1
|
Petrusca DN, Mulcrone PL, Macar DA, Bishop RT, Berdyshev E, Suvannasankha A, Anderson JL, Sun Q, Auron PE, Galson DL, Roodman GD. GFI1-Dependent Repression of SGPP1 Increases Multiple Myeloma Cell Survival. Cancers (Basel) 2022; 14:cancers14030772. [PMID: 35159039 PMCID: PMC8833953 DOI: 10.3390/cancers14030772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New therapies have greatly improved the progression-free and overall survival for patients with “standard risk” multiple myeloma (MM). However, patients with “high risk” MM, in particular patients whose MM cells harbor non-functional p53, have very short survival times because of the early relapse and rapid development of highly therapy-resistant MM. In this report, we identify a novel mechanism responsible for Growth Factor Independence-1 (GFI1) regulation of the growth and survival of MM cells through its modulation of sphingolipid metabolism, regardless of their p53 status. We identify the Sphingosine-1-Phosphate Phosphatase (SGPP1) gene as a novel direct target of GFI1 transcriptional repression in MM cells, thus increasing intracellular sphingosine-1-phosphate levels, which stabilizes c-Myc. Our results support GFI1 as an attractive therapeutic target for all types of MM, including the “high risk” patient population with non-functional p53, as well as a possible therapeutic approach for other types of cancers expressing high levels of c-Myc. Abstract Multiple myeloma (MM) remains incurable for most patients due to the emergence of drug resistant clones. Here we report a p53-independent mechanism responsible for Growth Factor Independence-1 (GFI1) support of MM cell survival by its modulation of sphingolipid metabolism to increase the sphingosine-1-phosphate (S1P) level regardless of the p53 status. We found that expression of enzymes that control S1P biosynthesis, SphK1, dephosphorylation, and SGPP1 were differentially correlated with GFI1 levels in MM cells. We detected GFI1 occupancy on the SGGP1 gene in MM cells in a predicted enhancer region at the 5’ end of intron 1, which correlated with decreased SGGP1 expression and increased S1P levels in GFI1 overexpressing cells, regardless of their p53 status. The high S1P:Ceramide intracellular ratio in MM cells protected c-Myc protein stability in a PP2A-dependent manner. The decreased MM viability by SphK1 inhibition was dependent on the induction of autophagy in both p53WT and p53mut MM. An autophagic blockade prevented GFI1 support for viability only in p53mut MM, demonstrating that GFI1 increases MM cell survival via both p53WT inhibition and upregulation of S1P independently. Therefore, GFI1 may be a key therapeutic target for all types of MM that may significantly benefit patients that are highly resistant to current therapies.
Collapse
Affiliation(s)
- Daniela N. Petrusca
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Correspondence: ; Tel.: +1-(317)-278-5548
| | - Patrick L. Mulcrone
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
| | - David A. Macar
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA; (D.A.M.); (P.E.A.)
| | - Ryan T. Bishop
- Department of Tumor Biology, H. Lee Moffitt Cancer Research Center and Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA;
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA;
| | - Attaya Suvannasankha
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Richard L. Rodebush Veterans Affairs Medical Center, 1481 W 10th St., Indianapolis, IN 46202, USA
| | - Judith L. Anderson
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
| | - Quanhong Sun
- Department of Medicine, Division of Hematology/Oncology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Pittsburgh, PA 15213, USA; (Q.S.); (D.L.G.)
| | - Philip E. Auron
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA; (D.A.M.); (P.E.A.)
| | - Deborah L. Galson
- Department of Medicine, Division of Hematology/Oncology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Pittsburgh, PA 15213, USA; (Q.S.); (D.L.G.)
| | - G. David Roodman
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Richard L. Rodebush Veterans Affairs Medical Center, 1481 W 10th St., Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers (Basel) 2020; 12:cancers12113412. [PMID: 33217941 PMCID: PMC7724566 DOI: 10.3390/cancers12113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is an unmet medical need for new and potent pharmacological inhibitor drugs for the protein Stat5 that would be orally bioavailable for treatment of several different cancers. Previous work has established a critical role for Stat5 in molecular and clinical progression of prostate cancer to metastatic disease and in the pathogenesis of several leukemias and blood-based disorders. Our group has developed a potent pharmacological inhibitor for Stat5, IST5-002, which targets two critical steps in the activation process of Stat5 in cancer cells. In the present work, we evaluated the characteristics of IST5-002 for further development into a cancer drug. We evaluated whether IST5-002 affects the Stat5 targets genes in prostate cancer, defined more closely its mechanisms of action, and investigated its initial toxicity as the basis for further development in order to enable its entrance into clinical testing in patients. Our study supports optimization of IST5-002 compound for oral bioavailability and for clinical development. Abstract Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98–0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.
Collapse
|
3
|
Ashour N, Angulo JC, González-Corpas A, Orea MJ, Lobo MVT, Colomer R, Colás B, Esteller M, Ropero S. Epigenetic Regulation of Gfi1 in Endocrine-Related Cancers: a Role Regulating Tumor Growth. Int J Mol Sci 2020; 21:ijms21134687. [PMID: 32630147 PMCID: PMC7370116 DOI: 10.3390/ijms21134687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate and breast cancer constitute the most common cancers among men and women worldwide. The aging population is one of the main risk factors for prostate and breast cancer development and accumulating studies link aging with epigenetic changes. Growth factor independence-1 (Gfi1) is a transcriptional repressor with an important role in human malignancies, including leukemia, colorectal carcinoma, and lung cancer, but its role in prostate and breast cancer is unknown. We have found that Gfi1 epigenetic silencing is a common event in prostate and breast cancer. Gfi1 re-expression in prostate and breast cancer cell lines displaying Gfi1 epigenetic silencing decreases cell proliferation, reduced colony formation density, and tumor growth in nude mice xenografts. In addition, we found that Gfi1 repress alpha 1-anti-trypsin (AAT) and alpha 1-anti-chymotrypsin (ACT) expression, two genes with important functions in cancer development, suggesting that Gfi1 silencing promotes tumor growth by increasing AAT and ACT expression in our system. Finally, Gfi1 epigenetic silencing could be a promising biomarker for prostate cancer progression because it is associated with shorter disease-free survival. In conclusion, our findings strongly indicate that Gfi1 epigenetic silencing in prostate and breast cancer could be a crucial step in the development of these two-well characterized endocrine related tumors.
