1
|
Ma Z, Li Q, Wang W, Deng Z. Transcription factor E2F4 facilitates SUMOylation to promote HCC progression through interaction with LIN9. Int J Oncol 2024; 65:98. [PMID: 39239750 PMCID: PMC11387118 DOI: 10.3892/ijo.2024.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024] Open
Abstract
SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin‑9 DREAM multi‑vulva class B core complex component (LIN9) was explored by co‑immunoprecipitation, immunofluorescence co‑localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qilan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
H-Alcántara A, Kourani O, Marcos-Jiménez A, Martínez-Núñez P, Herranz-Martín E, Fuentes P, Toribio ML, Muñoz-Calleja C, Iglesias T, Campanero MR. Glutathione overproduction mediates lymphoma initiating cells survival and has a sex-dependent effect on lymphomagenesis. Cell Death Dis 2024; 15:534. [PMID: 39068166 PMCID: PMC11283572 DOI: 10.1038/s41419-024-06923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Lymphoid tumor patients often exhibit resistance to standard therapies or experience relapse post-remission. Relapse is driven by Tumor Initiating Cells (TICs), a subset of tumor cells capable of regrowing the tumor and highly resistant to therapy. Growing cells in 3D gels is a method to discern tumorigenic cells because it strongly correlates with tumorigenicity. The finding that TICs, rather than differentiated tumor cells, grow in 3D gels offers a unique opportunity to unveil TIC-specific signaling pathways and therapeutic targets common to various cancer types. Here, we show that culturing lymphoid cells in 3D gels triggers reactive oxygen species (ROS) production, leading to non-tumor lymphoid cell death while enabling the survival and proliferation of a subset of lymphoma/leukemia cells, TICs or TIC-like cells. Treatment with the antioxidant N-acetylcysteine inhibits this lethality and promotes the growth of primary non-tumor lymphoid cells in 3D gels. A subset of lymphoma cells, characterized by an increased abundance of the antioxidant glutathione, escape ROS-induced lethality, a response not seen in non-tumor cells. Reducing glutathione production in lymphoma cells, either through pharmacological inhibition of glutamate cysteine ligase (GCL), the enzyme catalyzing the rate-limiting step in glutathione biosynthesis, or via knockdown of GCLC, the GCL catalytic subunit, sharply decreased cell growth in 3D gels and xenografts. Tumor cells from B-cell lymphoma/leukemia patients and λ-MYC mice, a B-cell lymphoma mouse model, overproduce glutathione. Importantly, pharmacological GCL inhibition hindered lymphoma growth in female λ-MYC mice, suggesting that this treatment holds promise as a therapeutic strategy for female lymphoma/leukemia patients.
Collapse
Affiliation(s)
- Alberto H-Alcántara
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Omar Kourani
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Patricia Martínez-Núñez
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Estela Herranz-Martín
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Patricia Fuentes
- Immune System Development and Function Unit, CBM, CSIC-UAM, Madrid, Spain
| | - María L Toribio
- Immune System Development and Function Unit, CBM, CSIC-UAM, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC) Madrid, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Teresa Iglesias
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Madrid, Madrid, Spain
| | - Miguel R Campanero
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
3
|
Cao B, Guo X, Huang L, Wang B, Wang W, Han D, Zhang W, Zhong K. Methylation silencing CDH23 is a poor prognostic marker in diffuse large B-cell lymphoma. Aging (Albany NY) 2021; 13:17768-17788. [PMID: 34252883 PMCID: PMC8312441 DOI: 10.18632/aging.203268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Cadherin-23(CDH23) mediates homotypic and heterotypic cell-cell adhesions in cancer cells. However, the epigenetic regulation, the biological functions, the mechanisms and the prognostic value of CDH23 in diffuse large B-cell lymphoma (DLBCL) are still unclear. The Gene Expression Profiling Interactive Analysis (GEPIA) and the Gene Expression Omnibus (GEO) database were employed to analyze the CDH23 expression level in DLBCL. The correlation of CDH23 expression and methylation was analyzed by LinkedOmics database. The prognostic value was analyzed via GEPIA. Correlated genes, target kinase, target miRNA, target transcription factor and biological functions were identified by LinkedOmics and GeneMANIA database. The relationship between CDH23 and the immune cell infiltration was explored by the Tumor Immune Estimation Resource (TIMER). The expression of CDH23 was reduced by DNA methylation significantly in DLBCL tissue. Reduction of CDH23 represented poor outcome of DLBCL patients. Functional enrichment analysis showed that CDH23 mainly enriched in cancer cell growth, cell metastasis, cell adhesion, cell cycle, drug catabolic process, leukocyte mediated immunity and DNA repair by some cancer related kinases, miRNAs and transcription factors. These results indicated that methylated reduction of CDH23 represented poor outcome of DLBCL. CDH23 is associated with essential biological functions and key molecules in DLBCL. CDH23 may play crucial roles in DLBCL tumorigenesis. Our results lay a foundation for further investigation of the role of CDH23 in DLBCL tumorigenesis.
