1
|
Cao Y, Gong X, Feng Y, Wang M, Hu Y, Liu H, Liu X, Qi S, Ji Y, Liu F, Zhu H, Guo W, Shen Q, Zhang R, Zhao N, Zhai W, Song X, Chen X, Geng L, Chen X, Zheng X, Ma Q, Tang B, Wei J, Huang Y, Ren Y, Song K, Yang D, Pang A, Yao W, He Y, Shang Y, Wan X, Zhang W, Zhang S, Sun G, Feng S, Zhu X, Han M, Song Z, Guo Y, Sun Z, Jiang E, Chen J. The Composite Immune Risk Score predicts overall survival after allogeneic hematopoietic stem cell transplantation: A retrospective analysis of 1838 cases. Am J Hematol 2023; 98:309-321. [PMID: 36591789 PMCID: PMC10108217 DOI: 10.1002/ajh.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/03/2023]
Abstract
There has been little consensus on how to quantitatively assess immune reconstitution after hematopoietic stem cell transplantation (HSCT) as part of the standard of care. We retrospectively analyzed 11 150 post-transplant immune profiles of 1945 patients who underwent HSCT between 2012 and 2020. 1838 (94.5%) of the cases were allogeneic HSCT. Using the training set of patients (n = 729), we identified a composite immune signature (integrating neutrophil, total lymphocyte, natural killer, total T, CD4+ T, and B cell counts in the peripheral blood) during days 91-180 after allogeneic HSCT that was predictive of early mortality and moreover simplified it into a formula for a Composite Immune Risk Score. When we verified the Composite Immune Risk Score in the validation (n = 284) and test (n = 391) sets of patients, a high score value was found to be associated with hazard ratios (HR) of 3.64 (95% C.I. 1.55-8.51; p = .0014) and 2.44 (95% C.I., 1.22-4.87; p = .0087), respectively, for early mortality. In multivariate analysis, a high Composite Immune Risk Score during days 91-180 remained an independent risk factor for early mortality after allogeneic HSCT (HR, 1.80; 95% C.I., 1.28-2.55; p = .00085). In conclusion, the Composite Immune Risk Score is easy to compute and could identify the high-risk patients of allogeneic HSCT who require targeted effort for prevention and control of infection.
Collapse
Affiliation(s)
- Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huilan Liu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yanping Ji
- Anhui Medical UniversityHefeiChina
- Department of HematologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Liangquan Geng
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Xia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xuetong Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Baolin Tang
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yuanyuan Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kaidi Song
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wen Yao
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yue Shang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiang Wan
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Guangyu Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zimin Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
2
|
Gonzalez-Vicent M, Molina B, Lopez I, Zubicaray J, Ruiz J, Vicario JL, Sebastián E, Iriondo J, Castillo A, Abad L, Ramirez M, Sevilla J, Diaz MA. T-Cell Depleted Haploidentical Transplantation in Children With Hematological Malignancies: A Comparison Between CD3+/CD19+ and TCRαβ+/CD19+ Depletion Platforms. Front Oncol 2022; 12:884397. [PMID: 35795036 PMCID: PMC9251308 DOI: 10.3389/fonc.2022.884397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundT-cell depleted (TCD) haploidentical transplantation using CD3+/CD19+ and TCRαβ+/CD19+ depletion techniques has been increasingly used in children with hematological malignancies. We present a retrospective study aimed to compare transplant outcomes in children with leukemia receiving a TCD haploidentical transplant using either CD3+/CD19+ or TCRαβ+/CD19+ platforms.MethodsA total of 159 children with leukemia (ALL=80) (AML=79) that received a TCD haploidentical transplantation using either CD3+/CD19+ (n=79) or TCRαβ+/CD19+ (n=80) platforms between 2005 and 2020 were included. Median age was 9 years in both groups. There were no differences in patient, donor, and transplant characteristics between groups except for donor KIR B genotype more frequent in the TCRαβ+/CD19+ group (91%) than in the CD3+/CD19+ group (76%) (p=0.009) and a high number of NK+ cells and lower CD19+ cells infused in the TCRαβ+/CD19+ group (35.32x106/kg and 0.06 x106/Kg) than in the CD3+/CD19 group (24.6x106/Kg and 0.25 x106/Kg) (p=0.04 and p=0.0001), respectively. Conditioning was based on TBF. Median follow-up for survivors was 11 years (range; 8-16 y) in CD3+/CD19+ group and 5 years (range; 2-9 y) in the TCRαβ+/CD19+ group.ResultsEngraftment kinetics were similar in both groups (13 days for neutrophils and 10 days for platelets). There was no difference in the incidence of acute GvHD II-IV (29 ± 5% in the CD3+/CD19+ group vs 38 ± 5% in the TCRαβ+/CD19+ group) and chronic GvHD (32 ± 5% vs 23 ± 4%, respectively). NRM was 23 ± 5% in the CD3+/CD19+group vs 21 ± 4% in the TCRαβ+/CD19+group. Relapse incidence was also similar, 32 ± 5% vs 34 ± 6%, respectively. DFS and OS were not different (45 ± 5% vs 45 ± 6% and 53 ± 6% vs 58 ± 6% respectively). As there were no differences on transplant outcomes between groups, we further analyzed all patients together for risk factors associated with transplant outcomes. On multivariate analysis, we identified that early disease status at transplant (HR: 0.16; 95%CI (0.07-0.35) (p=0.0001), presence of cGvHD (HR: 0.38; 95%CI (0.20-0.70) (p= 0.002), and donor KIR-B genotype (HR: 0.50; 95%CI (0.32-0.90) (p=0.04) were associated with better DFS.ConclusionsOur data suggest that there are no advantages in transplant outcomes between TCD platforms. Risk factors for survival are dependent on disease characteristic, donor KIR genotype, and chronic GvHD rather than the TCD platform used.
Collapse
Affiliation(s)
- Marta Gonzalez-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
- *Correspondence: Marta Gonzalez-Vicent,
| | - Blanca Molina
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Ivan Lopez
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Josune Zubicaray
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Julia Ruiz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Jose Luis Vicario
- Histocompatibility Lab, Community Transfusion Center of Madrid, Madrid, Spain
| | - Elena Sebastián
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - June Iriondo
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Ana Castillo
- Oncology/Hematology Lab, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Lorea Abad
- Oncology/Hematology Lab, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Manuel Ramirez
- Oncology/Hematology Lab, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Julian Sevilla
- Division of Hematology, Blood Bank and Graft Manipulation Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| | - Miguel A. Diaz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario “Niño Jesus” Madrid, Madrid, Spain
| |
Collapse
|
3
|
Dominant epitopes presented by prevalent HLA alleles permit wide use of banked CMVpp65 T-cells in adoptive therapy. Blood Adv 2022; 6:4859-4872. [PMID: 35605246 DOI: 10.1182/bloodadvances.2022007005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
We established and characterized a bank of 138 CMVpp65 peptide-specific T-cell lines (CMVpp65CTLs) from healthy marrow transplant donors who consented to their use for treatment of individuals other than their transplant recipient. CMVpp65CTL lines included 131 containing predominantly CD8+ T-cells and 7 CD4+ T-cell. CD8+ CMVpp65CTLs were specific for 1-3 epitopes each presented by one of only 34 of the 148 class I alleles in the bank. Similarly, the 7 predominantly CD4+ CMVpp65CTL lines were each specific for epitopes presented by 14 of 40 HLA DR alleles in the bank. Although the number of HLA alleles presenting CMV epitopes is low, their prevalence is high, permitting selection of CMVpp65CTLs restricted by an HLA allele shared by transplant recipient and HCT donor for >90% of an ethnogeographically diverse population of HCT recipients. Within individuals, responses to CMVpp65 peptides presented by different HLA alleles are hierarchical. Furthermore, within groups, epitopes presented by HLA B*07:02 and HLA A*02:01 consistently elicit immunodominant CMVpp65 CTLs, irrespective of other HLA alleles inherited. All dominant CMVpp65CTLs exhibited HLA-restricted cytotoxicity against epitope loaded targets, and usually cleared CMV infections. However, immunodominant CMVpp65 CTL responding to epitopes presented by certain HLA B*35 alleles were ineffective in lysing CMV infected cells in vitro or controlling CMV infections post adoptive therapy. Analysis of the hierarchy of T-cell responses to CMVpp65, the HLA alleles presenting immunodominant CMVpp65 epitopes, and the responses they induce, may lead to detailed algorithms for optimal choice of 3rd party CMVpp65CTLs for effective adoptive therapy.
Collapse
|
4
|
Results of a multicenter phase I/II trial of TCRαβ and CD19-depleted haploidentical hematopoietic stem cell transplantation for adult and pediatric patients. Bone Marrow Transplant 2021; 57:423-430. [PMID: 34952929 PMCID: PMC8702395 DOI: 10.1038/s41409-021-01551-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) from haploidentical donors is a viable option for patients lacking HLA-matched donors. Here we report the results of a prospective multicenter phase I/II trial of transplantation of TCRαβ and CD19-depleted peripheral blood stem cells from haploidentical family donors after a reduced-intensity conditioning with fludarabine, thiotepa, and melphalan. Thirty pediatric and 30 adult patients with acute leukemia (n = 43), myelodysplastic or myeloproliferative syndrome (n = 6), multiple myeloma (n = 1), solid tumors (n = 6), and non-malignant disorders (n = 4) were enrolled. TCR αβ/CD19-depleted grafts prepared decentrally at six manufacturing sites contained a median of 12.1 × 106 CD34+ cells/kg and 14.2 × 103 TCRαβ+ T-cells/kg. None of the patients developed grade lll/IV acute graft-versus-host disease (GVHD) and only six patients (10%) had grade II acute GVHD. With a median follow-up of 733 days 36/60 patients are alive. The cumulative incidence of non-relapse mortality at day 100, 1 and 2 years after HSCT was 5%, 15%, and 17% for all patients, respectively. Estimated probabilities of overall and disease-free survival at 2 years were 63% and 50%, respectively. Based on these promising results in a high-risk patient cohort, haploidentical HSCT using TCRαβ/CD19-depleted grafts represents a viable treatment option.
