1
|
Budak B, Tükel EY, Turanlı B, Kiraz Y. Integrated systems biology analysis of acute lymphoblastic leukemia: unveiling molecular signatures and drug repurposing opportunities. Ann Hematol 2024; 103:4121-4134. [PMID: 38836918 PMCID: PMC11512839 DOI: 10.1007/s00277-024-05821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumulation of lymphoid precursor cells within the bone marrow. The tyrosine kinase inhibitor (TKI), imatinib mesylate, has played a significant role in the treatment of Philadelphia chromosome-positive ALL (Ph + ALL). However, the achievement of durable and sustained therapeutic success remains a challenge due to the development of TKI resistance during the clinical course.The primary objective of this investigation is to propose a novel and efficacious treatment approach through drug repositioning, targeting ALL and its Ph + subtype by identifying and addressing differentially expressed genes (DEGs). This study involves a comprehensive analysis of transcriptome datasets pertaining to ALL and Ph + ALL in order to identify DEGs associated with the progression of these diseases to identify possible repurposable drugs that target identified hub proteins.The outcomes of this research have unveiled 698 disease-related DEGs for ALL and 100 for Ph + ALL. Furthermore, a subset of drugs, specifically glipizide for Ph + ALL, and maytansine and isoprenaline for ALL, have been identified as potential candidates for therapeutic intervention. Subsequently, cytotoxicity assessments were performed to confirm the in vitro cytotoxic effects of these selected drugs on both ALL and Ph + ALL cell lines.In conclusion, this study offers a promising avenue for the management of ALL and Ph + ALL through drug repurposed drugs. Further investigations are necessary to elucidate the mechanisms underlying cell death, and clinical trials are recommended to validate the promising results obtained through drug repositioning strategies.
Collapse
Affiliation(s)
- Betül Budak
- Department of Bioengineering, Marmara University, Istanbul, Türkiye
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Türkiye
| | - Ezgi Yağmur Tükel
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balçova, Izmir, Türkiye
| | - Beste Turanlı
- Department of Bioengineering, Marmara University, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Türkiye
| | - Yağmur Kiraz
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balçova, Izmir, Türkiye.
| |
Collapse
|
2
|
Feng M, Zhang B, Li G, Yang Y, Liu J, Zhang Z, Zhou B, Zhang H. BACH2-mediated CD28 and CD40LG axes contribute to pathogenesis and progression of T-cell lymphoblastic leukemia. Cell Death Dis 2024; 15:59. [PMID: 38233409 PMCID: PMC10794190 DOI: 10.1038/s41419-024-06453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of ALL characterized by its high heterogeneity and unfavorable clinical features. Despite improved insights in genetic and epigenetic landscapes of T-ALL, the molecular mechanisms that drive malignant T-cell development remain unclear. BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription repressor recognized as a tumor suppressor in B-cell malignancies, but little is known about its function and regulatory network in T-ALL. Here we found extremely low levels of BACH2 in T-ALL clinical samples and cell lines compared to normal T cells. Overexpression of BACH2 in T-ALL cells not only induced cell growth retardation but also inhibited cancer progression and infiltration in xenografts. Further RNA sequencing (RNA-seq) analysis revealed significant alterations in regulation of defense and immune responses in T-ALL cells upon BACH2 overexpression. Strikingly, CD28 and CD40LG, two essential stimulatory molecules on T cells, were for the first time identified as novel downstream targets repressed by BACH2 in T-ALL cells. Interestingly, both CD28 and CD40LG were indispensable for T-ALL survival, since largely or completely silencing CD28 and CD40LG led to rapid cell death, whereas partial knockdown of them resulted in cell-cycle arrest and enhanced apoptosis. More importantly, BACH2-mediated CD28 and CD40LG signals contributed to cell migration and dissemination of T-ALL cells to the bone marrow, thus adding a new layer to the BACH2-mediated tumor immunoregulation in T-cell malignancies.
