling in hematopoietic neoplasms. Recently, the endogenous human peptide EPI-X4 was identified as a natural CXCR4 antagonist that effectively blocks CXCL12-mediated receptor internalization and suppresses the migration and invasion of cancer cells towards a CXCL12 gradient. Here, we demonstrate that EPI-X4 efficiently binds to CXCR4 of WM cells and decreases their migration towards CXCL12. The CXCR4 inhibitory activity of EPI-X4 is accompanied by reduced expression of genes involved in MAPK signaling and energy metabolism. Notably, the anti-WM activity of EPI-X4 could be further augmented by the rational design of EPI-X4 derivatives showing higher binding affinity to CXCR4. In summary, these data demonstrate that a naturally occurring anti-CXCR4 peptide is able to interfere with WM cell behaviour, and that optimized derivatives of EPI-X4 may represent a promising approach in suppressing growth promoting CXCR4 signaling in WM.
Collapse
Affiliation(s)
- Lisa Marie Kaiser
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, 89081 Ulm, Germany; (L.M.K.); (V.P.S.R.)
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.H.); (D.S.); (J.M.)
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.H.); (D.S.); (J.M.)
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Vijay P. S. Rawat
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, 89081 Ulm, Germany; (L.M.K.); (V.P.S.R.)
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi 110067, India
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, 63225 Langen, Germany; (M.G.); (E.H.)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, 63225 Langen, Germany; (M.G.); (E.H.)
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Zachary Hunter
- Bing Center for Waldenström’s Macroglobulinemia, Boston, MA 02215, USA;
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.H.); (D.S.); (J.M.)
| | - Christian Buske
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, 89081 Ulm, Germany; (L.M.K.); (V.P.S.R.)
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
50
|
Linde P, Baues C, Wegen S, Trommer M, Quaas A, Rosenbrock J, Celik E, Marnitz S, Bruns CJ, Fischer T, Schomaecker K, Wester HJ, Drzezga A, van Heek L, Kobe C. Pentixafor PET/CT for imaging of chemokine receptor 4 expression in esophageal cancer - a first clinical approach. Cancer Imaging 2021; 21:22. [PMID: 33579381 PMCID: PMC7881561 DOI: 10.1186/s40644-021-00391-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Expression of CXCR4, a chemokine (C-X-C motif) receptor that plays a central role in tumor growth and metastasis of circulating tumor cells, has been described in a variety of solid tumors. A high expression of CXCR4 has a prognostic significance with regard to overall and progression-free survival and offers a starting point for targeted therapies. In this context, [68]Ga-Pentixafor-Positron Emission Tomography/Computer Tomography (PET/CT) offers promising possibility of imaging the CXCR4 expression profile. We set out to compare a [18F] fluorodeoxyglucose (FDG)-PET/CT and a [68Ga]Pentixafor-PET/CT in (re-)staging and radiation planning of patients with localized esophageal cancer. Materials and methods In this retrospective analysis, ten patients, with adeno- or squamous cell carcinoma of the esophagus (n = 3 and n = 7, respectively), which were scheduled for radio (chemo) therapy, were imaged using both Pentixafor and FDG PET/CT examinations. All lesions were visually rated as Pentixafor and FDG positive or negative. For both tracers, SUVmax was measured all lesions and compared to background. Additionally, immunohistochemistry of CXCR4 was obtained in patients undergoing surgery. Results FDG-positive tumor-suspicious lesions were detected in all patients and a total of 26 lesions were counted. The lesion-based analysis brought equal status in 14 lesions which were positive for both tracers while five lesions were FDG positive and Pentixafor negative and seven lesions were FDG negative, but Pentixafor positive. Histopathologic correlation was available in seven patients. The CXCR4 expression of four non-pretreated tumour lesion samples was confirmed immunohistochemically. Conclusion Our data shows that additional PET/CT imaging with Pentixafor for imaging the CXCR4 chemokine receptor is feasible but heterogeneous in both newly diagnosed and pretreated recurrent esophageal cancer. In addition, the Pentixafor PET/CT may serve as complementary tool for radiation field expansion in radiooncology. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-021-00391-w.
Collapse
Affiliation(s)
- Philipp Linde
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany.
| | - Christian Baues
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Simone Wegen
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Maike Trommer
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Johannes Rosenbrock
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Eren Celik
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thomas Fischer
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Schomaecker
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Hans-Juergen Wester
- Department of Radiochemistry, Technische Universität München, Garching, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lutz van Heek
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|