Collapse
|
5
|
Gómez-Santos C, González-Vicent M, Molina B, Deltoro N, Herrero B, Ruiz J, Pérez-Martínez A, Diaz MA. Comparison of clinical outcomes between unrelated single umbilical cord blood and "ex-vivo" T-cell depleted haploidentical transplantation in children with hematological malignancies. World J Pediatr 2021; 17:609-618. [PMID: 34590210 DOI: 10.1007/s12519-021-00461-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Over the last two decades, umbilical cord blood (UCB) and haploidentical transplantation (HaploHSCT) have emerged as alternative sources of hematopoietic stem cell for allogeneic transplantation. There are few retrospective studies and no prospective studies comparing both types of alternative transplantation in pediatric patients. RESULTS We analyzed the data of 134 children with hematological malignancies who received a hematopoietic stem cell transplantation from a single umbilical cord blood (UCB) (n = 42) or an "ex-vivo" T-cell depleted transplant from a haploidentical-related donor (HaploHSCT) (n = 92) between 1996 and 2014. Hematological recovery was faster after HaploHSCT than the UCB transplant group (median times to neutrophil and platelet recovery: 13 vs. 16 days, 10 vs. 57 days, respectively) (P < 0.001). The HaploHSCT group had a significantly early immune reconstitution based on NK and CD8 + T cells compared with the UCB group. However, after the first year post-transplantation, HaploHSCT had a lower number of CD4 + T and B lymphocytes compared with the UCB transplant recipients. The cumulative incidence of TRM was 29±8% in the HaploHSCT group versus 40±5% in the UCB group. Relapse incidence was 21±7% in the HaploHSCT group and 19±8% in the UCB group. Probability of DFS was 58±8% in the HaploHSCT group versus 40±9% in the UCB group (P = 0.051). CONCLUSIONS TCD haploidentical transplant is associated with advantages in terms of engraftment and early immune reconstitution kinetics. TCD haploidentical transplant was associated with lower incidence of infectious and non-infectious complications, especially in the early phases of the transplant compared with UCB transplant recipients. However, there are no advantages in transplant outcomes compared with UCB transplant.
Collapse
Affiliation(s)
- Carmen Gómez-Santos
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain
| | - Marta González-Vicent
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain
| | - Blanca Molina
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain
| | - Natalia Deltoro
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain
| | - Blanca Herrero
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain
| | - Julia Ruiz
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain
| | - Antonio Pérez-Martínez
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain.,Hospital Infantil Universitario "La Paz" Madrid, Madrid, Spain
| | - Miguel A Diaz
- Department of Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Hospital Infantil Universitario "Niño Jesus", Menedez Pelayo 65, 28009, Madrid, Spain.
| |
Collapse
|
6
|
Han TT, Zhang YN, Sun YQ, Kong J, Wang FR, Wang ZD, Cheng YF, Yan CH, Wang Y, Xu LP, Zhang XH, Liu KY, Huang XJ, Zhao XS. Human herpesvirus 6 reactivation in unmanipulated haploidentical hematopoietic stem cell transplantation predicts the occurrence of grade II to IV acute graft-versus-host disease. Transpl Infect Dis 2021; 23:e13544. [PMID: 33326670 DOI: 10.1111/tid.13544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human herpesvirus 6 (HHV-6) reactivation is relatively common after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the incidence of HHV-6 reactivation and the clinical outcomes following unmanipulated haploidentical HSCT (haplo-HSCT) remain unknown. METHOD We prospectively monitored blood HHV-6 DNA using real-time quantitative polymerase chain reaction weekly until day 100 post unmanipulated haplo-HSCT in patients with hematological malignancies. RESULTS From November 2016 to March 2017, 102 patients (58 male and 44 female, median age 25(2-58) years old) were enrolled. Within 100 days post-transplantation, 27 patients (27/136, 19.9%) developed HHV-6 viremia with a median onset time of 14 (7-98) days. The cumulative incidence of HHV-6 reactivation on day 100 post-HSCT was 25.5 ± 4.3% in haplo-HSCT. The median HHV-6 copy number was 1.45 × 103 (5.48 × 102 -2.00 × 104 ) copies/ml. The HHV-6 viremia duration time was 7 days in 23 patients, 14 days in one patient and 21 days in one patient. In multivariate analysis, prior HHV-6 reactivation was an independent risk factor for grade 2-4 graft-versus-host disease (GVHD). But it did not influence the overall survival (OS)(HR 1.624, 95%CI 0.768-3.432, P = .204), disease-free survival (DFS) (HR 1.640, 95%CI 0.799-3.367, P = .177) and non-relapse mortality (NRM) (HR 1.644, 95%CI 0.670-4.038, P = .278). CONCLUSION The reactivation of HHV-6 after unmanipulated haploidentical transplantation predicts the occurrence of grade 2-4 a-GVHD, but it may not influence the overall survival (OS), disease-free survival (DFS) and non-relapse mortality (NRM).
Collapse
Affiliation(s)
- Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Ning Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
7
|
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol 2020; 11:1341. [PMID: 32849495 PMCID: PMC7412601 DOI: 10.3389/fimmu.2020.01341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for several malignant and non-malignant hematological diseases. The clinical outcome of this procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard, the thymus plays a central role as the primary site for de novo generation of functional, diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to several insults during HSCT, including conditioning drugs, corticosteroids, infections, and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients. Therefore, better understanding of thymic function can provide valuable information for improving HSCT outcomes. Recent data have shown that, besides gender and age, a specific single-nucleotide polymorphism affects thymopoiesis and may also influence thymic output post-HSCT, suggesting that the time of precision medicine of thymic function has arrived. Here, we review the current knowledge about thymic role in HSCT and the recent work of genetic control of human thymopoiesis. We also discuss different transplant-related factors that have been associated with impaired thymic recovery and the use of T-cell receptor excision circles (TREC) to assess thymic output, including its clinical significance. Finally, we present therapeutic strategies that could boost thymic recovery post-HSCT.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Impact of graft sources on immune reconstitution and survival outcomes following allogeneic stem cell transplantation. Blood Adv 2020; 4:408-419. [PMID: 31990335 DOI: 10.1182/bloodadvances.2019001021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
We evaluated the kinetics of immune reconstitution (IR) after allogeneic hematopoietic cell transplantation (HSCT) and analyzed the clinical effect of IR on posttransplant outcomes. Absolute lymphocyte and its subset counts were measured using flow cytometry on days 28, 100, 180, 365, and 730 after transplantation in 358 adult patients who underwent HSCT between 2009 and 2017. On day 100 after HSCT, 310 surviving patients were analyzed. Bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), and cord blood transplantation (CBT) were performed in 119, 55, and 136 patients, respectively. Mature B-cell and differentiated natural killer (NK) cell subset counts significantly increased after CBT. The 2-year overall survival (OS), nonrelapse mortality (NRM), cumulative incidence of relapse, and chronic GVHD in BMT, PBSCT, and CBT were 62%, 67%, and 76% (P = .021); 17%, 17%, and 13% (P = .82); 33%, 40%, and 27% (P = .063); and 43%, 45%, and 28% (P = .025), respectively. Multivariate analysis showed that higher CD16+CD57- NK cell counts correlated with lower disease relapse, whereas higher CD20+ B-cell counts correlated with lower NRM. OS-favoring factors were higher CD16+CD57- NK cell count (hazard ratio, 0.36; 95% confidence interval, 0.22-0.60; P < .001) and CD20+ B-cell count (hazard ratio, 0.53; 95% confidence interval, 0.30-0.93; P < .001) and lower Disease Risk/HCT-Specific Comorbidity index score. Collective contribution of graft source-specific and event-related immune reconstitution might yield better posttransplant outcomes in CBT.
Collapse
|
9
|
Kaeuferle T, Deisenberger L, Jablonowski L, Stief TA, Blaeschke F, Willier S, Feuchtinger T. CRISPR-Cas9-Mediated Glucocorticoid Resistance in Virus-Specific T Cells for Adoptive T Cell Therapy Posttransplantation. Mol Ther 2020; 28:1965-1973. [PMID: 32559432 DOI: 10.1016/j.ymthe.2020.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023] Open
Abstract
Immunosuppression posttransplantation exposes patients to an increased risk for refractory viral infections as an important cause of morbidity and mortality. Protective T cell immunity can be restored by adoptive T cell transfer, but ongoing immunosuppression limits efficacy of T cell responses. In order to deliver protection against viral pathogens and allow at the same time necessary steroid therapy, we generated glucocorticoid-resistant T cells by CRISPR-Cas9-mediated knockout of the glucocorticoid receptor in primary human virus-specific T cell products. Characterization of the T cell product revealed high efficiency of glucocorticoid receptor knockout and high purity of virus-specific T cells. This tandem T cell engineering preserved protective T cell functionality, such as cytotoxicity, CD107a degranulation, proliferative capacity, and cytokine release patterns. Virus-specific T cells with glucocorticoid receptor knockout were resistant to the suppressive effect of dexamethasone treatment on lymphocyte proliferation and cytokine secretion (tumor necrosis factor alpha [TNF-α], interleukin-4 [IL-4], IL-6, and sFas). Additionally, glucocorticoid receptor knockout cells remained sensitive to cyclosporine A treatment, thereby providing a rescue approach for patients in case of safety issues. This novel approach provides a therapeutic option for the treatment of patients with viral infections after transplantation who are receiving glucocorticoid therapy.