Collapse
Affiliation(s)
- Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Bailing Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Yan Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Jiangyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China.
| |
Collapse
|
3
|
Driving differentiation: targeting APA in AML. Blood 2022; 139:317-319. [PMID: 35050335 DOI: 10.1182/blood.2021013814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
|
4
|
Gao J, Wang F, Wu P, Chen Y, Jia Y. Aberrant LncRNA Expression in Leukemia. J Cancer 2020; 11:4284-4296. [PMID: 32368311 PMCID: PMC7196264 DOI: 10.7150/jca.42093] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Leukemia is a common malignant cancer of the hematopoietic system, whose pathogenesis has not been fully elucidated. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein-coding function. Recent studies report their role in cellular processes such as the regulation of gene expression, as well as in the carcinogenesis, occurrence, development, and prognosis of various tumors. Evidence indicating relationships between a variety of lncRNAs and leukemia pathophysiology has increased dramatically in the previous decade, with specific lncRNAs expected to serve as diagnostic biomarkers, novel therapeutic targets, and predictors of clinical outcomes. Furthermore, these lncRNAs might offer insight into disease pathogenesis and novel treatment options. This review summarizes progress in studies on the role(s) of lncRNAs in leukemia.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fujue Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pengqiang Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Grönroos T, Mäkinen A, Laukkanen S, Mehtonen J, Nikkilä A, Oksa L, Rounioja S, Marincevic-Zuniga Y, Nordlund J, Pohjolainen V, Paavonen T, Heinäniemi M, Lohi O. Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia. Sci Rep 2020; 10:2043. [PMID: 32029838 PMCID: PMC7005266 DOI: 10.1038/s41598-020-58970-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia is marked by aberrant transcriptional features that alter cell differentiation, self-renewal, and proliferative features. We sought to identify the transcription factors exhibiting altered and subtype-specific expression patterns in B-ALL and report here that SOX11, a developmental and neuronal transcription factor, is aberrantly expressed in the ETV6-RUNX1 and TCF3-PBX1 subtypes of acute B-cell leukemias. We show that a high expression of SOX11 leads to alterations of gene expression that are typically associated with cell adhesion, migration, and differentiation. A high expression is associated with DNA hypomethylation at the SOX11 locus and a favorable outcome. The results indicate that SOX11 expression marks a group of patients with good outcomes and thereby prompts further study of its use as a biomarker.
Collapse
Affiliation(s)
- Toni Grönroos
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Artturi Mäkinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Saara Laukkanen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Atte Nikkilä
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Department of Hematology, Tampere University Hospital, Tampere, Finland
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Virva Pohjolainen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland.,Department of Pathology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Long Non-Coding RNA and Acute Leukemia. Int J Mol Sci 2019; 20:ijms20030735. [PMID: 30744139 PMCID: PMC6387068 DOI: 10.3390/ijms20030735] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Acute leukemia (AL) is the main type of cancer in children worldwide. Mortality by this disease is high in developing countries and its etiology remains unanswered. Evidences showing the role of the long non-coding RNAs (lncRNAs) in the pathophysiology of hematological malignancies have increased drastically in the last decade. In addition to the contribution of these lncRNAs in leukemogenesis, recent studies have suggested that lncRNAs could be used as biomarkers in the diagnosis, prognosis, and therapeutic response in leukemia patients. The focus of this review is to describe the functional classification, biogenesis, and the role of lncRNAs in leukemogenesis, to summarize the evidence about the lncRNAs which are playing a role in AL, and how these genes could be useful as potential therapeutic targets.