Collapse
Affiliation(s)
- Baoping Cao
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Xiaochuan Guo
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Lefu Huang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Bin Wang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Weixia Wang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Dong Han
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Weijing Zhang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Kaili Zhong
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| |
Collapse
|
4
|
Zheng Q, Fu Q, Xu J, Gu X, Zhou H, Zhi C. Transcription factor E2F4 is an indicator of poor prognosis and is related to immune infiltration in hepatocellular carcinoma. J Cancer 2021; 12:1792-1803. [PMID: 33613768 PMCID: PMC7890309 DOI: 10.7150/jca.51616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Recent studies have shown that the transcription factor E2F4 is involved in the progression of various tumors, but its expression and influence on immune cell infiltration and biological functions are largely unknown in hepatocellular carcinoma (HCC). Methods: The Cancer Genome Atlas (TCGA) database, the Tumor Immune Estimation Resource (TIMER) and related online tools as well as a tissue microarray (TMA) were used for analyses in our study. Results: E2F4 expression was elevated in HCC tumor tissue compared with adjacent normal tissue at both the mRNA and protein levels. Overexpression of E2F4 was markedly related to a poor prognosis in HCC patients. In addition, positively and negatively correlated significant genes of E2F4 were identified in HCC. Pathway enrichment analyses revealed that the top 100 positively correlated significant genes of E2F4 were closely related to nuclear splicing and degradation-related pathways. Furthermore, nine hub genes correlated with E2F4 expression were validated based on a protein-protein interaction (PPI) network. It was also demonstrated that E2F4 expression was negatively correlated to immune purity and positively correlated to immune cell infiltration. Conclusion: E2F4 could serve as a novel biomarker for HCC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qiang Fu
- School of Continuing Education, Zhejiang University, Hangzhou 310003, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haibo Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chen Zhi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
5
|
Gong J, Fan H, Deng J, Zhang Q. LncRNA HAND2-AS1 represses cervical cancer progression by interaction with transcription factor E2F4 at the promoter of C16orf74. J Cell Mol Med 2020; 24:6015-6027. [PMID: 32314545 PMCID: PMC7294116 DOI: 10.1111/jcmm.15117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022] Open
Abstract
Cervical cancer is one of the major malignancies, the pathophysiology and progression of which remain to be scarcely understood. Long non-coding RNAs (lncRNAs) have been previously implicated in the progression of cervical cancer. Here, the purpose of this study was to identify whether lncRNA heart- and neural crest derivative-expressed 2-antisense RNA 1 (HAND2-AS1) affect the development of cervical cancer through regulation of chromosome 16 open reading frame 74 (C16orf74) by mediating a transcription factor E2F4. RT-qPCR was performed to determine the expression of HAND2-AS1 in cervical cancer cells. Then, cervical cancer cells were treated with HAND2-AS1 or si-E2F4 RNA, or C16orf74, after which the proliferation, colony formation, migration and invasion were detected. Moreover, the binding between HAND2-AS1 and E2F4 or between E2F4 and C16orf74 was explored. Finally, the tumorigenesis of cervical cancer cells was measured in nude mice with altered HAND2-AS1/E2F4/C16orf74 expression. HAND2-AS1 exhibited poor expression in cervical cancer, and HAND2-AS1 overexpression suppressed the proliferation, colony formation, migration and invasion of cervical cancer cells. In addition, HAND2-AS1 was found to recruit transcription factor E2F4 to C16orf74 promoter region and down-regulate C16orf74 expression. Lastly, HAND2-AS1/E2F4/C16orf74 modulated the tumorigenesis of cervical cancer in nude mice. In conclusion, this study provided evidence on the inhibitory effect of HAND2-AS1 on the development of cervical cancer through the suppression of C16orf74 expression by recruiting transcription factor E2F4. This study highlights the potential of lncRNA HAND2-AS1 as a target in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Junling Gong
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, China
| | - Haiying Fan
- Hemodialysis Room, Linyi People's Hospital, Linyi, China
| | - Jing Deng
- Department of Internal Medicine, Miaoshan Health Center, Linyi, China
| | - Qiumei Zhang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
6
|
Tsagiopoulou M, Papakonstantinou N, Moysiadis T, Mansouri L, Ljungström V, Duran-Ferrer M, Malousi A, Queirós AC, Plevova K, Bhoi S, Kollia P, Oscier D, Anagnostopoulos A, Trentin L, Ritgen M, Pospisilova S, Stavroyianni N, Ghia P, Martin-Subero JI, Pott C, Rosenquist R, Stamatopoulos K. DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clin Epigenetics 2019; 11:177. [PMID: 31791414 PMCID: PMC6889736 DOI: 10.1186/s13148-019-0783-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background In order to gain insight into the contribution of DNA methylation to disease progression of chronic lymphocytic leukemia (CLL), using 450K Illumina arrays, we determined the DNA methylation profiles in paired pre-treatment/relapse samples from 34 CLL patients treated with chemoimmunotherapy, mostly (n = 31) with the fludarabine-cyclophosphamide-rituximab (FCR) regimen. Results The extent of identified changes in CLL cells versus memory B cells from healthy donors was termed “epigenetic burden” (EB) whereas the number of changes between the pre-treatment versus the relapse sample was termed “relapse changes” (RC). Significant (p < 0.05) associations were identified between (i) high EB and short time-to-first-treatment (TTFT); and, (ii) few RCs and short time-to-relapse. Both the EB and the RC clustered in specific genomic regions and chromatin states, including regulatory regions containing binding sites of transcription factors implicated in B cell and CLL biology. Conclusions Overall, we show that DNA methylation in CLL follows different dynamics in response to chemoimmunotherapy. These epigenetic alterations were linked with specific clinical and biological features.