Collapse
Affiliation(s)
- Theresa Kaeuferle
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany
| | - Larissa Deisenberger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany
| | - Lena Jablonowski
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany
| | - Tanja A Stief
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany
| | - Franziska Blaeschke
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany
| | - Semjon Willier
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, 80337 Munich, Germany; German Center for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
10
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
11
|
Jang JE, Hwang DY, Chung H, Kim SJ, Eom JI, Jeung HK, Song J, Kim JS, Cheong JW, Min YH. Early Cytomegalovirus Reactivation and Expansion of CD56brightCD16dim/−DNAM1+ Natural Killer Cells Are Associated with Antileukemia Effect after Haploidentical Stem Cell Transplantation in Acute Leukemia. Biol Blood Marrow Transplant 2019; 25:2070-2078. [DOI: 10.1016/j.bbmt.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
|
12
|
Mitchell R, Cole T, Shaw PJ, Mechinaud F, O'Brien T, Fraser C. TCR α + β + /CD19 + cell-depleted hematopoietic stem cell transplantation for pediatric patients. Pediatr Transplant 2019; 23:e13517. [PMID: 31271477 DOI: 10.1111/petr.13517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
TCR α+ β+ /CD19+ cell depletion is an emerging technique for ex vivo graft manipulation in HSCT. We report 20 pediatric patients who underwent TCR α+ β+ /CD19+ cell-depleted HSCT in four Australian centers. Conditioning regimen was dependent on HSCT indication, which included immunodeficiency (n = 14), Fanconi anemia (n = 3), and acute leukemia (n = 3). Donor sources were haploidentical parent (n = 17), haploidentical sibling (n = 2), or matched unrelated donor (n = 1). Mean cell dose was 8.2 × 108 /kg TNC, 12.1 × 106 /kg CD34+ cells, and 0.4 × 105 /kg TCR α+ β+ cells. All patients achieved primary neutrophil and platelet engraftment, with average time to neutrophil engraftment 11 days (range 8-22) and platelet engraftment 24 days (range 12-69). TRM at 1 year was 15%. Rate of grade II-IV aGVHD at 1 year was 20% with no grade III-IV aGVHD seen. CMV reactivation occurred in 81% of CMV-positive recipients, with one patient developing CMV disease. Average time to CD4 recovery (>400 × 106 /L) was 258 days. Overall survival for the cohort at 5 years was 80%. This report highlights the initial experience of TCR α+ β+ /CD19+ cell-depleted HSCT in Australian centers, with high rates of engraftment, low rates of aGVHD, and acceptable TRM.
Collapse
Affiliation(s)
- Richard Mitchell
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women & Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Peter J Shaw
- Oncology Unit, Children's Hospital Westmead, Westmead, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francoise Mechinaud
- Children's Cancer Centre, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Tracey O'Brien
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women & Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Chris Fraser
- Oncology Service, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Kaeuferle T, Krauss R, Blaeschke F, Willier S, Feuchtinger T. Strategies of adoptive T -cell transfer to treat refractory viral infections post allogeneic stem cell transplantation. J Hematol Oncol 2019; 12:13. [PMID: 30728058 PMCID: PMC6364410 DOI: 10.1186/s13045-019-0701-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Allogeneic hematopoietic stem cell transplantation (HSCT) can expose patients to a transient but marked immunosuppression, during which viral infections are an important cause of morbidity and mortality. Adoptive transfer of virus-specific T cells is an attractive approach to restore protective T -cell immunity in patients with refractory viral infections after allogeneic HSCT. Objectives This narrative review summarizes clinical evidence and developments of almost 30 years of adoptive T -cell transfer. The review is based on evidence extracted from PubMed searches and the clinical and experimental work of the authors. Content Viral infections after HSCT are frequently caused by the endogenous reactivation of persistent pathogens such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (AdV). Current antiviral medication is not satisfactory and does not treat the underlying pathophysiology which is the lack of specific T -cell immunity. Adoptive transfer of virus-specific T cells could be a potentially curative, pathogen-specific, and non-toxic treatment providing long-term immunity against the virus. The isolation of virus-specific T cells from a healthy donor and infusion into a recipient is known as adoptive T -cell transfer and has been performed in many patients using different treatment protocols. Based on basic research, new isolation protocols aim at a safe and fast availability of cellular products for adoptive T -cell transfer. We summarize preclinical and clinical data on each of the main pathogens and on the technical approaches currently available to target either single antigens or even multiple pathogens. Conclusion Cellular therapy is considered as one of the major recent breakthroughs in medicine. Translation of this individualized treatment into first-line clinical routine is still limited. Main hurdles are availability of the technique, limited compatibility of classical phase III designs with cellular therapy, and regulatory restrictions. Multinational efforts are required to clarify the status of cellular treatment in first-line clinical routine with the overall objective to strengthen evidence-based treatment guidelines for the treatment of refractory viral infections post HSCT.
Collapse
Affiliation(s)
- Theresa Kaeuferle
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Ramona Krauss
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Franziska Blaeschke
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Semjon Willier
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany. .,German Center for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
14
|
Salzmann-Manrique E, Bremm M, Huenecke S, Stech M, Orth A, Eyrich M, Schulz A, Esser R, Klingebiel T, Bader P, Herrmann E, Koehl U. Joint Modeling of Immune Reconstitution Post Haploidentical Stem Cell Transplantation in Pediatric Patients With Acute Leukemia Comparing CD34 +-Selected to CD3/CD19-Depleted Grafts in a Retrospective Multicenter Study. Front Immunol 2018; 9:1841. [PMID: 30154788 PMCID: PMC6102342 DOI: 10.3389/fimmu.2018.01841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
Rapid immune reconstitution (IR) following stem cell transplantation (SCT) is essential for a favorable outcome. The optimization of graft composition should not only enable a sufficient IR but also improve graft vs. leukemia/tumor effects, overcome infectious complications and, finally, improve patient survival. Especially in haploidentical SCT, the optimization of graft composition is controversial. Therefore, we analyzed the influence of graft manipulation on IR in 40 patients with acute leukemia in remission. We examined the cell recovery post haploidentical SCT in patients receiving a CD34+-selected or CD3/CD19-depleted graft, considering the applied conditioning regimen. We used joint model analysis for overall survival (OS) and analyzed the dynamics of age-adjusted leukocytes; lymphocytes; monocytes; CD3+, CD3+CD4+, and CD3+CD8+ T cells; natural killer (NK) cells; and B cells over the course of time after SCT. Lymphocytes, NK cells, and B cells expanded more rapidly after SCT with CD34+-selected grafts (P = 0.036, P = 0.002, and P < 0.001, respectively). Contrarily, CD3+CD4+ helper T cells recovered delayer in the CD34 selected group (P = 0.026). Furthermore, reduced intensity conditioning facilitated faster immune recovery of lymphocytes and T cells and their subsets (P < 0.001). However, the immune recovery for NK cells and B cells was comparable for patients who received reduced-intensity or full preparative regimens. Dynamics of all cell types had a significant influence on OS, which did not differ between patients receiving CD34+-selected and those receiving CD3/CD19-depleted grafts. In conclusion, cell reconstitution dynamics showed complex diversity with regard to the graft manufacturing procedure and conditioning regimen.
Collapse
Affiliation(s)
- Emilia Salzmann-Manrique
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe-University, Frankfurt, Germany.,Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Melanie Bremm
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Sabine Huenecke
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Milena Stech
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Andreas Orth
- University of Applied Sciences Frankfurt, Frankfurt, Germany
| | - Matthias Eyrich
- Pediatric Hematology and Oncology, University of Wuerzburg, Wuerzburg, Germany
| | - Ansgar Schulz
- Pediatric Hematology and Oncology, University of Ulm, Ulm, Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics Hannover Medical School, Hannover, Germany
| | - Thomas Klingebiel
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Peter Bader
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics Hannover Medical School, Hannover, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute of Cellular Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
15
|
Park M, Im HJ, Lee YJ, Park N, Jang S, Kwon SW, Park CJ, Choi ES, Koh KN, Seo JJ. Reconstitution of T and NK cells after haploidentical hematopoietic cell transplantation using αβ T cell-depleted grafts and the clinical implication of γδ T cells. Clin Transplant 2017; 32. [PMID: 29090489 DOI: 10.1111/ctr.13147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 01/31/2023]
Abstract
To investigate reconstitution of T and NK cells after αβ T lymphocyte-depleted haploidentical hematopoietic cell transplantation (HHCT) and the clinical implications of γδ T cells, we analyzed 50 pediatric patients who received 55 HHCTs using αβ T cell-depleted grafts. The number of CD3+ T cells and CD8+ T cells recovered rapidly and reached donor levels at days 180 and 60, respectively. Recovery of NK cells was rapid, and the median of NK cells at day 14 was comparable to the donor level. At day 14, median percentage of γδ T lymphocytes was 70.5%. After day 14, the percentage of γδ T cells gradually decreased, while the percentage of αβ T cells gradually increased. Patients with a low percentage (≤21%) of γδ T cells at day 30 had significantly higher incidence of cytomegalovirus (CMV) reactivation compared to patients with a high percentage (>70%) of γδ T cells (P < .01). In patients with acute leukemia, patients with high percentage of γδ T cells at day 30 showed significantly higher relapse-free survival compared to those with low percentage of γδ T cells (P = .02). Data suggest that early recovery of γδ T cells decreases the risk of CMV reactivation and leukemia relapse.