Collapse
|
7
|
Xu YF, Li YQ, Liu N, He QM, Tang XR, Wen X, Yang XJ, Sun Y, Ma J, Tang LL. Differential genome-wide profiling of alternative polyadenylation sites in nasopharyngeal carcinoma by high-throughput sequencing. J Biomed Sci 2018; 25:74. [PMID: 30352587 PMCID: PMC6198351 DOI: 10.1186/s12929-018-0477-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Alternative polyadenylation (APA) is a widespread phenomenon in the posttranscriptional regulation of gene expression that generates mRNAs with alternative 3′-untranslated regions (3’UTRs). APA contributes to the pathogenesis of various diseases, including cancer. However, the potential role of APA in the development of nasopharyngeal carcinoma (NPC) remains largely unknown. Methods A strategy of sequencing APA sites (SAPAS) based on second-generation sequencing technology was carried out to explore the global patterns of APA sites and identify genes with tandem 3’UTRs in samples from 6 NPC and 6 normal nasopharyngeal epithelial tissue (NNET). Sequencing results were then validated using quantitative RT-PCR in a larger cohort of 16 NPC and 16 NNET samples. Results The sequencing data showed that the use of tandem APA sites was prevalent in NPC, and numerous genes with APA-switching events were discovered. In total, we identified 195 genes with significant differences in the tandem 3’UTR length between NPC and NNET; including 119 genes switching to distal poly (A) sites and 76 genes switching to proximal poly (A) sites. Several gene ontology (GO) terms were enriched in the list of genes with switched APA sites, including regulation of cell migration, macromolecule catabolic process, protein catabolic process, proteolysis, small conjugating protein ligase activity, and ubiquitin-protein ligase activity. Conclusions APA site-switching events are prevalent in NPC. APA-mediated regulation of gene expression may play an important role in the development of NPC, and more detailed studies targeting genes with APA-switching events may contribute to the development of novel future therapeutic strategies for NPC. Electronic supplementary material The online version of this article (10.1186/s12929-018-0477-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Fei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, 518060, People's Republic of China
| | - Ying-Qing Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Xin-Ran Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Xin Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Ying Sun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China.
| | - Ling-Long Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
8
|
Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2017; 51:129-138. [PMID: 28887175 DOI: 10.1016/j.semcancer.2017.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. ALL arises from the malignant transformation of progenitor B- and T-cells in the bone marrow into leukemic cells, but the mechanisms underlying this transformation are not well understood. Recent technical advances and decreasing costs of methods for high-throughput DNA sequencing and SNP genotyping have stimulated systematic studies of the epigenetic changes in leukemic cells from pediatric ALL patients. The results emerging from these studies are increasing our understanding of the epigenetic component of leukemogenesis and have demonstrated the potential of DNA methylation as a biomarker for lineage and subtype classification, prognostication, and disease progression in ALL. In this review, we provide a concise examination of the epigenetic studies in ALL, with a focus on DNA methylation and mutations perturbing genes involved in chromatin modification, and discuss the future role of epigenetic analyses in research and clinical management of ALL.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ann-Christine Syvänen
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
9
|
Abstract
Methodological advances that allow deeper characterization of non-coding elements in the genome have started to reveal the full spectrum of deregulation in cancer. We generated an inducible cell model to track transcriptional changes after induction of a well-known leukemia-inducing fusion gene, ETV6-RUNX1. Our data revealed widespread transcriptional alterations outside coding elements in the genome. This adds to the growing list of various alterations in the non-coding genome in cancer and pinpoints their role in diseased cellular state.
Collapse
Affiliation(s)
- Susanna Teppo
- a Tampere Center for Child Health Research, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , Tampere , Finland
| | - Merja Heinäniemi
- b Institute of Biomedicine, School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - Olli Lohi
- a Tampere Center for Child Health Research, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
10
|
Guo S, Guo D, Chen L, Jiang Q. A L1-regularized feature selection method for local dimension reduction on microarray data. Comput Biol Chem 2016; 67:92-101. [PMID: 28064045 DOI: 10.1016/j.compbiolchem.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/04/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022]
Abstract
Dimension reduction is a crucial technique in machine learning and data mining, which is widely used in areas of medicine, bioinformatics and genetics. In this paper, we propose a two-stage local dimension reduction approach for classification on microarray data. In first stage, a new L1-regularized feature selection method is defined to remove irrelevant and redundant features and to select the important features (biomarkers). In the next stage, PLS-based feature extraction is implemented on the selected features to extract synthesis features that best reflect discriminating characteristics for classification. The suitability of the proposal is demonstrated in an empirical study done with ten widely used microarray datasets, and the results show its effectiveness and competitiveness compared with four state-of-the-art methods. The experimental results on St Jude dataset shows that our method can be effectively applied to microarray data analysis for subtype prediction and the discovery of gene coexpression.