Collapse
Affiliation(s)
- Nadia Ashour
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, 28054 Madrid, Spain; (N.A.); (A.G.-C.); (M.J.O.); (B.C.)
| | - Javier C. Angulo
- Servicio de Urología, Hospital Universitario de Getafe, Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Universidad Europea de Madrid, Getafe, 28905 Madrid, Spain;
| | - Ana González-Corpas
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, 28054 Madrid, Spain; (N.A.); (A.G.-C.); (M.J.O.); (B.C.)
| | - María J. Orea
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, 28054 Madrid, Spain; (N.A.); (A.G.-C.); (M.J.O.); (B.C.)
| | - María V. T. Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28054 Madrid, Spain;
| | - Ramón Colomer
- Medical Oncology Department, Instituto De Investigación Sanitaria La Princesa, HU La Princesa, 28029 Madrid, Spain;
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Begoña Colás
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, 28054 Madrid, Spain; (N.A.); (A.G.-C.); (M.J.O.); (B.C.)
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Catalonia, Spain;
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28040 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Santiago Ropero
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, 28054 Madrid, Spain; (N.A.); (A.G.-C.); (M.J.O.); (B.C.)
- Correspondence:
| |
Collapse
|
4
|
USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discov 2019; 5:24. [PMID: 31044085 PMCID: PMC6488640 DOI: 10.1038/s41421-019-0092-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Constitutive activation of tyrosine kinase Bcr-Abl is the leading cause of the development and progression of chronic myeloid leukemia (CML). Currently, the application of tyrosine kinase inhibitors (TKIs) targeting the Bcr-Abl is the primary therapy for CML patients. However, acquired resistance to TKIs that develops overtime in the long-term administration renders TKIs ineffective to patients with advanced CML. Therefore, increasing studies focus on the amplified expression or activation of Bcr-Abl which is proposed to contribute to the advanced phase. Here, we show that S-phase kinase-associated protein 2 (SKP2) acts as a co-regulator of Bcr-Abl by mediating its K63-linked ubiquitination and activation. Further investigations show that USP10 as a novel deubiquitinase of SKP2 amplifies the activation of Bcr-Abl via mediating deubiquitination and stabilization of SKP2 in CML cells. Moreover, inhibition of USP10 significantly suppresses the proliferation of both imatinib-sensitive and imatinib-resistant CML cells, which likely depends on SKP2 status. This findings are confirmed in primary CML cells because these cells are over-expressed with USP10 and SKP2 and are sensitive to a USP10 inhibitor. Taken together, the present study not only provides a novel insight into the amplified activation of Bcr-Abl in CML, but also demonstrates that targeting the USP10/SKP2/Bcr-Abl axis is a potential strategy to overcome imatinib resistance in CML patients.
Collapse
|
5
|
Sun J, Du Y, Song Q, Nan J, Guan P, Guo J, Wang X, Yang J, Zhao C. E2F is required for STAT3-mediated upregulation of cyclin B1 and Cdc2 expressions and contributes to G2-M phase transition. Acta Biochim Biophys Sin (Shanghai) 2019; 51:313-322. [PMID: 30726872 DOI: 10.1093/abbs/gmy174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Activation of transcription factor STAT3 is involved in cell proliferation, differentiation, and cell survival. Constitutive activation of STAT3 pathway has been associated with the oncogenesis of various types of cancers. It has been reported that STAT3 plays a key role in the G1 to S phase cell cycle transition induced by the cytokine receptor subunit gp130, through the upregulation of cyclins D1, D2, D3, A, and Cdc25A and the concomitant downregulation of p21 and p27. However, its role in mediating G2-M phase transition has not been studied. The cyclin B1/Cdc2 complex is widely accepted as the trigger of mitosis in all organisms and is believed to be necessary for progression through S phase and keep active during the G2-M transition and progression. In the present study, we found that activation of STAT3 stimulates cyclin B1 and Cdc2 expressions. Deletion and site-directed mutations on cyclin B1 and Cdc2 promoters indicated that E2F element mediates the upregulation of these two promoters in a STAT3-dependent manner. The findings reported here demonstrated that STAT3 participates in modulating G2-M phase checkpoint by regulating gene expressions of cyclin B1 and Cdc2 via E2F.
Collapse
Affiliation(s)
- Jingjie Sun
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yuping Du
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Nan
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
| | - Peizhu Guan
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
| | - Jihui Guo
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
| | - Xiao Wang
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
| | - Jinbo Yang
- School of Life Science, Lanzhou University, Lanzhou, Gans, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Petrusca DN, Toscani D, Wang FM, Park C, Crean CD, Anderson JL, Marino S, Mohammad KS, Zhou D, Silbermann R, Sun Q, Kurihara N, Galson DL, Giuliani N, Roodman GD. Growth factor independence 1 expression in myeloma cells enhances their growth, survival, and osteoclastogenesis. J Hematol Oncol 2018; 11:123. [PMID: 30286780 PMCID: PMC6172782 DOI: 10.1186/s13045-018-0666-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In spite of major advances in treatment, multiple myeloma (MM) is currently an incurable malignancy due to the emergence of drug-resistant clones. We previously showed that MM cells upregulate the transcriptional repressor, growth factor independence 1 (Gfi1), in bone marrow stromal cells (BMSCs) that induces prolonged inhibition of osteoblast differentiation. However, the role of Gfi1 in MM cells is unknown. METHODS Human primary CD138+ and BMSC were purified from normal donors and MM patients' bone marrow aspirates. Gfi1 knockdown and overexpressing cells were generated by lentiviral-mediated shRNA. Proliferation/apoptosis studies were done by flow cytometry, and protein levels were determined by Western blot and/or immunohistochemistry. An experimental MM mouse model was generated to investigate the effects of MM cells overexpressing Gfi1 on tumor burden and osteolysis in vivo. RESULTS We found that Gfi1 expression is increased in patient's MM cells and MM cell lines and was further increased by co-culture with BMSC, IL-6, and sphingosine-1-phosphate. Modulation of Gfi1 in MM cells had major effects on their survival and growth. Knockdown of Gfi1 induced apoptosis in p53-wt, p53-mutant, and p53-deficient MM cells, while Gfi1 overexpression enhanced MM cell growth and protected MM cells from bortezomib-induced cell death. Gfi1 enhanced cell survival of p53-wt MM cells by binding to p53, thereby blocking binding to the promoters of the pro-apoptotic BAX and NOXA genes. Further, Gfi1-p53 binding could be blocked by HDAC inhibitors. Importantly, inoculation of MM cells overexpressing Gfi1 in mice induced increased bone destruction, increased osteoclast number and size, and enhanced tumor growth. CONCLUSIONS These results support that Gfi1 plays a key role in MM tumor growth, survival, and bone destruction and contributes to bortezomib resistance, suggesting that Gfi1 may be a novel therapeutic target for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA.