Collapse
Affiliation(s)
- Meerim Park
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ho Joon Im
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu-Jin Lee
- Asan Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nuree Park
- Asan Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongsoo Jang
- Asan Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seog Woon Kwon
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Seok Choi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Jin Seo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Wang Y, Zhao XY, Xu LP, Zhang XH, Han W, Chen H, Wang FR, Mo XD, Zhang YY, Zhao XS, Y K, Liua KY, Huang XJ, Yu XZ, Chang YJ. Lower incidence of acute GVHD is associated with the rapid recovery of CD4 +CD25 +CD45RA + regulatory T cells in patients who received haploidentical allografts from NIMA-mismatched donors: A retrospective (development) and prospective (validation) cohort-based study. Oncoimmunology 2016; 5:e1242546. [PMID: 28180031 DOI: 10.1080/2162402x.2016.1242546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022] Open
Abstract
To investigate the effects of non-inherited maternal antigen (NIMA) on clinical outcomes and immune recovery, especially of regulatory T cells (Tregs), in patients who underwent unmanipulated haploidentical transplantation. A retrospective cohort (n = 57) and a prospective cohort (n = 88) were included. All patients received haploidentical allografts from sibling donors. Reconstitution of immune subsets, including Tregs, was determined using multicolor flow cytometry. In the retrospective cohort, the cumulative incidence of grades II-IV acute GVHD in patients with NIMA-mismatched donors was significantly lower than that of cases with NIPA-mismatched donors (14.8% vs. 43.30%, p = 0.018). Patients with higher percentages of CD4+CD25+CD45RA+ T cells (naive Tregs) within CD4+ T cells recovered on day 30 (≥1.55%) experienced a significantly lower incidence of grades II-IV acute GVHD than that of cases with lower percentages of naive Tregs (<1.55%) (13.8% vs. 46.4%, p = 0.010). Multivariate analysis showed that NIMA mismatch and the percentages of naive Tregs were associated with the incidence of grades II-IV acute GVHD [p = 0.050, and 0.031, respectively]. In the prospective cohort, the association of NIMA mismatch [HR = 0.365, 95% CI, 0.169-0.786, p = 0.010] or higher percentages of naive Tregs recovered on day 30 (≥1.55%) [HR = 0.114, 95% CI, 0.027-0.479, p = 0.003] with a lower cumulative incidence of grades II-IV acute GVHD was further demonstrated. No effects of NIMA mismatch on chronic GVHD, transplant-related mortality, relapse, disease-free survival, or overall survival were found. Our results confirmed the role of NIMA mismatch in acute GVHD and provided the first demonstration, based on clinical data, that recovered Tregs may be involved in the effects of NIMA on acute GVHD in a haploidentical transplant setting.
Collapse
Affiliation(s)
- Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Xiang-Yu Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Lan-Ping Xu
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Wei Han
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Huan Chen
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Feng-Rong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Xiao-Dong Mo
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Kong Y
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Kai-Yan Liua
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R. China; Peking-Tsinghua Center for Life Sciences, Beijing, P.R. China
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R. China
| |
Collapse
|
17
|
Huenecke S, Bremm M, Cappel C, Esser R, Quaiser A, Bonig H, Jarisch A, Soerensen J, Klingebiel T, Bader P, Koehl U. Optimization of individualized graft composition: CD3/CD19 depletion combined with CD34 selection for haploidentical transplantation. Transfusion 2016; 56:2336-45. [DOI: 10.1111/trf.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Sabine Huenecke
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Melanie Bremm
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Claudia Cappel
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Ruth Esser
- GMP Development UnitInstitute of Cellular Therapeutics, IFB‐TX, Hannover Medical SchoolHannover Germany
| | - Andrea Quaiser
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Halvard Bonig
- Division for Cell ProcessingInstitute for Transfusion Medicine and Immunohematology, Goethe‐University Frankfurt/Main
- German Red Cross Blood Donor Service, Baden‐Württemberg‐HessenFrankfurt/Main, Germany
| | - Andrea Jarisch
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Jan Soerensen
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Thomas Klingebiel
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Peter Bader
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
| | - Ulrike Koehl
- Clinic for Pediatric and Adolescent MedicineUniversity HospitalFrankfurt Germany
- GMP Development UnitInstitute of Cellular Therapeutics, IFB‐TX, Hannover Medical SchoolHannover Germany
| |
Collapse
|
18
|
Fu Q, Xu LP, Zhang XH, Wang Y, Chang YJ, Huang XJ. Early lymphocyte recovery predicts superior outcomes after unmanipulated haploidentical blood and marrow transplant for acute myeloid leukemia. Clin Transplant 2016; 30:954-8. [PMID: 27219272 DOI: 10.1111/ctr.12771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Fu
- Beijing Key Laboratory of HSCT; Peking University People's Hospital & Peking University Institute of Hematology; Beijing China
| | - Lan-Ping Xu
- Beijing Key Laboratory of HSCT; Peking University People's Hospital & Peking University Institute of Hematology; Beijing China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of HSCT; Peking University People's Hospital & Peking University Institute of Hematology; Beijing China
| | - Yu Wang
- Beijing Key Laboratory of HSCT; Peking University People's Hospital & Peking University Institute of Hematology; Beijing China
| | - Ying-Jun Chang
- Beijing Key Laboratory of HSCT; Peking University People's Hospital & Peking University Institute of Hematology; Beijing China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of HSCT; Peking University People's Hospital & Peking University Institute of Hematology; Beijing China
- Peking-Tsinghua Center for Life Sciences; Beijing China
| |
Collapse
|
19
|
Maffini E, Giaccone L, Festuccia M, Brunello L, Busca A, Bruno B. Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2016; 9:585-96. [PMID: 27043241 DOI: 10.1080/17474086.2016.1174571] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation.
Collapse
Affiliation(s)
- Enrico Maffini
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Luisa Giaccone
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Moreno Festuccia
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Lucia Brunello
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Alessandro Busca
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy
| | - Benedetto Bruno
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| |
Collapse
|
20
|
Bremm M, Cappel C, Erben S, Jarisch A, Schumm M, Arendt A, Bonig H, Klingebiel T, Koehl U, Bader P, Huenecke S. Generation and flow cytometric quality control of clinical-scale TCRαβ/CD19-depleted grafts. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 92:126-135. [DOI: 10.1002/cyto.b.21328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Melanie Bremm
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| | - Claudia Cappel
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| | - Stephanie Erben
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| | - Andrea Jarisch
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| | - Michael Schumm
- Department of Hematology/Oncology; Children's University Hospital; Tübingen Germany
| | | | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, Division for Cell Processing, German Red Cross Blood Donor Service Baden-Württemberg-Hessen; Frankfurt/Main Germany
| | - Thomas Klingebiel
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics, GMP Development Unit; IFB-TX; Hannover Medical School; Hannover Germany
| | - Peter Bader
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| | - Sabine Huenecke
- Clinic for Pediatric and Adolescent Medicine; University Hospital; Frankfurt Germany
| |
Collapse
|
21
|
Ciáurriz M, Zabalza A, Beloki L, Mansilla C, Pérez-Valderrama E, Lachén M, Bandrés E, Olavarría E, Ramírez N. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell Mol Life Sci 2015; 72:4049-62. [PMID: 26174234 PMCID: PMC11113937 DOI: 10.1007/s00018-015-1986-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023]
Abstract
Approximately, up to 70 % of the human population is infected with cytomegalovirus (CMV) that persists for life in a latent state. In healthy people, CMV reactivation induces the expansion of CMV-specific T cells up to 10 % of the entire T cell repertoire. On the contrary, CMV infection is a major opportunistic viral pathogen that remains a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Due to the delayed CMV-specific immune recovery, the incidence of CMV reactivation during post-transplant period is very high. Several methods are currently available for the monitoring of CMV-specific responses that help in clinical monitoring. In this review, essential aspects in the immune recovery against CMV are discussed to improve the better understanding of the immune system relying on CMV infection and, thereby, helping the avoidance of CMV disease or reactivation following hematopoietic stem cell transplantation with severe consequences for the transplanted patients.