Collapse
Affiliation(s)
- Maria Tsagiopoulou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 6th km Charilaou-Thermi Rd, 57001, Thermi, Thessaloniki, GR, Greece.,Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 6th km Charilaou-Thermi Rd, 57001, Thermi, Thessaloniki, GR, Greece
| | - Theodoros Moysiadis
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 6th km Charilaou-Thermi Rd, 57001, Thermi, Thessaloniki, GR, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ana C Queirós
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| | - Karla Plevova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Medical Faculty of Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sujata Bhoi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Panagoula Kollia
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | | | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Matthias Ritgen
- Second Medical Department, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sarka Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Medical Faculty of Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Paolo Ghia
- Division of Experimental Oncology and Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Christiane Pott
- Second Medical Department, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 6th km Charilaou-Thermi Rd, 57001, Thermi, Thessaloniki, GR, Greece. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Martín-Cortázar C, Chiodo Y, Jiménez RP, Bernabé M, Cayuela ML, Iglesias T, Campanero MR. CDCA7 finely tunes cytoskeleton dynamics to promote lymphoma migration and invasion. Haematologica 2019; 105:730-740. [PMID: 31221787 PMCID: PMC7049348 DOI: 10.3324/haematol.2018.215459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
Metastases, the major cause of death from cancer, require cells' acquisition of the ability to migrate and involve multiple steps, including local tumor cell invasion and basement membrane penetration. Certain lymphoid tumors are highly metastatic, but the mechanisms of invasion by lymphoma cells are poorly understood. We recently showed that CDCA7, a protein induced by MYC, is overexpressed in lymphoid tumors and that its knockdown decreases lymphoid tumor growth without inhibiting the proliferation of normal cells. Here we show that CDCA7 is critical for invasion and migration of lymphoma cells. Indeed, CDCA7 knockdown in lymphoma cells limited tumor cell invasion in matrigel-coated transwell plates and tumor invasion of neighboring tissues in a mouse xenograft model and in a zebrafish model of cell invasion. CDCA7 silencing markedly inhibited lymphoma cell migration on fibronectin without modifying cell adhesion to this protein. Instead, CDCA7 knockdown markedly disrupted the precise dynamic reorganization of actomyosin and tubulin cytoskeletons required for efficient migration. In particular, CDCA7 silencing impaired tubulin and actomyosin cytoskeleton polarization, increased filamentous actin formation, and induced myosin activation. Of note, inhibitors of actin polymerization, myosin II, or ROCK reestablished the migration capacity of CDCA7-silenced lymphoma cells. Given the critical role of CDCA7 in lymphoma-genesis and invasion, therapies aimed at inhibiting its expression or activity might provide significant control of lymphoma growth, invasion, and metastatic dissemination.