| | - Denise Toscani
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA.,Myeloma Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Feng-Ming Wang
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA.,Endodontics, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Cheolkyu Park
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Colin D Crean
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Judith L Anderson
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Silvia Marino
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Khalid S Mohammad
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dan Zhou
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Rebecca Silbermann
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Quanhong Sun
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Noriyoshi Kurihara
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA
| | - Deborah L Galson
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola Giuliani
- Myeloma Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G David Roodman
- Department of Medicine, Division of Hematology-Oncology, Indiana University School of Medicine, 980 Walnut Street, Walther Hall, Room C346, Indianapolis, IN, 46202, USA.,Rodebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
Minieri V, De Dominici M, Porazzi P, Mariani SA, Spinelli O, Rambaldi A, Peterson LF, Porcu P, Nevalainen MT, Calabretta B. Targeting STAT5 or STAT5-Regulated Pathways Suppresses Leukemogenesis of Ph+ Acute Lymphoblastic Leukemia. Cancer Res 2018; 78:5793-5807. [PMID: 30154155 DOI: 10.1158/0008-5472.can-18-0195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/25/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Combining standard cytotoxic chemotherapy with BCR-ABL1 tyrosine kinase inhibitors (TKI) has greatly improved the upfront treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, due to the development of drug resistance through both BCR-ABL1-dependent and -independent mechanisms, prognosis remains poor. The STAT5 transcription factor is activated by BCR-ABL1 and by JAK2-dependent cytokine signaling; therefore, inhibiting its activity could address both mechanisms of resistance in Ph+ ALL. We show here that genetic and pharmacologic inhibition of STAT5 activity suppresses cell growth, induces apoptosis, and inhibits leukemogenesis of Ph+ cell lines and patient-derived newly diagnosed and relapsed/TKI-resistant Ph+ ALL cells ex vivo and in mouse models. STAT5 silencing decreased expression of the growth-promoting PIM-1 kinase, the apoptosis inhibitors MCL1 and BCL2, and increased expression of proapoptotic BIM protein. The resulting apoptosis of STAT5-silenced Ph+ BV173 cells was rescued by silencing of BIM or restoration of BCL2 expression. Treatment of Ph+ ALL cells, including samples from relapsed/refractory patients, with the PIM kinase inhibitor AZD1208 and/or the BCL2 family antagonist Sabutoclax markedly suppressed cell growth and leukemogenesis ex vivo and in mice. Together, these studies indicate that targeting STAT5 or STAT5-regulated pathways may provide a new approach for therapy development in Ph+ ALL, especially the relapsed/TKI-resistant disease.Significance: Suppression of STAT5 by BCL2 and PIM kinase inhibitors reduces leukemia burden in mice and constitutes a new potential therapeutic approach against Ph+ ALL, especially in tyrosine kinase inhibitor-resistant disease. Cancer Res; 78(20); 5793-807. ©2018 AACR.
Collapse
Affiliation(s)
- Valentina Minieri
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samanta A Mariani
- The Queen's Medical Research Institute, Centre for Inflammation Research, The University of Edinburgh, Scotland, United Kingdom
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy.,Universita' Statale Milano, Italy
| | - Luke F Peterson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Pierluigi Porcu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Kordaß T, Weber CEM, Eisel D, Pane AA, Osen W, Eichmüller SB. miR-193b and miR-30c-1 * inhibit, whereas miR-576-5p enhances melanoma cell invasion in vitro. Oncotarget 2018; 9:32507-32522. [PMID: 30197759 PMCID: PMC6126698 DOI: 10.18632/oncotarget.25986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023] Open
Abstract
In cancer cells, microRNAs (miRNAs) are often aberrantly expressed resulting in impaired mRNA translation. In this study we show that miR-193b and miR-30c-1* inhibit, whereas miR-576-5p accelerates invasion of various human melanoma cell lines. Using Boyden chamber invasion assays the effect of selected miRNAs on the invasive capacity of various human melanoma cell lines was analyzed. Upon gene expression profiling performed on transfected A375 cells, CTGF, THBS1, STMN1, BCL9, RAC1 and MCL1 were identified as potential targets. For target validation, qPCR, Western blot analyses or luciferase reporter assays were applied. This study reveals opposed effects of miR-193b / miR-30c-1* and miR-576-5p, respectively, on melanoma cell invasion and on expression of BCL9 and MCL1, possibly accounting for the contrasting invasive phenotypes observed in A375 cells transfected with these miRNAs. The miRNAs studied and their targets identified fit well into a model proposed by us explaining the regulation of invasion associated genes and the observed opposed phenotypes as a result of networked direct and indirect miRNA / target interactions. The results of this study suggest miR-193b and miR-30c-1* as tumor-suppressive miRNAs, whereas miR-576-5p appears as potential tumor-promoting oncomiR. Thus, miR-193b and miR-30c-1* mimics as well as antagomiRs directed against miR-576-5p might become useful tools in future therapy approaches against advanced melanoma.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Claudia E M Weber
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Eisel
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Antonino A Pane
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Spagnuolo M, Regazzo G, De Dominici M, Sacconi A, Pelosi A, Korita E, Marchesi F, Pisani F, Magenta A, Lulli V, Cordone I, Mengarelli A, Strano S, Blandino G, Rizzo MG, Calabretta B. Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells. Haematologica 2018; 104:82-92. [PMID: 30076175 PMCID: PMC6312025 DOI: 10.3324/haematol.2018.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/27/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the “MYB addiction” of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/β-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/β-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the “MYB addiction” of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival.
Collapse
Affiliation(s)
- Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Marco De Dominici
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Sacconi
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pelosi
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Etleva Korita
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- Department of Clinical and Experimental Oncology-Hematology and Stem Cell Transplant Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pisani
- Department of Clinical and Experimental Oncology-Hematology and Stem Cell Transplant Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Magenta
- Istituto Dermopatico dell'Immacolata-IRCCS, FLMM, Laboratorio di Patologia Vascolare, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Cordone
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- Department of Clinical and Experimental Oncology-Hematology and Stem Cell Transplant Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Maria G Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Calabretta
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Massimino M, Stella S, Tirrò E, Romano C, Pennisi MS, Puma A, Manzella L, Zanghì A, Stagno F, Di Raimondo F, Vigneri P. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer 2018; 17:56. [PMID: 29455672 PMCID: PMC5817805 DOI: 10.1186/s12943-018-0805-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
The introduction of ABL Tyrosine Kinase Inhibitors (TKIs) has significantly improved the outcome of Chronic Myeloid Leukemia (CML) patients that, in large part, achieve satisfactory hematological, cytogenetic and molecular remissions. However, approximately 15-20% fail to obtain optimal responses according to the current European Leukemia Network recommendation because of drug intolerance or resistance.Moreover, a plethora of evidence suggests that Leukemic Stem Cells (LSCs) show BCR-ABL1-independent survival. Hence, they are unresponsive to TKIs, leading to disease relapse if pharmacological treatment is discontinued.All together, these biological events generate a subpopulation of CML patients in need of alternative therapeutic strategies to overcome TKI resistance or to eradicate LSCs in order to allow cure of the disease.In this review we update the role of "non ABL-directed inhibitors" targeting signaling pathways downstream of the BCR-ABL1 oncoprotein and describe immunological approaches activating specific T cell responses against CML cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Combined Modality Therapy
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Signal Transduction/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Antonino Zanghì
- Department of Surgical Medical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Department of Surgery, Medical and Surgical Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy.