Collapse
Affiliation(s)
- Miriam Ciáurriz
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Estela Pérez-Valderrama
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Mercedes Lachén
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Eva Bandrés
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
- Immunity Unit, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hammersmith Hospital-Imperial College Healthcare NHS, London, UK
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
22
|
Gaballa S, Palmisiano N, Alpdogan O, Carabasi M, Filicko-O'Hara J, Kasner M, Kraft WK, Leiby B, Martinez-Outschoorn U, O'Hara W, Pro B, Rudolph S, Sharma M, Wagner JL, Weiss M, Flomenberg N, Grosso D. A Two-Step Haploidentical Versus a Two-Step Matched Related Allogeneic Myeloablative Peripheral Blood Stem Cell Transplantation. Biol Blood Marrow Transplant 2015; 22:141-8. [PMID: 26415558 DOI: 10.1016/j.bbmt.2015.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 11/19/2022]
Abstract
Haploidentical stem cell transplantation (SCT) offers a transplantation option to patients who lack an HLA-matched donor. We developed a 2-step approach to myeloablative allogeneic hematopoietic stem cell transplantation for patients with haploidentical or matched related (MR) donors. In this approach, the lymphoid and myeloid portions of the graft are administered in 2 separate steps to allow fixed T cell dosing. Cyclophosphamide is used for T cell tolerization. Given a uniform conditioning regimen, graft T cell dose, and graft-versus-host disease (GVHD) prophylaxis strategy, we compared immune reconstitution and clinical outcomes in patients undergoing 2-step haploidentical versus 2-step MR SCT. We retrospectively compared data on patients undergoing a 2-step haploidentical (n = 50) or MR (n = 27) peripheral blood SCT for high-risk hematological malignancies and aplastic anemia. Both groups received myeloablative total body irradiation conditioning. Immune reconstitution data included flow cytometric assessment of T cell subsets at day 28 and 90 after SCT. Both groups showed comparable early immune recovery in all assessed T cell subsets except for the median CD3/CD8 cell count, which was higher in the MR group at day 28 compared with that in the haploidentical group. The 3-year probability of overall survival was 70% in the haploidentical group and 71% in the MR group (P = .81), while the 3-year progression-free survival was 68% in the haploidentical group and 70% in the MR group (P = .97). The 3-year cumulative incidence of nonrelapse mortality was 10% in the haploidentical group and 4% in the MR group (P = .34). The 3-year cumulative incidence of relapse was 21% in the haploidentical group and 27% in the MR group (P = .93). The 100-day cumulative incidence of overall grades II to IV acute GVHD was higher in the haploidentical group compared with that in the MR group (40% versus 8%, P < .001), whereas the grades III and IV acute GVHD was not statistically different between both groups (haploidentical, 6%; MR, 4%; P = .49). The cumulative incidence of cytomegalovirus reactivation was also higher in the haploidentical group compared to the MR group (haploidentical, 68%; MR, 19%; P < .001). There were no deaths from GVHD in either group. Using an identical conditioning regimen, graft T cell dose, and GVHD prophylaxis strategy, comparable early immune recovery and clinical outcomes were observed in the 2-step haploidentical and MR SCT recipients.
Collapse
Affiliation(s)
- Sameh Gaballa
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Neil Palmisiano
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Onder Alpdogan
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew Carabasi
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joanne Filicko-O'Hara
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Margaret Kasner
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - William O'Hara
- Department of Pharmacy, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Barbara Pro
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shannon Rudolph
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Manish Sharma
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John L Wagner
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark Weiss
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Neal Flomenberg
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dolores Grosso
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Grosso DA, Hess RC, Weiss MA. Immunotherapy in acute myeloid leukemia. Cancer 2015; 121:2689-704. [PMID: 26095886 DOI: 10.1002/cncr.29378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
Despite the remarkable progress made in some leukemias such as CML and CLL, cytotoxic treatment for AML remains essentially unchanged over the last 4 decades. Several lines of evidence, including the graft versus leukemia effect associated with allogeneic hematopoietic stem cell transplantation (HSCT), suggest that immunotherapy is an active modality in AML. Given the lack of progress for chemotherapy in this disease, many novel immunologic treatment approaches have been explored. The goals of non-transplant-based immune approaches have largely consisted of the stimulation or restoration of endogenous immune responses or the targeting of specific tumor antigens by immune cells. These strategies have been associated with less toxicity than allogeneic HSCT but typically have inferior efficacy. Allogeneic HSCT exploits major and minor histocompatibility differences between the donor and recipient in order to recognize and eradicate malignancy. With the recognition that the immune system itself provides a basis for treating AML, immunotherapy continues to be an attractive modality to exploit in the treatment of this disease.
Collapse
Affiliation(s)
- Dolores A Grosso
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rosemary C Hess
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark A Weiss
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Bejanyan N, Haddad H, Brunstein C. Alternative Donor Transplantation for Acute Myeloid Leukemia. J Clin Med 2015; 4:1240-68. [PMID: 26239557 PMCID: PMC4484998 DOI: 10.3390/jcm4061240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for adult patients with acute myeloid leukemia (AML), but its use for consolidation therapy after first remission with induction chemotherapy used to be limited to younger patients and those with suitable donors. The median age of AML diagnosis is in the late 60s. With the introduction of reduced-intensity conditioning (RIC), many older adults are now eligible to receive allo-HCT, including those who are medically less fit to receive myeloablative conditioning. Furthermore, AML patients commonly have no human leukocyte antigen (HLA)-identical or medically suitable sibling donor available to proceed with allo-HCT. Technical advances in donor matching, suppression of alloreactivity, and supportive care have made it possible to use alternative donors, such as unrelated umbilical cord blood (UCB) and partially HLA-matched related (haploidentical) donors. Outcomes after alternative donor allo-HCT are now approaching the outcomes observed for conventional allo-HCT with matched related and unrelated donors. Thus, with both UCB and haploidentical donors available, lack of donor should rarely be a limiting factor in offering an allo-HCT to adults with AML.
Collapse
Affiliation(s)
- Nelli Bejanyan
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| | - Housam Haddad
- Hematology and Oncology Department, Staten Island University Hospital, 475 Seaview Ave, Staten Island, NY 10305, USA.
| | - Claudio Brunstein
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Marra J, Greene J, Hwang J, Du J, Damon L, Martin T, Venstrom JM. KIR and HLA genotypes predictive of low-affinity interactions are associated with lower relapse in autologous hematopoietic cell transplantation for acute myeloid leukemia. THE JOURNAL OF IMMUNOLOGY 2015; 194:4222-30. [PMID: 25810393 DOI: 10.4049/jimmunol.1402124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
Killer cell Ig-like receptors (KIRs) bind cognate HLA class I ligands with distinct affinities, affecting NK cell licensing and inhibition. We hypothesized that differences in KIR and HLA class I genotypes predictive of varying degrees of receptor-ligand binding affinities influence clinical outcomes in autologous hematopoietic cell transplantation (AHCT) for acute myeloid leukemia (AML). Using genomic DNA from a homogeneous cohort of 125 AML patients treated with AHCT, we performed KIR and HLA class I genotyping and found that patients with a compound KIR3DL1(+) and HLA-Bw4-80Thr(+), HLA-Bw4-80Ile(-) genotype, predictive of low-affinity interactions, had a low incidence of relapse, compared with patients with a KIR3DL1(+) and HLA-Bw4-80Ile(+) genotype, predictive of high-affinity interactions (hazard ratio [HR], 0.22; 95% confidence interval [CI], 0.06-0.78; p = 0.02). This effect was influenced by HLA-Bw4 copy number, such that relapse progressively increased with one copy of HLA-Bw4-80Ile (HR, 1.6; 95% CI, 0.84-3.1; p = 0.15) to two to three copies (HR, 3.0; 95% CI, 1.4-6.5; p = 0.005) and progressively decreased with one to two copies of HLA-Bw4-80Thr (p = 0.13). Among KIR3DL1(+) and HLA-Bw4-80Ile(+) patients, a predicted low-affinity KIR2DL2/3(+) and HLA-C1/C1 genotype was associated with lower relapse than a predicted high-affinity KIR2DL1(+) and HLA-C2/C2 genotype (HR, 0.25; 95% CI, 0.09-0.73; p = 0.01). Similarly, a KIR3DL1(+) and HLA-Bw4-80Thr(+), HLA-Bw4-80Ile(-) genotype, or lack of KIR3DL1(+) and HLA-Bw4-80Ile(+) genotype, rescued KIR2DL1(+) and HLA-C2/C2 patients from high relapse (p = 0.007). These findings support a role for NK cell graft-versus-leukemia activity modulated by NK cell receptor-ligand affinities in AHCT for AML.
Collapse
Affiliation(s)
- John Marra
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Justin Greene
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Jimmy Hwang
- Biostatistics Core, University of California, San Francisco, Helen Diller Comprehensive Cancer Center, San Francisco, CA 94115
| | - Juan Du
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Lloyd Damon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Tom Martin
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Jeffrey M Venstrom
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| |
Collapse
|
26
|
Yahng SA, Kim JH, Jeon YW, Yoon JH, Shin SH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW, Min WS, Park CW, Kim HJ. A well-tolerated regimen of 800 cGy TBI-fludarabine-busulfan-ATG for reliable engraftment after unmanipulated haploidentical peripheral blood stem cell transplantation in adult patients with acute myeloid leukemia. Biol Blood Marrow Transplant 2014; 21:119-29. [PMID: 25300871 DOI: 10.1016/j.bbmt.2014.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023]
Abstract
Eighty adult patients with acute myeloid leukemia (AML) received peripheral blood T cell-replete HLA haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Disease status at transplantation was either first or second complete remission (CR, n = 69) or relapse/refractory (n = 11). Identical transplant-related procedures with conditioning regimen consisting of fractionated 800 cGy total body irradiation (TBI), fludarabine (30 mg/m(2)/day for 5 days), busulfan (3.2 mg/kg/day for 2 days), and antithymocyte globulin (1.25 mg/kg/day on days -4 to -1) and graft-versus-host disease (GVHD) prophylaxis with tacrolimus and methotrexate were used in all patients. Recovery of neutrophil (median, 11 days) and platelet (median, 10 days) counts was achieved in all patients with full donor chimerism (≥ 99%), and no delayed engraftment failure was observed. The cumulative incidence of grades III to IV acute GVHD and moderate to severe chronic GVHD was 11.2% and 26.3%, respectively. A donor CD8(+) and CD4(+) T cell dose above the median value was significantly associated with the incidences of grades II to IV acute GHVD and moderate to severe chronic GVHD, respectively. After a median follow-up of 28 months for survivors, the 2-year cumulative incidences of relapse (n = 20) and nonrelapse mortality (n = 10) were 26.6% and 12.2%, respectively. Although all but 1 patient in relapse/refractory status died, the 2-year overall and progression-free survival of patients in first CR was 82.5% and 75.1%, respectively. We suggest the strategy of fractionated 800 cGy TBI-based conditioning with unmanipulated peripheral blood stem cell grafts seems feasible with favorable outcomes for adult patients with AML undergoing haplo-HSCT in CR.