Collapse
Affiliation(s)
- Shun Guo
- Department of Electronic Engineering, Xiamen University, Fujian 361005, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Donghui Guo
- Department of Electronic Engineering, Xiamen University, Fujian 361005, China.
| | - Lifei Chen
- School of Mathematics and Computer Science, Fujian Normal University, Fujian, 350117, China
| | - Qingshan Jiang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| |
Collapse
|
11
|
Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV, Kuznetsov VA. Sense-antisense gene-pairs in breast cancer and associated pathological pathways. Oncotarget 2016; 6:42197-221. [PMID: 26517092 PMCID: PMC4747219 DOI: 10.18632/oncotarget.6255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.
Collapse
Affiliation(s)
- Oleg V Grinchuk
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Efthymios Motakis
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Current address: RIKEN, Japan
| | - Surya Pavan Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhiqun Tang
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Aliaksandr A Yarmishyn
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anna V Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Computing Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Zhao MY, Yu Y, Xie M, Yang MH, Zhu S, Yang LC, Kang R, Tang DL, Zhao LL, Cao LZ. Digital gene expression profiling analysis of childhood acute lymphoblastic leukemia. Mol Med Rep 2016; 13:4321-8. [PMID: 27053012 DOI: 10.3892/mmr.2016.5089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most commonly diagnosed malignancy in children. It is a heterogeneous disease, and is determined by multiple gene alterations and chromosomal rearrangements. To improve current understanding of the underlying molecular mechanisms of ALL, the present study profiled genome‑wide digital gene expression (DGE) in a population of children with ALL in China. Using second‑generation sequencing technology, the profiling revealed that 2,825 genes were upregulated and 1,952 were downregulated in the ALL group. Based on the DGE profiling data, the present study further investigated seven genes (WT1, RPS26, MSX1, CD70, HOXC4, HOXA5 and HOXC6) using reverse transcription‑quantitative polymerase chain reaction analysis. Gene Ontology analysis suggested that the differentially expressed genes were predominantly involved in immune cell differentiation, metabolic processes and programmed cell death. The results of the present study provided novel insights into the gene expression patterns in children with ALL.
Collapse
Affiliation(s)
- Ming-Yi Zhao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming-Hua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Liang-Chun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rui Kang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dao-Lin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Li-Zhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Chen XH, Ma L, Hu YX, Wang DX, Fang L, Li XL, Zhao JC, Yu HR, Ying HZ, Yu CH. Transcriptome profiling and pathway analysis of hepatotoxicity induced by tris (2-ethylhexyl) trimellitate (TOTM) in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:62-71. [PMID: 26650799 DOI: 10.1016/j.etap.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
Tris (2-ethylhexyl) trimellitate (TOTM) is commonly used as an alternative plasticizer for medical devices. But very little information was available on its biological effects. In this study, we investigated toxicity effects of TOTM on hepatic differential gene expression analyzed by using high-throughput sequencing analysis for over-represented functions and phenotypically anchored to complementary histopathologic, and biochemical data in the liver of mice. Among 1668 candidate genes, 694 genes were up-regulated and 974 genes were down-regulated after TOTM exposure. Using Gene Ontology analysis, TOTM affected three processes: the cell cycle, metabolic process and oxidative activity. Furthermore, 11 key genes involved in the above processes were validated by real time PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these genes were involved in the cell cycle pathway, lipid metabolism and oxidative process. It revealed the transcriptome gene expression response to TOTM exposure in mouse, and these data could contribute to provide a clearer understanding of the molecular mechanisms of TOTM-induced hepatotoxicity in human.
Collapse
Affiliation(s)
- Xian-Hua Chen
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Li Ma
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Yi-Xiang Hu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Dan-Xian Wang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li Fang
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Xue-Lai Li
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Jin-Chuan Zhao
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Hai-Rong Yu
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
14
|
Melo CPDS, Campos CB, Rodrigues JDO, Aguirre-Neto JC, Atalla Â, Pianovski MAD, Carbone EK, Lares LBQ, Moraes-Souza H, Octacílio-Silva S, Pais FSM, Ferreira ACDS, Assumpção JG. Long non-coding RNAs: biomarkers for acute leukaemia subtypes. Br J Haematol 2015. [PMID: 26204929 DOI: 10.1111/bjh.13588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Ângelo Atalla
- Hospital Universitário da Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | | | - Hélio Moraes-Souza
- Hospital de Clínicas da Universidade Federal do Triângulo Mineiro, Uberlândia, Brazil
| | | | - Fabiano S M Pais
- Grupo de Genômica e Biologia Computacional, Fundação Oswaldo Cruz/Minas, Belo Horizonte, Brazil
| | | | - Juliana G Assumpção
- Laboratório BIOCOD Biotecnologia Ltda, Vespasiano, Brazil. .,Setor de Pesquisa e Desenvolvimento - Instituto Hermes Pardini, Vespasiano, Brazil.