| |
Collapse
|
11
|
Liu W, Fan JB, Xu DW, Zhu XH, Yi H, Cui SY, Zhang J, Cui ZM. Knockdown of LSD1 ameliorates the severity of rheumatoid arthritis and decreases the function of CD4 T cells in mouse models. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:333-341. [PMID: 31938116 PMCID: PMC6957942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 06/10/2023]
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease that causes chronic inflammation of the joints and involves CD4+ T cell activation. In RA, CD4+ T cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. In the present study, we investigated the role of Lysine-specific histone demethylase 1 (LSD1) in RA. The frequency of LSD1-positive CD4+ T cells in the synovial fluid (SF) of active RA patients was higher than that of inactive RA patients. In CD4+ T cells isolated from SF of active RA patients, LSD1 downregulation significantly increased cell proliferation, as shown by MTT assay. LSD1 knockdown also significantly increased the production of IFN-γ and IL-17, and increased that of IL-10, as determined by ELISA and qRT-PCR aasay. In CD4+ T cells isolated from SF of inactive RA patients, LSD1 was overexpressed by LSD1 plasmid transfection. As expected, LSD1 overexpression resulted in an opposite effect on cell proliferation and the production of cytokines, including IFN-γ, IL-17 and IL-10. LSD1 was downregulated in RA mouse by lenti-vector infection. As expected, LSD1 knockdown in vivo significantly alleviated the disease severity and increased the levels of anti-collagen II antibodies. LSD1 downregulation in the early stage was more effective to ameliorate disease severity. Our data suggested the potential therapeutic role of LSD1 in RA patients.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Jian-Bo Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Da-Wei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Xin-Hui Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Hong Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Sheng-Yu Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Jie Zhang
- School of Medicine, Nantong UniversityNantong 226019, Jiangsu, PR China
| | - Zhi-Ming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| |
Collapse
|
12
|
Min KJ, Um HJ, Kim JI, Kwon TK. The coffee diterpene kahweol enhances sensitivity to sorafenib in human renal carcinoma Caki cells through down-regulation of Mcl-1 and c-FLIP expression. Oncotarget 2017; 8:83195-83206. [PMID: 29137334 PMCID: PMC5669960 DOI: 10.18632/oncotarget.20541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/30/2017] [Indexed: 01/07/2023] Open
Abstract
Sorafenib is approved for the treatment of hepatocellular carcinoma (HCC) and advanced renal cell carcinoma (RCC). However, low tumor response and side effects have been widely reported. Therefore, to improve the efficacy of sorafenib, we investigated whether combined treatment with sorafenib and kahweol, the coffee-specific diterpene, has a synergistic effect on apoptotic cell death. Combined treatment with sorafenib and kahweol markedly induced caspase-mediated apoptosis in renal carcinoma Caki cells. Combined treatment with sorafenib and kahweol induced down-regulation of Mcl-1 and c-FLIP expression. We found down-regulation of Mcl-1 and c-FLIP expression was modulated by the ubiquitin-proteasome pathway. Ectopic expression of Mcl-1 inhibited sorafenib plus kahweol-induced apoptosis. Interestingly, combined treatment with sorafenib and kahweol induced apoptotic cell death in c-FLIP overexpressed cells. In addition, combined treatment with sorafenib and kahweol markedly induced apoptosis in human lung carcinoma (A549) and breast carcinoma (MDA-MB-361) cells, but not in human normal mesangial cells and human skin fibroblast cells (HSF). Collectively, our study demonstrates that combined treatment with sorafenib and kahweol induces apoptotic cell death through down-regulation of Mcl-1 expression.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Hee Jung Um
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Jee In Kim
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| |
Collapse
|
13
|
Lan X, Zhao C, Chen X, Zhang P, Zang D, Wu J, Chen J, Long H, Yang L, Huang H, Carter BZ, Wang X, Shi X, Liu J. Nickel pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via both Bcr/Abl-dependent and Bcr/Abl-independent mechanisms. J Hematol Oncol 2016; 9:129. [PMID: 27884201 PMCID: PMC5123219 DOI: 10.1186/s13045-016-0359-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acquired imatinib (IM) resistance is frequently characterized by Bcr-Abl mutations that affect IM binding and kinase inhibition in patients with chronic myelogenous leukemia (CML). Bcr-Abl-T315I mutation is the predominant mechanism of the acquired resistance to IM. Therefore, it is urgent to search for additional approaches and targeting strategies to overcome IM resistance. We recently reported that nickel pyrithione (NiPT) potently inhibits the ubiquitin proteasome system via targeting the 19S proteasome-associated deubiquitinases (UCHL5 and USP14), without effecting on the 20S proteasome. In this present study, we investigated the effect of NiPT, a novel proteasomal deubiquitinase inhibitor, on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. METHODS Cell viability was examined by MTS assay and trypan blue exclusion staining assay in KBM5, KBM5R, K562, BaF3-p210-WT, BaF3-p210-T315I cells, and CML patients' bone marrow samples treated with NiPT. Cell apoptosis in CML cells was detected with Annexin V-FITC/PI and rhodamine-123 staining followed by fluorescence microscopy and flow cytometry and with western blot analyses for apoptosis-associated proteins. Expression levels of Bcr-Abl in CML cells were analyzed by using western blotting and real-time PCR. The 20S proteasome peptidase activity was measured using specific fluorogenic substrate. Active-site-directed labeling of proteasomal DUBs, as well as the phosphorylation of USP14 was used for evaluating the inhibition of the DUBs activity by NiPT. Mouse xenograft models of KBM5 and KBM5R cells were analyzed, and Bcr-Abl-related proteins and protein biomarkers related to proliferation, differentiation, and adhesion in tumor tissues were detected by western blots and/or immunohistological analyses. RESULTS NiPT induced apoptosis in CML cells and inhibited the growth of IM-resistant Bcr-Abl-T315I xenografts in nude mice. Mechanistically, NiPT induced decreases in Bcr-Abl proteins, which were associated with downregulation of Bcr-Abl transcription and with the cleavage of Bcr-Abl protein by activated caspases. NiPT-induced ubiquitin proteasome system inhibition induced caspase activation in both IM-resistant and IM-sensitive CML cells, and the caspase activation was required for NiPT-induced Bcr-Abl downregulation and apoptotic cell death. CONCLUSIONS These findings support that NiPT can overcome IM resistance through both Bcr-Abl-dependent and Bcr-Abl-independent mechanisms, providing potentially a new option for CML treatment.