Collapse
Affiliation(s)
- Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Ho Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Woo Jeon
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hwan Shin
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Lee
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Sik Cho
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Wook Lee
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Sung Min
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chong-Won Park
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
27
|
KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol 2014; 93:1579-86. [PMID: 24771045 DOI: 10.1007/s00277-014-2084-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Natural killer (NK)-cell alloreactivity after allogeneic hematopoietic cell transplantation (HCT) is influenced by the interaction of killer-cell immunoglobulin-like receptors (KIRs) on donor NK cells and human leukocyte antigen (HLA) class I ligands on recipient cells. We investigated the influence of donor KIR haplotype and KIR-ligand mismatch (MM) on relapse in 57 patients with hematologic malignancies receiving haploidentical HCT after reduced intensity conditioning and graft CD3/CD19 depletion. Of the 57 donors, 17 had KIR haplotype A (29.8 %) and 40 had KIR haplotype B (70.2 %). A KIR-ligand MM was found in 34 of 57 patients (59.6 %). There was no difference between donor KIR haplotypes in non-relapse mortality (NRM, p = 0.200) but had a significantly reduced incidence of relapse for patients with a haplotype B donor (p = 0.001). In particular, patients in partial remission (PR) benefited more from a haplotype B graft (p = 0.008) than patients in complete remission (CR, p = 0.297). Evaluating KIR-ligand MM cumulative incidences of relapse (p = 0.680) or NRM (p = 0.579), we found no significant difference. In conclusion, in the setting of reduced intensity conditioning (RIC) and CD3/CD19-depleted haploidentical HCT, we could not confirm the positive data with KIR-ligand MM but observed a significant lower risk of relapse with a KIR haplotype B donor.
Collapse
|
28
|
Improving cytomegalovirus-specific T cell reconstitution after haploidentical stem cell transplantation. J Immunol Res 2014; 2014:631951. [PMID: 24864269 PMCID: PMC4017791 DOI: 10.1155/2014/631951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/13/2014] [Accepted: 03/19/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) infection and delayed immune reconstitution (IR) remain serious obstacles for successful haploidentical stem cell transplantation (haplo-SCT). CMV-specific IR varied according to whether patients received manipulated/unmanipulated grafts or myeloablative/reduced intensity conditioning. CMV infection commonly occurs following impaired IR of T cell and its subsets. Here, we discuss the factors that influence IR based on currently available evidence. Adoptive transfer of donor T cells to improve CMV-specific IR is discussed. One should choose grafts from CMV-positive donors for transplant into CMV-positive recipients (D+/R+) because this will result in better IR than would grafts from CMV-negative donors (D−/R+). Stem cell source and donor age are other important factors. Posttransplant complications, including graft-versus-host disease and CMV infection, as well as their associated treatments, should also be considered. The effects of varying degrees of HLA disparity and conditioning regimens are more controversial. As many of these factors and strategies are considered in the setting of haplo-SCT, it is anticipated that haplo-SCT will continue to advance, further expanding our understanding of IR and CMV infection.
Collapse
|
29
|
Scheper W, Gründer C, Straetemans T, Sebestyen Z, Kuball J. Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 2013; 28:1181-90. [DOI: 10.1038/leu.2013.378] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
|
30
|
Immune reconstitution after haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 20:440-9. [PMID: 24315844 DOI: 10.1016/j.bbmt.2013.11.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
Abstract
Haploidentical hematopoietic stem cell transplantation (HSCT) offers the benefits of rapid and nearly universal donor availability and has been accepted worldwide as an alternative treatment for patients with hematologic malignancies who do not have a completely HLA-matched sibling or who require urgent transplantation. Unfortunately, serious infections and leukemia relapse resulting from slow immune reconstitution remain the 2 most frequent causes of mortality in patients undergoing haploidentical HSCT, particularly in those receiving extensively T cell-depleted megadose CD34(+) allografts. This review summarizes advances in immune recovery after haploidentical HSCT, focusing on the immune subsets likely to have the greatest impact on clinical outcomes. The progress made in accelerating immune reconstitution using different strategies after haploidentical HSCT is also discussed. It is our belief that a predictive immune subset-guided strategy to improve immune recovery might represent a future clinical direction.
Collapse
|
31
|
Norell H, Moretta A, Silva-Santos B, Moretta L. At the Bench: Preclinical rationale for exploiting NK cells and γδ T lymphocytes for the treatment of high-risk leukemias. J Leukoc Biol 2013; 94:1123-39. [PMID: 24108703 DOI: 10.1189/jlb.0613312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NK cells and γδ T lymphocytes display potent cytolytic activity against leukemias and CMV-infected cells and are thus, promising immune effector cells in the context of allo-HSCT. NK cells express HLA class I-specific inhibitory receptors and preferentially kill HLA class I(low) tumors or virus-infected cells. Killing occurs upon engagement of activating NKRs with ligands that are up-regulated on tumors and infected cells. A similar activating receptor/ligand interaction strategy is used by γδ T cells, which in addition, use their TCRs for recognition of phosphorylated antigens and still largely undefined ligands on tumor cells. In the haploidentical allo-HSCT setting, alloreactive NK cells, derived from donor HSCs, can exert potent antileukemia activity and kill residual patient DCs and T cells, thus preventing GvHD and graft rejection. However, generation of KIR(+) alloreactive NK cells from HSCs requires many weeks, during which leukemia relapses, and life-threatening infections may occur. Importantly, mature NK cells and γδ T cells can control certain infectious agents efficiently, in particular, limit CMV reactivation, and infusion of such donor cells at the time of HSCT has been implemented. Development of novel, cell-based immunotherapies, allowing improved trafficking and better targeting, will endow NK cells and γδ T lymphocytes with enhanced anti-tumor activity, also making them key reagents for therapies against solid tumors. The clinical aspects of using NK cells and γδ T lymphocytes against hematological malignancies, including the allo-HSCT context, are reviewed in the related side-by-side paper by Locatelli and colleagues [1].
Collapse
|
32
|
Marek A, Stern M, Chalandon Y, Ansari M, Ozsahin H, Güngör T, Gerber B, Kühne T, Passweg JR, Gratwohl A, Tichelli A, Seger R, Schanz U, Halter J, Stussi G. The impact of T-cell depletion techniques on the outcome after haploidentical hematopoietic SCT. Bone Marrow Transplant 2013; 49:55-61. [PMID: 24037023 DOI: 10.1038/bmt.2013.132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/12/2013] [Accepted: 07/14/2013] [Indexed: 11/09/2022]
Abstract
Several T-cell depletion (TCD) techniques are used for haploidentical hematopoietic SCT (HSCT), but direct comparisons are rare. We therefore studied the effect of in vitro TCD with graft engineering (CD34 selection or CD3/CD19 depletion, 74%) or in vivo TCD using alemtuzumab (26%) on outcome, immune reconstitution and infections after haploidentical HSCT. We performed a retrospective multicenter analysis of 72 haploidentical HSCT in Switzerland. Sixty-seven patients (93%) had neutrophil engraftment. The 1-year OS, TRM and relapse incidence were 48 (36-60)%, 20 (11-33)% and 42 (31-57)%, respectively, without differences among the TCD groups. In vivo TCD caused more profound lymphocyte suppression early after HSCT, whereas immune recovery beyond the second month was comparable between the two groups. Despite anti-infective prophylaxis, most patients experienced post-transplant infectious complications (94%). Patients with in vivo TCD had a higher incidence of CMV reactivations (54% vs 28%, P=0.015), but this did not result in a higher TRM. In conclusion, TCD by graft engineering or alemtuzumab are equally effective for haploidentical HSCT.
Collapse
Affiliation(s)
- A Marek
- Division of Hematology, University Hospital Zürich, Zürich, Switzerland
| | - M Stern
- Division of Hematology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Y Chalandon
- Service of Hematology, Department of Internal Medicine, University Hospital Geneva, Geneva, Switzerland
| | - M Ansari
- Hematology and Oncology Unit, Department of Pediatrics, University Hospital Geneva, Geneva, Switzerland
| | - H Ozsahin
- Hematology and Oncology Unit, Department of Pediatrics, University Hospital Geneva, Geneva, Switzerland
| | - T Güngör
- Division of Immunology/BMT, Children's Hospital, University of Zürich, Zürich, Switzerland
| | - B Gerber
- Division of Hematology, University Hospital Zürich, Zürich, Switzerland
| | - T Kühne
- Division of Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - J R Passweg
- 1] Division of Hematology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland [2] Service of Hematology, Department of Internal Medicine, University Hospital Geneva, Geneva, Switzerland
| | - A Gratwohl
- Division of Hematology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - A Tichelli
- Division of Hematology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - R Seger
- Division of Immunology/BMT, Children's Hospital, University of Zürich, Zürich, Switzerland
| | - U Schanz
- Division of Hematology, University Hospital Zürich, Zürich, Switzerland
| | - J Halter
- Division of Hematology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - G Stussi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | |
Collapse
|
33
|
Mo X, Huang X. Advancement of human leukocyte antigen-partially matched related hematopoietic stem cell transplantation. Front Med 2013; 7:306-15. [PMID: 23888376 DOI: 10.1007/s11684-013-0279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/24/2013] [Indexed: 11/28/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is one of the most effective options for hematological malignancies, and human leukocyte antigen-partially matched related donors (PMRDs) are a valuable option for HSCT. Several protocols (with or without ex vivo T-cell depletion (TCD)) have been established worldwide. TCD including CD34(+) positive selection and CD3/CD19 depletion has successfully overcome the human leukocyte antigen disparity. However, TCD is associated with prolonged immune deficiencies, increased risks of infectious complications, and high transplantation-related mortality. PMRD HSCTwithout ex vivo TCD is well developed, and numerous patients have benefitted from it. Here, we review the literature on PMRD HSCT.