| |
Collapse
|
15
|
Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J, Öfverholm I, Barbany G, Nordgren A, Övernäs E, Abrahamsson J, Flaegstad T, Heyman MM, Jónsson ÓG, Kanerva J, Larsson R, Palle J, Schmiegelow K, Gustafsson MG, Lönnerholm G, Forestier E, Syvänen AC. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 2015; 7:11. [PMID: 25729447 PMCID: PMC4343276 DOI: 10.1186/s13148-014-0039-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. RESULTS We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. CONCLUSIONS Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Christofer L Bäcklin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Johan Dahlberg
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Elin Övernäs
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Rondvägen 10, SE-416 85 Gothenburg, Sweden
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Sykehusveien 38, N-9038 Tromsø, Norway
| | - Mats M Heyman
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Q6:05, SE-171 76, Stockholm, Sweden
| | - Ólafur G Jónsson
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Norðurmýri, 101, Reykjavik, Iceland
| | - Jukka Kanerva
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Box 281, FIN-00029 Helsinki, Finland
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Josefine Palle
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden.,Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Kjeld Schmiegelow
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Mats G Gustafsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Erik Forestier
- Department of Medical Biosciences, University of Umeå, SE-901 85 Umeå, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| |
Collapse
|
16
|
Suryani S, Carol H, Chonghaile TN, Frismantas V, Sarmah C, High L, Bornhauser B, Cowley MJ, Szymanska B, Evans K, Boehm I, Tonna E, Jones L, Manesh DM, Kurmasheva RT, Billups C, Kaplan W, Letai A, Bourquin JP, Houghton PJ, Smith MA, Lock RB. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 2014; 20:4520-31. [PMID: 25013123 DOI: 10.1158/1078-0432.ccr-14-0259] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Predictive biomarkers are required to identify patients who may benefit from the use of BH3 mimetics such as ABT-263. This study investigated the efficacy of ABT-263 against a panel of patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts and utilized cell and molecular approaches to identify biomarkers that predict in vivo ABT-263 sensitivity. EXPERIMENTAL DESIGN The in vivo efficacy of ABT-263 was tested against a panel of 31 patient-derived ALL xenografts composed of MLL-, BCP-, and T-ALL subtypes. Basal gene expression profiles of ALL xenografts were analyzed and confirmed by quantitative RT-PCR, protein expression and BH3 profiling. An in vitro coculture assay with immortalized human mesenchymal cells was utilized to build a predictive model of in vivo ABT-263 sensitivity. RESULTS ABT-263 demonstrated impressive activity against pediatric ALL xenografts, with 19 of 31 achieving objective responses. Among BCL2 family members, in vivo ABT-263 sensitivity correlated best with low MCL1 mRNA expression levels. BH3 profiling revealed that resistance to ABT-263 correlated with mitochondrial priming by NOXA peptide, suggesting a functional role for MCL1 protein. Using an in vitro coculture assay, a predictive model of in vivo ABT-263 sensitivity was built. Testing this model against 11 xenografts predicted in vivo ABT-263 responses with high sensitivity (50%) and specificity (100%). CONCLUSION These results highlight the in vivo efficacy of ABT-263 against a broad range of pediatric ALL subtypes and shows that a combination of in vitro functional assays can be used to predict its in vivo efficacy.