Collapse
Affiliation(s)
- Xiaoying Lan
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Chong Zhao
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xin Chen
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Peiquan Zhang
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Dan Zang
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jinjie Wu
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jinghong Chen
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huidan Long
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Li Yang
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Hongbiao Huang
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Bing Z Carter
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuejun Wang
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA
| | - Xianping Shi
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China. .,Department of Pathophysiology, Protein modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 510182, People's Republic of China.
| | - Jinbao Liu
- Department of Pathophysiology, State Key Lab of Respiratory Disease, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China. .,Department of Pathophysiology, Protein modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 510182, People's Republic of China.
| |
Collapse
|
14
|
Simvastatin attenuates macrophage-mediated gemcitabine resistance of pancreatic ductal adenocarcinoma by regulating the TGF-β1/Gfi-1 axis. Cancer Lett 2016; 385:65-74. [PMID: 27840243 DOI: 10.1016/j.canlet.2016.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an intrinsic resistance to almost all chemotherapeutic drugs, including gemcitabine. An abundance of tumor-associated macrophages (TAMs), which can promote the resistance of PDAC to gemcitabine, has been observed in the microenvironments of several tumors. In this study, we confirmed that incubation in TAM-conditioned medium (TAM-CM) reduces the gemcitabine-induced apoptosis of PDAC cells. Simvastatin attenuated the TAM-mediated resistance of PDAC cells to gemcitabine. Further investigation found that simvastatin reversed the TAM-mediated down-regulation of Gfi-1 and up-regulation of CTGF and HMGB1. Simvastatin induced Gfi-1 expression, which increased the sensitivity of PDAC cells to gemcitabine by decreasing TGF-β1 secretion by TAMs. A luciferase reporter assay and ChIP assay revealed that Gfi-1 directly repressed the transcription of CTGF and HMGB1. Simvastatin also reversed the effects of gemcitabine on the expression of TGF-β1 and Gfi-1 and reduced the resistance of PDAC to gemcitabine in vivo. These results provide the first evidence that simvastatin attenuates the TAM-mediated gemcitabine resistance of PDAC by blocking the TGF-β1/Gfi-1 axis. These findings suggest the TGF-β1/Gfi-1 axis as a novel therapeutic target for treating PDAC.
Collapse
|
15
|
Lin Z, Jiang J, Liu XS. Ursolic acid-mediated apoptosis of K562 cells involves Stat5/Akt pathway inhibition through the induction of Gfi-1. Sci Rep 2016; 6:33358. [PMID: 27634378 PMCID: PMC5025887 DOI: 10.1038/srep33358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/25/2016] [Indexed: 02/05/2023] Open
Abstract
Ursolic acid (UA) is a promising natural compound for cancer prevention and therapy. We previously reported that UA induced apoptosis in CML-derived K562 cells. Here we show that the apoptotic process is accompanied by down-regulation of Bcl-xL and Mcl-1 expression and dephosphorylation of Bad. These events are associated with Stat5 inhibition, which is partially mediated through elevated expression of transcriptional repressor Gfi-1. Gfi-1 knockdown using siRNA abrogates the ability of UA to decrease Stat5b expression and attenuates apoptosis induction by UA. We also demonstrate that UA suppresses the Akt kinase activity by inhibiting Akt1/2 expression, which correlates with Stat5 inhibition. Stat5 activity inhibited by a chemical inhibitor or siRNA, Akt1/2 mRNA expression is suppressed. Moreover, we show that UA exerts growth-inhibition in Imatinib-resistant K562/G01. UA has synergistic effects when used in combination with Imatinib in both K562 and K562/G01. Altogether, the data provide evidence that UA's pro-apoptotic effect in K562 cells is associated with the Gfi-1/Stat5/Akt pathway. The findings indicate that UA could potentially be a useful agent in the treatment of CML.
Collapse
Affiliation(s)
- Ze Lin
- Department of Biochemistry, Shantou University Medical College, No. 22 Xinlin Road, Jinping District, Shantou, 510451, China
| | - Jikai Jiang
- Department of Biochemistry, Shantou University Medical College, No. 22 Xinlin Road, Jinping District, Shantou, 510451, China
| | - Xiao-Shan Liu
- Department of Biochemistry, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| |
Collapse
|
16
|
Abstract
With the discovery of Philadelphia chromosome, understanding of chronic myeloid leukemia (CML) pathobiology has tremendously increased. Development of tyrosine kinase inhibitors (TKI) targeting the BCR/ABL1 oncoprotein has changed the landscape of the disease. Today, the expected survival of CML patients, if properly managed, is likely to be similar to the general population. Imatinib is the first-approved TKI in CML treatment, and for several years, it was the only option in the frontline setting. Four years ago, second-generation TKIs (nilotinib and dasatinib) were approved as alternative frontline options. Now, clinicians are faced the challenge of making decision for which TKI to chose upfront. Second-generation TKIs have been demonstrated to induce deeper and faster responses compared to imatinib; however, none of three TKIs have been shown to have a clear survival advantage, they all are reasonable options. In contrast, when considering therapy in individual patients, the case may be stronger for a specific TKI. Co-morbidities of the patient and side effect profile of the TKI of interest should be an important consideration in decision making. At present, the cost nilotinib or dasatinib is not remarkably different from imatinib. However, patent for imatinib is expected to expire soon, and it will be available as a generic. Clinicians, then, need to weigh the advantages some patients gain with nilotinib or dasatinib in the frontline setting against the difference in cost. Whatever TKI is chosen as frontline, intolerance, non-compliance, or treatment failure should be recognized early as a prompt intervention increases the chance of achieving best possible response.