Collapse
Affiliation(s)
- Xiaodong Mo
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | | |
Collapse
|
34
|
Chang YJ, Zhao XY, Xu LP, Liu DH, Liu KY, Chen YH, Wang Y, Zhang XH, Zhao XS, Han W, Chen H, Wang FR, Lv M, Huang XJ. Early lymphocyte recovery predicts superior overall survival after unmanipulated haploidentical blood and marrow transplant for myelodysplastic syndrome and acute myeloid leukemia evolving from myelodysplastic syndrome. Leuk Lymphoma 2013; 54:2671-7. [DOI: 10.3109/10428194.2013.783912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Servais S, Beguin Y, Baron F. Emerging drugs for prevention of graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin Emerg Drugs 2013; 18:173-92. [DOI: 10.1517/14728214.2013.798642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Abstract
PURPOSE OF REVIEW In contrast to CD34(+) positive selection, negative depletion strategies retain large numbers of effector cells in allogeneic peripheral stem cell grafts, such as natural killer (NK) and other cells. This review summarizes the clinical experience obtained using negative depletion approaches of CD3(+) and T-cell receptor (TcR)αβ(+) T lymphocytes. RECENT FINDINGS Attempts to improve immune reconstitution and to better exploit the graft-versus-malignancy effect after transplantation of T-cell-depleted grafts through the preservation of immune effector cells led to the development of CD3-, CD3/CD19- and more recently TcRαβ/CD19-negative depletion strategies of mobilized peripheral stem cell grafts. A faster immune reconstitution has been observed in patients with negatively depleted grafts after haploidentical transplantation, although no prospective randomized trials have been reported to date. In a randomized study of matched sibling and matched unrelated transplantation, CD3/CD19-depleted peripheral stem cell grafts led to a faster recovery of NK cells compared with the CD34(+)-positive selection group. SUMMARY New technologies allow the large-scale graft engineering of peripheral stem cells for clinical use in matched and mismatched stem cell transplantation. Further clinical trials are necessary to decide which of these methods is associated with a faster immune reconstitution and a better outcome after transplantation.
Collapse
|
37
|
Abstract
Haplotype-mismatched transplantation offers a unique opportunity to treat patients without a suitable matched related or unrelated donor. Indeed, related haplo-donors are usually extremely motivated, immediately available, and can provide additional stem or immune cells when required, a most important feature in the context of high-risk malignancies. Immunomagneticallly selected CD34(+) stem cell grafts enable rapid and sustained trilineage engraftment. However, the associated delay in immune reconstitution results in significant risk for severe infectious complications and malignant relapse. The infusion of T lymphocytes selectively depleted of their anti-host reactive components represents a most interesting approach to accelerate post-transplant T-cell recovery. Such a strategy relies on ex vivo donor cell activation against host antigens and their selective elimination. Immunotoxins and magnetic beads could target antigens such as CD25 with impressive results. Photodepletion of alloreactive T cells represents an appealing alternative to both eliminate anti-host immune T cells and spare resting T cells to fight infections. Interestingly, regulatory T cells can be retained after such treatment, and have been found to transform non-regulatory into regulatory T cells, a finding that may be of utmost importance in both prevention and control of graft-versus-host disease (GVHD). Efforts to promote efficient antigen presentation and selective allodepletion promise to accelerate immune reconstitution without GVHD and to address the most crucial issues in haplo-mismatched and other types of transplants.
Collapse
Affiliation(s)
- Jean-Philippe Bastien
- Division of Hematology and Stem Cell Transplantation, Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, Université de Montréal, Montreal, Canada
| | | | | |
Collapse
|
38
|
Abstract
Haploidentical transplantation opens the possibility to offer this treatment to a large number of patients with an otherwise incurable disease, such as some hematologic or oncologic malignancies, inborn or acquired bone marrow failure syndromes, hemoglobinopathies, immunodeficiencies, or other genetic diseases. Initial attempts at haploidentical transplantation using unmanipulated bone marrow were associated with a high transplant-related mortality. However, recent insights into the biology of haploidentical transplantation, the availability of effective in vivo large-scale graft-manipulation technology, and improved supportive care strategies have led to and are still leading to significantly better outcomes compared to previous decades. Methods for the in vitro depletion of T lymphocytes from mobilized peripheral blood stem cells (PBSC) to prevent graft-versus-host disease (GvHD) have facilitated the wider use and acceptance of haploidentical transplantation in children and adult patients. Besides in vitro T-cell depletion techniques, other methods, such as the isolation of alloreactive natural killer (NK) cells, virus-specific T lymphocytes, and other effector or regulatory cells are nowadays available to rapidly rebuild the immune system after haploidentical transplantation for the prevention of severe infections or relapses of the underlying diseases.
Collapse
|
39
|
Kinetics of IL-7 and IL-15 levels after allogeneic peripheral blood stem cell transplantation following nonmyeloablative conditioning. PLoS One 2013; 8:e55876. [PMID: 23437070 PMCID: PMC3578874 DOI: 10.1371/journal.pone.0055876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/03/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We analysed kinetics of IL-7 and IL-15 levels in 70 patients given peripheral blood stem cells after nonmyeloablative conditioning. METHODS EDTA-anticoagulated plasma and serum samples were obtained before conditioning and about once per week after transplantation until day 100. Samples were aliquoted and stored at -80°C within 3 hours after collection until measurement of cytokines. IL-7 and IL-15 levels were measured by ELISAs. RESULTS Median IL-7 plasma levels remained below 6 pg/L throughout the first 100 days, although IL-7 plasma levels were significantly higher on days 7 (5.1 pg/mL, P=0.002), 14 (5.2 pg/mL, P<0.001), and 28 (5.1 pg/mL, P=0.03) (but not thereafter) than before transplantation (median value of 3.8 pg/mL). Median IL-15 serum levels were significantly higher on days 7 (12.5 pg/mL, P<0.001), 14 (10.5 pg/mL, P<0.001), and 28 (6.2 pg/mL, P<0.001) than before transplantation (median value of 2.4 pg/mL). Importantly, IL-7 and IL-15 levels on days 7 or 14 after transplantation did not predict grade II-IV acute GVHD. CONCLUSIONS These data suggest that IL-7 and IL-15 levels remain relatively low after nonmyeloablative transplantation, and that IL-7 and IL-15 levels early after nonmyeloablative transplantation do not predict for acute GVHD.
Collapse
|
40
|
Abstract
The feasibility of stem cell transplantation across the major histocompatibility barrier-as in haploidentical stem cell transplantation-has been proved for some time in several studies. The main limitations include a higher graft failure rate, delayed immune reconstitution after transplantation with high rates of life-threatening infections, a higher incidence of post-transplant lymphoproliferative disease, and severe acute and chronic graft-versus-host disease. In an attempt to reduce the transplant-related morbidity/mortality, several techniques had been evaluated involving conditioning regimen intensity, graft engineering, post-transplant cellular therapy and immunosuppression. This review will describe the current situation. It will also discuss initiatives and strategies to overcome the limitations associated with transplant across the MHC barrier.
Collapse
Affiliation(s)
- Amr Ahmed Nassar
- King Abdullah Medical City, Mecca, Western Province, Saudi Arabia.
| |
Collapse
|
41
|
Natural killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors. Exp Hematol 2012; 40:882-891.e1. [DOI: 10.1016/j.exphem.2012.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022]
|
42
|
Oevermann L, Lang P, Feuchtinger T, Schumm M, Teltschik HM, Schlegel P, Handgretinger R. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation. Ann N Y Acad Sci 2012; 1266:161-70. [PMID: 22901267 DOI: 10.1111/j.1749-6632.2012.06606.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haploidentical hematopoietic stem cell transplantation is a curative alternative option for patients without an otherwise suitable stem cell donor. In order to prevent graft-versus-host disease (GvHD), different in vitro and in vivo T cell-depletion strategies have been developed. A delayed immune reconstitution is common to all these strategies, and an impaired immune function after haploidentical transplantation with subsequent infections is a major cause of deaths in these patients. In addition to in vitro and in vivo T cell-depletion methods, posttransplant strategies to rapidly rebuild the immune system have been introduced in order to improve the outcome. Advances in in vitro and in vivo T cell-depletion methods, and adoptive transfer of immune cells of the innate and specific immune system, will contribute to reduce the risk of GvHD, lethal infections, and the risk of relapse of the underlying malignant disease.