Collapse
Affiliation(s)
- Santi Suryani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktoras Frismantas
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Chintanu Sarmah
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Laura High
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Mark J Cowley
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Barbara Szymanska
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Kathryn Evans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Ingrid Boehm
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Elise Tonna
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Luke Jones
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Donya Moradi Manesh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | | | - Catherine Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| |
Collapse
|
17
|
Xie Y, Wang B, Li F, Ma L, Ni M, Shen W, Hong F, Li B. Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 2014; 9:e101062. [PMID: 24971466 PMCID: PMC4074129 DOI: 10.1371/journal.pone.0101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022] Open
Abstract
Bombyx mori (B. mori), silkworm, is one of the most important economic insects in the world, while phoxim, an organophosphorus (OP) pesticide, impact its economic benefits seriously. Phoxim exposure can damage the brain, fatbody, midgut and haemolymph of B. mori. However the metabolism of proteins and carbohydrates in phoxim-exposed B. mori can be improved by Titanium dioxide nanoparticles (TiO2 NPs). In this study, we explored whether TiO2 NPs treatment can reduce the phoxim-induced brain damage of the 5th larval instar of B. mori. We observed that TiO2 NPs pretreatments significantly reduced the mortality of phoxim-exposed larva and relieved severe brain damage and oxidative stress under phoxim exposure in the brain. The treatments also relieved the phoxim-induced increases in the contents of acetylcholine (Ach), glutamate (Glu) and nitric oxide (NO) and the phoxim-induced decreases in the contents of norepinephrine (NE), Dopamine (DA), and 5-hydroxytryptamine (5-HT), and reduced the inhibition of acetylcholinesterase (AChE), Na+/K+-ATPase, Ca2+-ATPase, and Ca2+/Mg2+-ATPase activities and the activation of total nitric oxide synthase (TNOS) in the brain. Furthermore, digital gene expression profile (DGE) analysis and real time quantitative PCR (qRT-PCR) assay revealed that TiO2 NPs pretreatment inhibited the up-regulated expression of ace1, cytochrome c, caspase-9, caspase-3, Bm109 and down-regulated expression of BmIap caused by phoxim; these genes are involved in nerve conduction, oxidative stress and apoptosis. TiO2 NPs pretreatment also inhibited the down-regulated expression of H+ transporting ATP synthase and vacuolar ATP synthase under phoxim exposure, which are involved in ion transport and energy metabolism. These results indicate that TiO2 NPs pretreatment reduced the phoxim-induced nerve toxicity in the brain of B. mori.
Collapse
Affiliation(s)
- Yi Xie
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Lie Ma
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fashui Hong
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
18
|
de Klerk E, den Dunnen JT, 't Hoen PAC. RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cell Mol Life Sci 2014; 71:3537-51. [PMID: 24827995 PMCID: PMC4143603 DOI: 10.1007/s00018-014-1637-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
Technological advances in the sequencing field support in-depth characterization of the transcriptome. Here, we review genome-wide RNA sequencing methods used to investigate specific aspects of gene expression and its regulation, from transcription to RNA processing and translation. We discuss tag-based methods for studying transcription, alternative initiation and polyadenylation events, shotgun methods for detection of alternative splicing, full-length RNA sequencing for the determination of complete transcript structures, and targeted methods for studying the process of transcription and translation. With the ensemble of technologies available, it is now possible to obtain a comprehensive view on transcriptome complexity and the regulation of transcript diversity.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | |
Collapse
|
19
|
Chatterton Z, Morenos L, Mechinaud F, Ashley DM, Craig JM, Sexton-Oates A, Halemba MS, Parkinson-Bates M, Ng J, Morrison D, Carroll WL, Saffery R, Wong NC. Epigenetic deregulation in pediatric acute lymphoblastic leukemia. Epigenetics 2014; 9:459-67. [PMID: 24394348 DOI: 10.4161/epi.27585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (> 50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes.
Collapse
Affiliation(s)
- Zac Chatterton
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Leah Morenos
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | - David M Ashley
- Andrew Love Cancer Centre; Deakin University; Victoria, VIC Australia
| | - Jeffrey M Craig
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Alexandra Sexton-Oates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Minhee S Halemba
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Mandy Parkinson-Bates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Jane Ng
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | | | - Richard Saffery
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Nicholas C Wong
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| |
Collapse
|
20
|
Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, Flaegstad T, Forestier E, Frost BM, Harila-Saari A, Heyman M, Jónsson OG, Larsson R, Palle J, Rönnblom L, Schmiegelow K, Sinnett D, Söderhäll S, Pastinen T, Gustafsson MG, Lönnerholm G, Syvänen AC. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 2013; 14:r105. [PMID: 24063430 PMCID: PMC4014804 DOI: 10.1186/gb-2013-14-9-r105] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood. RESULTS We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. CONCLUSIONS Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.