Collapse
|
17
|
Abstract
Dichloroacetate (DCA) is a metabolic reprogramming agent that reverses the Warburg effect, causing cancer cells to couple glycolysis to oxidative phosphorylation. This has been shown to induce apoptosis and reduce the growth of various types of cancer but not normal cells. Colorectal cancer cells HCT116, HCT116 p53(-/-), and HCT116 Bax(-/-), were treated with DCA in vitro. Response to treatment was determined by measuring PDH phosphorylation, apoptosis, proliferation, and cell cycle. Molecular changes associated with these responses were determined using western immunoblotting and quantitative PCR. Treatment with 20 mM DCA did not increase apoptosis, despite decreasing levels of anti-apoptotic protein Mcl-1 after 6 h, in any of the cell lines observed. Mcl-1 expression was stabilized with MG-132, an inhibitor of proteasomal degradation. A decrease in Mcl-1 correlated with a decrease in proliferation, both of which showed dose-dependence in DCA treated cells. Cells showed nuclear localization of Mcl-1, however cell cycle was unaffected by DCA treatment. These data suggest that a reduction in the prosurvival Bcl-2 family member Mcl-1 due to increased proteasomal degradation is correlated with the ability of DCA to reduce proliferation of HCT116 human colorectal cancer cells without causing apoptosis.
Collapse
|
18
|
Chen X, Shi X, Zhao C, Li X, Lan X, Liu S, Huang H, Liu N, Liao S, Zang D, Song W, Liu Q, Carter BZ, Dou QP, Wang X, Liu J. Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget 2015; 5:9118-32. [PMID: 25193854 PMCID: PMC4253423 DOI: 10.18632/oncotarget.2361] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Resistance to Imatinib mesylate (IM) is an emerging problem for patients with chronic myelogenous leukemia (CML). T315I mutation in the Bcr-Abl is the predominant mechanism of the acquired resistance to IM and second generation tyrosine kinase inhibitors (TKI). Therefore it is urgent to search for new measures to overcome TKI-resistance. Auranofin (AF), clinically used to treat rheumatic arthritis, was recently approved by US Food and Drug Administration for Phase II clinical trial to treat cancer. In contrast to the reports that AF induces apoptosis by increasing intracellular reactive oxygen species (ROS) levels via inhibiting thioredoxin reductase, our recent study revealed that AF-induced apoptosis depends on inhibition of proteasomal deubiquitinases (UCHL5 and USP14). Here we report that (i) AF induces apoptosis in both Bcr-Abl wild-type cells and Bcr-Abl-T315I mutation cells and inhibits the growth of IM-resistant Bcr-Abl-T315I xenografts in vivo; (ii) AF inhibits Bcr-Abl through both downregulation of Bcr-Abl gene expression and Bcr-Abl cleavage mediated by proteasome inhibition-induced caspase activation; (iii) proteasome inhibition but not ROS is required for AF-induced caspase activation and apoptosis. These findings support that AF overcomes IM resistance through both Bcr/Abl-dependent and -independent mechanisms, providing great clinical significance for cancer treatment.
Collapse
Affiliation(s)
- Xin Chen
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; These Authors contributed equally to this work
| | - Xianping Shi
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; These Authors contributed equally to this work
| | - Chong Zhao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; These Authors contributed equally to this work
| | - Xiaofen Li
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Xiaoying Lan
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Shouting Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Hongbiao Huang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Ningning Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; Guangzhou Research Institute of Cardiovascular Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, People's Republic of China
| | - Siyan Liao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Dan Zang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Wenbin Song
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Q Ping Dou
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201-2013, USA
| | - Xuejun Wang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Jinbao Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| |
Collapse
|
19
|
Liao Z, Gu L, Vergalli J, Mariani SA, De Dominici M, Lokareddy RK, Dagvadorj A, Purushottamachar P, McCue PA, Trabulsi E, Lallas CD, Gupta S, Ellsworth E, Blackmon S, Ertel A, Fortina P, Leiby B, Xia G, Rui H, Hoang DT, Gomella LG, Cingolani G, Njar V, Pattabiraman N, Calabretta B, Nevalainen MT. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia. Mol Cancer Ther 2015; 14:1777-93. [PMID: 26026053 DOI: 10.1158/1535-7163.mct-14-0883] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenny Vergalli
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samanta A Mariani
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ravi K Lokareddy
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Puranik Purushottamachar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shauna Blackmon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Guanjun Xia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gino Cingolani
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vincent Njar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nagarajan Pattabiraman
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
Long ZJ, Wang LX, Zheng FM, Chen JJ, Luo Y, Tu XX, Lin DJ, Lu G, Liu Q. A novel compound against oncogenic Aurora kinase A overcomes imatinib resistance in chronic myeloid leukemia cells. Int J Oncol 2015; 46:2488-96. [PMID: 25872528 DOI: 10.3892/ijo.2015.2960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/20/2015] [Indexed: 11/06/2022] Open
Abstract
Drug resistance still represents a major obstacle to successful chronic myeloid leukemia (CML) treatment and novel compounds or strategies to override this challenging problem are urgently required. Here, we evaluated a novel compound AKI603 against oncogenic Aurora kinase A (Aur-A) in imatinib-resistant CML cells. We found that Aur-A was highly activated in imatinib-resistant KBM5-T315I cells. AKI603 significantly inhibited the phosphorylation of Aur-A kinase at Thr288, while had little inhibitory effect on BCR-ABL kinase in both KBM5 and KBM5-T315I cells. AKI603 inhibited cell viability, and induced cell cycle arrest with polyploidy accumulation in KBM5 and KBM5-T315I cells. Moreover, inhibition of Aur-A kinase by AKI603 suppressed colony formation capacity without promoting obvious apoptosis. Importantly, AKI603 promoted cell differentiation in both CML cell types. Thus, our study suggested the potential clinical use of small molecule Aurora kinase inhibitor AKI603 to overcome imatinib resistance in CML treatment.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Sun Yat-sen Institute of Hematology, Guangzhou 510630, P.R. China
| | - Le-Xun Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Sun Yat-sen Institute of Hematology, Guangzhou 510630, P.R. China
| | - Fei-Meng Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jia-Jie Chen
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Sun Yat-sen Institute of Hematology, Guangzhou 510630, P.R. China
| | - Yu Luo
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xi-Xiang Tu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, P.R. China
| | - Dong-Jun Lin
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Sun Yat-sen Institute of Hematology, Guangzhou 510630, P.R. China
| | - Gui Lu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Sun Yat-sen Institute of Hematology, Guangzhou 510630, P.R. China
| |
Collapse
|
21
|
TIDEL-II: first-line use of imatinib in CML with early switch to nilotinib for failure to achieve time-dependent molecular targets. Blood 2014; 125:915-23. [PMID: 25519749 DOI: 10.1182/blood-2014-07-590315] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Therapeutic Intensification in De Novo Leukaemia (TIDEL)-II study enrolled 210 patients with chronic phase chronic myeloid leukemia (CML) in two equal, sequential cohorts. All started treatment with imatinib 600 mg/day. Imatinib plasma trough level was performed at day 22 and if <1000 ng/mL, imatinib 800 mg/day was given. Patients were then assessed against molecular targets: BCR-ABL1 ≤10%, ≤1%, and ≤0.1% at 3, 6, and 12 months, respectively. Cohort 1 patients failing any target escalated to imatinib 800 mg/day, and subsequently switched to nilotinib 400 mg twice daily for failing the same target 3 months later. Cohort 2 patients failing any target switched to nilotinib directly, as did patients with intolerance or loss of response in either cohort. At 2 years, 55% of patients remained on imatinib, and 30% on nilotinib. Only 12% were >10% BCR-ABL1 at 3 months. Confirmed major molecular response was achieved in 64% at 12 months and 73% at 24 months. MR4.5 (BCR-ABL1 ≤0.0032%) at 24 months was 34%. Overall survival was 96% and transformation-free survival was 95% at 3 years. This trial supports the feasibility and efficacy of an imatinib-based approach with selective, early switching to nilotinib. This trial was registered at www.anzctr.org.au as #12607000325404.