Collapse
Affiliation(s)
- Lena Oevermann
- Department of Hematology/Oncology, Children's University Hospital, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Bosch M, Dhadda M, Hoegh-Petersen M, Liu Y, Hagel LM, Podgorny P, Ugarte-Torres A, Khan FM, Luider J, Auer-Grzesiak I, Mansoor A, Russell JA, Daly A, Stewart DA, Maloney D, Boeckh M, Storek J. Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy 2012; 14:1258-75. [PMID: 22985195 DOI: 10.3109/14653249.2012.715243] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Anti-thymocyte globulin (ATG) is being used increasingly to prevent graft-versus-host disease (GvHD); however, its impact on immune reconstitution is relatively unknown. We (i) studied immune reconstitution after ATG-conditioned hematopoietic cell transplantation (HCT), (ii) determined the factors influencing the reconstitution, and (iii) compared it with non-ATG-conditioned HCT. METHODS Immune cell subset counts were determined at 1-24 months post-transplant in 125 HCT recipients who received ATG during conditioning. Subset counts were also determined in 46 non-ATG-conditioned patients (similarly treated). RESULTS (i) Reconstitution after ATG-conditioned HCT was fast for innate immune cells, intermediate for B cells and CD8 T cells, and very slow for CD4 T cells and invariant natural killer T (iNKT) (iNKT) cells. (ii) Faster reconstitution after ATG-conditioned HCT was associated with a higher number of cells of the same subset transferred with the graft in the case of memory B cells, naive CD4 T cells, naive CD8 T cells, iNKT cells and myeloid dendritic cells; lower recipient age in the case of naive CD4 T cells and naive CD8 T cells; cytomegalovirus recipient seropositivity in the case of memory/effector T cells; an absence of GvHD in the case of naive B cells; lower ATG serum levels in the case of most T-cell subsets, including iNKT cells; and higher ATG levels in the case of NK cells and B cells. (iii) Compared with non-ATG-conditioned HCT, reconstitution after ATG-conditioned HCT was slower for CD4 T cells, and faster for NK cells and B cells. CONCLUSIONS ATG worsens the reconstitution of CD4 T cells but improves the reconstitution of NK and B cells.
Collapse
Affiliation(s)
- Mark Bosch
- University of Calgary/Alberta Health Services, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Urban C, Benesch M, Sovinz P, Sipurzynski S, Lackner H, Müller E, Schwinger W. Alternative donor HSCT in refractory acquired aplastic anemia - prevention of graft rejection and graft versus host disease by immunoablative conditioning and graft manipulation. Pediatr Transplant 2012; 16:577-81. [PMID: 22462513 DOI: 10.1111/j.1399-3046.2012.01692.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early alternative donor HSCT is a potentially curative therapeutic option for patients with AAA not responding to IST. Seven patients (median age at diagnosis, 11 yr) with refractory AAA without a MSD underwent HSCT from matched unrelated (n = 6) or haploidentical (n = 1) donors. Conditioning regimens included CY (n = 7), muromonab-CD3/ATG (n = 7), TT (n = 6), FLU (n = 5), and TLI (n = 2). Grafts were either CD34 purified and/or CD3/19 depleted and contained a median of 10.17 × 10(6) /kg CD34 and 5.5 × 10(4) /kg CD3 cells. All patients engrafted rapidly. Median time to leukocyte engraftment was 10 days. With a median follow-up of 26 (range, 11-153) months, six patients are alive and well with complete donor hematopoiesis. One heavily pretreated patient developed GVHD grade III and died from progressive renal failure (resulting from microangiopathic hemolytic anemia) and disseminated aspergillosis. Early alternative donor HSCT can help to avoid complications from prolonged IST and presumably improve survival of patients with refractory AAA. Administration of high doses of CD34 purified and/or CD3/19 depleted stem cells following novel immunoablative conditioning may prevent graft rejection and GVHD. However, a long interval from diagnosis to HSCT seems to be associated with poor outcome.
Collapse
Affiliation(s)
- Christian Urban
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Federmann B, Bornhauser M, Meisner C, Kordelas L, Beelen DW, Stuhler G, Stelljes M, Schwerdtfeger R, Christopeit M, Behre G, Faul C, Vogel W, Schumm M, Handgretinger R, Kanz L, Bethge WA. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica 2012; 97:1523-31. [PMID: 22491731 DOI: 10.3324/haematol.2011.059378] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We report a prospective multicenter phase II study of haploidentical hematopoietic stem cell transplantation using CD3/CD19-depleted grafts after reduced intensity conditioning with fludarabine, thiotepa, melphalan and OKT-3. DESIGN AND METHODS Sixty-one adults with a median age of 46 years (range 19-65 years) have been enrolled. Diagnoses were acute myeloid leukemia (n=38), acute lymphoblastic leukemia (n=8), non-Hodgkin's lymphoma (n=6), myeloma (n=4), chronic myeloid leukemia (n=3), chronic lymphatic leukemia (n=1) and myelodysplastic syndrome (n=1). Patients were considered high risk because of refractory disease (n=18), cytogenetics (n=6), complete remission (≥ 2) (n=9), chemosensitive relapse in partial remission (n=4) or relapse after prior hematopoietic stem cell transplantation (n=15 allogeneic, n=8 autologous, n=1 both). At haploidentical hematopoietic stem cell transplantation, 30 patients were in complete remission and 31 in partial remission. Grafts contained a median of 7.0 × 10(6) (range 3.2-22) CD34(+) cells/kg, 4.2 × 10(4) (range 0.6-44) CD3(+) T cells/kg and 2.7 × 10(7) (range 0.00-37.3) CD56(+) cells/kg. RESULTS Engraftment was rapid with a median of 12 days to granulocytes more than 0.5 × 10(9)/L (range 9-50 days) and 11 days to platelets more than 20 × 10(9) (range 7-38 days). Incidence of grade IIIV acute graft-versus-host-disease and chronic graft-versus-host-disease was 46% and 18%, respectively. Non-relapse mortality on Day 100 was 23% and 42% at two years. Cumulative incidence of relapse/progression at two years was 31%. Kaplan-Meier estimated 1-year and 2-year overall survival with median follow up of 869 days (range 181-1932) is 41% and 28%, respectively. CONCLUSIONS This regimen allows successful haploidentical hematopoietic stem cell transplantation with reduced intensity conditioning in high-risk patients lacking a suitable donor. (clinicaltrials.gov identifier:NCT00202917).
Collapse
Affiliation(s)
- Birgit Federmann
- Medical Center, Department of Hematology & Oncology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Haploidentical transplantation in children opens the possibility to offer this treatment to every child with an otherwise incurable disease, such as some hematological or oncological malignancies, inborn or acquired bone marrow-failure syndromes, hemoglobinopathies, immunodeficiencies, or other genetic diseases. Although initial attempts at haploidentical transplantation were associated with a high transplant-related mortality, recent insights into the biology of haploidentical transplantation, the availability of effective in vivo large-scale graft-manipulation technology, and improved supportive care strategies have led to and are still leading to significantly better outcomes of haploidentical transplantation as compared with previous decades. In addition, expensive and time-consuming searches for matched unrelated donors (MUDs) as well as the expensive establishment and maintenance of cord blood banks are not necessary. Moreover, the worldwide donor registries comprise mainly donors of Caucasian origin and patients of non-Caucasian origin have a lower chance of finding a MUD. Therefore, haploidentical transplantation allows the treatment of children independently of their ethnic background in a timely fashion according to the status of their underlying disease.
Collapse
|
47
|
Pérez-Martínez A, González-Vicent M, Valentín J, Aleo E, Lassaletta A, Sevilla J, Vicario JL, Ramírez M, Díaz MA. Early evaluation of immune reconstitution following allogeneic CD3/CD19-depleted grafts from alternative donors in childhood acute leukemia. Bone Marrow Transplant 2012; 47:1419-27. [DOI: 10.1038/bmt.2012.43] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Koh KN, Im HJ, Kim BE, Choi ES, Jang S, Kwon SW, Park CJ, Seo JJ. Haploidentical haematopoietic stem cell transplantation using CD3 or CD3/CD19 depletion and conditioning with fludarabine, cyclophosphamide and antithymocyte globulin for acquired severe aplastic anaemia. Br J Haematol 2011; 157:139-42. [PMID: 22055111 DOI: 10.1111/j.1365-2141.2011.08924.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Hu YX, Cui Q, Liang B, Huang H. Relapsing Hematologic Malignancies after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2011; 17:1099-111. [DOI: 10.1016/j.bbmt.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 02/11/2011] [Indexed: 11/16/2022]
|
50
|
Alshemmari S, Ameen R, Gaziev J. Haploidentical hematopoietic stem-cell transplantation in adults. BONE MARROW RESEARCH 2011; 2011:303487. [PMID: 22046559 PMCID: PMC3199934 DOI: 10.1155/2011/303487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 04/05/2011] [Accepted: 05/18/2011] [Indexed: 11/18/2022]
Abstract
Haploidentical hematopoietic stem-cell transplantation is an alternative transplant strategy for patients without an HLA-matched donor. Still, only half of patients who might benefit from transplantation are able to find an HLA-matched related or unrelated donor. Haploidentical donor is readily available for many patients in need of immediate stem-cell transplantation. Historical experience with haploidentical stem-cell transplantation has been characterised by a high rejection rate, graft-versus-host disease, and transplant-related mortality. Important advances have been made in this field during the last 20 years. Many drawbacks of haploidentical transplants such as graft failure and significant GVHD have been overcome due to the development of new extensive T cell depletion methods with mega dose stem-cell administration. However, prolonged immune deficiency and an increased relapse rate remain unresolved problems of T cell depletion. New approaches such as partial ex vivo or in vivo alloreactive T cell depletion and posttransplant cell therapy will allow to improve immune reconstitution in haploidentical transplants. Results of unmanipulated stem-cell transplantation with using ATG and combined immunosuppression in mismatched/haploidentical transplant setting are promising. This paper focuses on recent advances in haploidentical hematopoietic stem-cell transplantation for hematologic malignancies.
Collapse
Affiliation(s)
| | - Reem Ameen
- 2Department of Medical Laboratory Sciences, Faculty of Allied Health, Kuwait
| | - Javid Gaziev
- 3International Center for Transplantation in Thalassemia and Sickle Cell Anemia, Mediterranean Institute of Hematology, Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- *Javid Gaziev:
| |
Collapse
|