Collapse
|
21
|
Busche S, Ge B, Vidal R, Spinella JF, Saillour V, Richer C, Healy J, Chen SH, Droit A, Sinnett D, Pastinen T. Integration of high-resolution methylome and transcriptome analyses to dissect epigenomic changes in childhood acute lymphoblastic leukemia. Cancer Res 2013; 73:4323-36. [PMID: 23722552 DOI: 10.1158/0008-5472.can-12-4367] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (pre-B ALL) is the most common pediatric cancer. Although the genetic determinants underlying disease onset remain unclear, epigenetic modifications including DNA methylation are suggested to contribute significantly to leukemogenesis. Using the Illumina 450K array, we assessed DNA methylation in matched tumor-normal samples of 46 childhood patients with pre-B ALL, extending single CpG-site resolution analysis of the pre-B ALL methylome beyond CpG-islands (CGI). Unsupervised hierarchical clustering of CpG-site neighborhood, gene, or microRNA (miRNA) gene-associated methylation levels separated the tumor cohort according to major pre-B ALL subtypes, and methylation in CGIs, CGI shores, and in regions around the transcription start site was found to significantly correlate with transcript expression. Focusing on samples carrying the t(12;21) ETV6-RUNX1 fusion, we identified 119 subtype-specific high-confidence marker CpG-loci. Pathway analyses linked the CpG-loci-associated genes with hematopoiesis and cancer. Further integration with whole-transcriptome data showed the effects of methylation on expression of 17 potential drivers of leukemogenesis. Independent validation of array methylation and sequencing-derived transcript expression with Sequenom Epityper technology and real-time quantitative reverse transcriptase PCR, respectively, indicates more than 80% empirical accuracy of our genome-wide findings. In summary, genome-wide DNA methylation profiling enabled us to separate pre-B ALL according to major subtypes, to map epigenetic biomarkers specific for the t(12;21) subtype, and through a combined methylome and transcriptome approach to identify downstream effects on candidate drivers of leukemogenesis.
Collapse
Affiliation(s)
- Stephan Busche
- Department of Human Genetics, McGill University, Montréal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Göttgens B. Genome-scale technology driven advances to research into normal and malignant haematopoiesis. SCIENTIFICA 2012; 2012:437956. [PMID: 24278696 PMCID: PMC3820533 DOI: 10.6064/2012/437956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/16/2012] [Indexed: 06/02/2023]
Abstract
Haematopoiesis or blood development has long served as a model system for adult stem cell biology. Moreover, when combined, the various cancers of the blood represent one of the commonest human malignancies. Large numbers of researchers have therefore dedicated their scientific careers to studying haematopoiesis for more than a century. Throughout this period, many new technologies have first been applied towards the study of blood cells, and the research fields of normal and malignant haematopoiesis have also been some of the earliest adopters of genome-scale technologies. This has resulted in significant new insights with implications ranging from basic biological mechanisms to patient diagnosis and prognosis and also produced lessons likely to be relevant for many other areas of biomedical research. This paper discusses the current state of play for a range of genome-scale applications within haemopoiesis research, including gene expression profiling, ChIP-sequencing, genomewide association analysis, and cancer genome sequencing. A concluding outlook section explores likely future areas of progress as well as potential technological and educational bottlenecks.
Collapse
Affiliation(s)
- Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University and Wellcome Trust and MRC Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
23
|
Zachariadis V, Schoumans J, Barbany G, Heyman M, Forestier E, Johansson B, Nordenskjöld M, Nordgren A. Homozygous deletions of CDKN2A are present in all dic(9;20)(p13·2;q11·2)-positive B-cell precursor acute lymphoblastic leukaemias and may be important for leukaemic transformation. Br J Haematol 2012; 159:488-91. [PMID: 22994152 DOI: 10.1111/bjh.12051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|