Collapse
|
22
|
Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo. Apoptosis 2014; 19:871-82. [PMID: 24563182 DOI: 10.1007/s10495-014-0969-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.
Collapse
|
23
|
Jackson RC, Radivoyevitch T. A pharmacodynamic model of Bcr-Abl signalling in chronic myeloid leukaemia. Cancer Chemother Pharmacol 2014; 74:765-76. [PMID: 25107570 DOI: 10.1007/s00280-014-2556-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/26/2014] [Indexed: 01/09/2023]
Abstract
Chronic myeloid leukaemia (CML) is an unusual malignancy in which myeloid progenitor cells are transformed by a single chromosomal translocation where the Bcr domain of chromosome 22 is placed adjacent to the proto-oncogene c-Abl of chromosome 9, resulting in constitutive Abl tyrosine kinase activity. This has a twofold effect: it causes increased numbers of myeloid progenitor cells and circulating myeloid cells, and it causes leakage of reactive oxygen species from mitochondria. We describe a kinetic and pharmacodynamic (PD) model of Bcr-Abl signalling in myeloid cells that is used to simulate effects of four classes of drugs: Bcr-Abl signalling inhibitors, such as imatinib, cyclin-dependent kinase inhibitors, and pro- and anti-oxidants. The model also has the potential to describe the PD effects of agents acting on other sites in the Bcr-Abl signalling pathway. Having calibrated the model against dose-response curves of these drugs acting as single agents on Bcr-Abl-transformed cells in vitro, the model was used to predict effects of the agents in combination. Used in conjunction with pharmacokinetic models, our PD model enables an approach to protocol optimization: large numbers of doses and timings and (in the case of combination treatments) relative dose ratios can be simulated in silico. Predicted selectivity, as well as efficacy, can be extracted from the model. An understanding of the Bcr-Abl signalling pathway has implications for strategies to prevent acquired drug resistance, and for preventing or delaying CML progression to its blast phase.
Collapse
|
24
|
Schafranek L, Nievergall E, Powell JA, Hiwase DK, Leclercq T, Hughes TP, White DL. Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia. Leukemia 2014; 29:76-85. [DOI: 10.1038/leu.2014.156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 01/04/2023]
|
25
|
Shi X, Chen X, Li X, Lan X, Zhao C, Liu S, Huang H, Liu N, Liao S, Song W, Zhou P, Wang S, Xu L, Wang X, Dou QP, Liu J. Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin Cancer Res 2013; 20:151-63. [PMID: 24334603 DOI: 10.1158/1078-0432.ccr-13-1063] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl-T315I is the predominant mutation that causes resistance to imatinib, cytotoxic drugs, and the second-generation tyrosine kinase inhibitors. The emergence of imatinib resistance in patients with CML leads to searching for novel approaches to the treatment of CML. Gambogic acid, a small molecule derived from Chinese herb gamboges, has been approved for phase II clinical trial for cancer therapy by the Chinese Food and Drug Administration (FDA). In this study, we investigated the effect of gambogic acid on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. EXPERIMENTAL DESIGN CML cell lines (KBM5, KBM5-T315I, and K562), primary cells from patients with CML with clinical resistance to imatinib, and normal monocytes from healthy volunteers were treated with gambogic acid, imatinib, or their combination, followed by measuring the effects on cell growth, apoptosis, and signal pathways. The in vivo antitumor activity of gambogic acid and its combination with imatinib was also assessed with nude xenografts. RESULTS Gambogic acid induced apoptosis and cell proliferation inhibition in CML cells and inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Our data suggest that GA-induced proteasome inhibition is required for caspase activation in both imatinib-resistant and -sensitive CML cells, and caspase activation is required for gambogic acid-induced Bcr-Abl downregulation and apoptotic cell death. CONCLUSIONS These findings suggest an alternative strategy to overcome imatinib resistance by enhancing Bcr-Abl downregulation with the medicinal compound gambogic acid, which may have great clinical significance in imatinib-resistant cancer therapy.
Collapse
Affiliation(s)
- Xianping Shi
- Authors' Affiliations: Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong; Department of Hematology, The People's Hospital of Guangxi Autonomous Region, Nanning, Guangxi, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota; and The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lymphoid progenitor cells from childhood acute lymphoblastic leukemia are functionally deficient and express high levels of the transcriptional repressor Gfi-1. Clin Dev Immunol 2013; 2013:349067. [PMID: 24198842 PMCID: PMC3808104 DOI: 10.1155/2013/349067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/10/2013] [Accepted: 07/28/2013] [Indexed: 11/29/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy of childhood. Substantial progress on understanding the cell hierarchy within ALL bone marrow (BM) has been recorded in the last few years, suggesting that both primitive cell fractions and committed lymphoid blasts with immature stem cell-like properties contain leukemia-initiating cells. Nevertheless, the biology of the early progenitors that initiate the lymphoid program remains elusive. The aim of the present study was to investigate the ability of lymphoid progenitors from B-cell precursor ALL BM to proliferate and undergo multilineage differentiation. By phenotype analyses, in vitro proliferation assays, and controlled culture systems, the lymphoid differentiation potentials were evaluated in BM primitive populations from B-cell precursor ALL pediatric patients. When compared to their normal counterparts, functional stem and progenitor cell contents were substantially reduced in ALL BM. Moreover, neither B nor NK or dendritic lymphoid-cell populations developed recurrently from highly purified ALL-lymphoid progenitors, and their proliferation and cell cycle status revealed limited proliferative capacity. Interestingly, a number of quiescence-associated transcription factors were elevated, including the transcriptional repressor Gfi-1, which was highly expressed in primitive CD34+ cells. Together, our findings reveal major functional defects in the primitive hematopoietic component of ALL BM. A possible contribution of high levels of Gfi-1 expression in the regulation of the stem/progenitor cell biology is suggested.
Collapse
|
27
|
Du P, Tang F, Qiu Y, Dong F. GFI1 is repressed by p53 and inhibits DNA damage-induced apoptosis. PLoS One 2013; 8:e73542. [PMID: 24023884 PMCID: PMC3762790 DOI: 10.1371/journal.pone.0073542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/20/2013] [Indexed: 12/12/2022] Open
Abstract
GFI1 is a transcriptional repressor that plays a critical role in hematopoiesis and has also been implicated in lymphomagenesis. It is still poorly understood how GFI1 expression is regulated in the hematopoietic system. We show here that GFI1 transcription was repressed by the tumor suppressor p53 in hematopoietic cells. Knockdown of p53 resulted in increased GFI1 expression and abolished DNA damage-induced GFI1 downregulation. In contrast, GFI1 expression was reduced and its downregulation in response to DNA damage was rescued upon restoration of p53 function in p53-deficient cells. In luciferase reporter assays, wild type p53, but not a DNA binding-defective p53 mutant, repressed the GFI1 promoter. Chromatin immunoprecipitation (ChIP) assays demonstrated that p53 bound to the proximal region of the GFI1 promoter. Detailed mapping of the GFI1 promoter indicated that GFI1 core promoter region spanning from -33 to +6 bp is sufficient for p53-mediated repression. This core promoter region contains a putative p53 repressive response element, mutation of which abolished p53 binding to and repression of GFI1 promoter. Significantly, apoptosis induced by DNA damage was inhibited upon Gfi1 overexpression, but augmented following GFI1 knockdown. Our data establish for the first time that GFI1 is repressed by p53 and add to our understanding of the roles of GFI1 in normal hematopoiesis and lymphomagenesis.
Collapse
Affiliation(s)
- Pei Du
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Fangqiang Tang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Yaling Qiu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Harb JG, Neviani P, Chyla BJ, Ellis JJ, Ferenchak GJ, Oaks JJ, Walker CJ, Hokland P, Roy DC, Caligiuri MA, Marcucci G, Huettner CS, Perrotti D. Bcl-xL anti-apoptotic network is dispensable for development and maintenance of CML but is required for disease progression where it represents a new therapeutic target. Leukemia 2013; 27:1996-2005. [PMID: 23670294 DOI: 10.1038/leu.2013.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/16/2013] [Accepted: 05/01/2013] [Indexed: 12/30/2022]
Abstract
The dismal outcome of blast crisis chronic myelogenous leukemia (CML-BC) patients underscores the need for a better understanding of the mechanisms responsible for the development of drug resistance. Altered expression of the anti-apoptoticBcl-xL has been correlated with BCR-ABL leukemogenesis; however, its involvement in the pathogenesis and evolution of CML has not been formally demonstrated yet. Thus, we generated an inducible mouse model in which simultaneous expression of p210-BCR-ABL1 and deletion of bcl-x occurs within hematopoietic stem and progenitor cells. Absence of Bcl-xL did not affect development of the chronic phase-like myeloproliferative disease, but none of the deficient mice progressed to an advanced phenotype, suggesting the importance of Bcl-xL in survival of progressing early progenitor cells. Indeed, pharmacological antagonism of Bcl-xL, with ABT-263, combined with PP242-induced activation of BAD markedly augmented apoptosis of CML-BC cell lines and primary CD34(+) progenitors but not those from healthy donors, regardless of drug resistance induced by bone marrow stromal cell-generated signals. Moreover, studies in which BAD or Bcl-xL expression was molecularly altered strongly support their involvement in ABT-263/PP242-induced apoptosis of CML-BC progenitors. Thus, suppression of the antiapoptotic potential of Bcl-xL together with BAD activation represents an effective pharmacological approach for patients undergoing blastic transformation.
Collapse
Affiliation(s)
- J G Harb
- 1] Human Cancer Genetics Program, Department Molecular Virology Immunology and Medical Genetics, Columbus, OH, USA [2] Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Low GFI1 expression in white blood cells of CP-CML patients at diagnosis is strongly associated with subsequent blastic transformation. Leukemia 2013; 27:1427-30. [PMID: 23411466 DOI: 10.1038/leu.2013.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Hughes T, White D. Which TKI? An embarrassment of riches for chronic myeloid leukemia patients. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:168-175. [PMID: 24319178 DOI: 10.1182/asheducation-2013.1.168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With the approval in many countries of nilotinib and dasatinib for frontline therapy in chronic myeloid leukemia, clinicians now have to make a difficult choice. Because none of the 3 available tyrosine kinase inhibitors (TKIs) have shown a clear survival advantage, they all represent reasonable choices. However, in individual patients, the case may be stronger for a particular TKI. In the younger patient, in whom the prospect of eventually achieving treatment-free remission is likely to be of great importance, dasatinib or nilotinib may be preferred, although their advantage over imatinib in this setting remains to be proven. In patients with a higher risk of transformation (which is currently based on prognostic scoring), the more potent TKIs may be preferred because they appear to be more effective at reducing the risk of transformation to BC. However, imatinib still represents an excellent choice for many chronic myeloid leukemia patients. All of these considerations need to be made in the context of the patient's comorbidities, which may lead to one or more TKIs being ruled out of contention. Whatever first choice of TKI is made, treatment failure or intolerance must be recognized early because a prompt switch to another TKI likely provides the best chance of achieving optimal response.
Collapse
Affiliation(s)
- Timothy Hughes
- 1South Australian Health and Medical Research Institute, SA Pathology, and University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
31
|
Manzotti G, Mariani SA, Corradini F, Bussolari R, Cesi V, Vergalli J, Ferrari-Amorotti G, Fragliasso V, Soliera AR, Cattelani S, Raschellà G, Holyoake TL, Calabretta B. Expression of p89(c-Mybex9b), an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells. Blood Cancer J 2012; 2:e71. [PMID: 22829973 PMCID: PMC3366069 DOI: 10.1038/bcj.2012.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023] Open
Abstract
The c-Myb gene encodes the p75c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is pc-Mybex9b, which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of pc-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of pc-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75c-Myb, pc-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of pc-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of pc-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34+ cells, without affecting the levels of p75c-Myb. Together, these studies indicate that expression of the low-abundance pc-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells.
Collapse
|