Collapse
Affiliation(s)
- Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid
| | - Raul P Jiménez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid
| | - Manuel Bernabé
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia
| | - María Luisa Cayuela
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid .,Centro de Investigaciones Biomédicas en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
8
|
Jiménez-P R, Martín-Cortázar C, Kourani O, Chiodo Y, Cordoba R, Domínguez-Franjo MP, Redondo JM, Iglesias T, Campanero MR. CDCA7 is a critical mediator of lymphomagenesis that selectively regulates anchorage-independent growth. Haematologica 2018; 103:1669-1678. [PMID: 29880607 PMCID: PMC6165795 DOI: 10.3324/haematol.2018.188961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tumor formation involves the acquisition of numerous capacities along the progression from a normal cell into a malignant cell, including limitless proliferation (immortalization) and anchorage-independent growth, a capacity that correlates extremely well with tumorigenesis. Great efforts have been made to uncover genes involved in tumor formation, but most genes identified participate in processes related to cell proliferation. Accordingly, therapies targeting these genes also affect the proliferation of normal cells. To identify potential targets for therapeutic intervention more specific to tumor cells, we looked for genes implicated in the acquisition of anchorage-independent growth and in vivo tumorigenesis capacity. A transcriptomic analysis identified CDCA7 as a candidate gene. Indeed, CDCA7 protein was upregulated in Burkitt's lymphoma cell lines and human tumor biopsy specimens relative to control cell lines and tissues, respectively. CDCA7 levels were also markedly elevated in numerous T and B-lymphoid tumor cell lines. While CDCA7 was not required for anchorage-dependent growth of normal fibroblasts or non-malignant lymphocytes, it was essential but not sufficient for anchorage-independent growth of lymphoid tumor cells and for lymphomagenesis. These data suggest that therapies aimed at inhibiting CDCA7 expression or function might significantly decrease the growth of lymphoid tumors.
Collapse
Affiliation(s)
- Raúl Jiménez-P
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Raul Cordoba
- Department of Hematology, University Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | - Juan Miguel Redondo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, (CNIC), Madrid, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain .,CIBERCV, Spain
| |
Collapse
|
9
|
Álvaro-Blanco J, Urso K, Chiodo Y, Martín-Cortázar C, Kourani O, Arco PGD, Rodríguez-Martínez M, Calonge E, Alcamí J, Redondo JM, Iglesias T, Campanero MR. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res 2017; 45:9960-9975. [PMID: 28973440 PMCID: PMC5622404 DOI: 10.1093/nar/gkx641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Collapse
Affiliation(s)
- Josué Álvaro-Blanco
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Katia Urso
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Pablo Gómez-Del Arco
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biología Molecular, Cantoblanco, Madrid 28049, Spain.,CIBERCV, Spain
| | - María Rodríguez-Martínez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Esther Calonge
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - Juan Miguel Redondo
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERCV, Spain
| |
Collapse
|
10
|
Wu Y, Yu DD, Hu Y, Yan D, Chen X, Cao HX, Yu SR, Wang Z, Feng JF. Genome-wide profiling of long non-coding RNA expression patterns in the EGFR-TKI resistance of lung adenocarcinoma by microarray. Oncol Rep 2016; 35:3371-86. [PMID: 27108960 DOI: 10.3892/or.2016.4758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) make lung adenocarcinoma cells sensitive to EGFR tyrosine kinase inhibitors (TKIs). Long-term cancer therapy may cause the occurrence of acquired resistance to EGFR TKIs. Long non-coding RNAs (lncRNAs) play important roles in tumor formation, tumor metastasis and the development of EGFR-TKI resistance in lung cancer. To gain insight into the molecular mechanisms of EGFR-TKI resistance, we generated an EGFR-TKI-resistant HCC827-8-1 cell line and analyzed expression patterns by lncRNA microarray and compared it with its parental HCC827 cell line. A total of 1,476 lncRNA transcripts and 1,026 mRNA transcripts were dysregulated in the HCC827‑8-1 cells. The expression levels of 7 chosen lncRNAs were validated by real-time quantitative PCR. As indicated by functional analysis, several groups of lncRNAs may be involved in the bio-pathways associated with EGFR-TKI resistance through their cis- and/or trans‑regulation of protein-coding genes. Thus, lncRNAs may be used as novel candidate biomarkers and potential targets in EGFR-TKI therapy in the future.
Collapse
Affiliation(s)
- Ying Wu
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan-Dan Yu
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Hu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Dali Yan
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Xiu Chen
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Hai-Xia Cao
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shao-Rong Yu
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhuo Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ji-Feng Feng
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Cheng C, Lou S, Andrews EH, Ung MH, Varn FS. Integrative Genomic Analyses Yield Cell-Cycle Regulatory Programs with Prognostic Value. Mol Cancer Res 2016; 14:332-43. [PMID: 26856934 DOI: 10.1158/1541-7786.mcr-15-0368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Liposarcoma is the second most common form of sarcoma, which has been categorized into four molecular subtypes, which are associated with differential prognosis of patients. However, the transcriptional regulatory programs associated with distinct histologic and molecular subtypes of liposarcoma have not been investigated. This study uses integrative analyses to systematically define the transcriptional regulatory programs associated with liposarcoma. Likewise, computational methods are used to identify regulatory programs associated with different liposarcoma subtypes, as well as programs that are predictive of prognosis. Further analysis of curated gene sets was used to identify prognostic gene signatures. The integration of data from a variety of sources, including gene expression profiles, transcription factor-binding data from ChIP-Seq experiments, curated gene sets, and clinical information of patients, indicated discrete regulatory programs (e.g., controlled by E2F1 and E2F4), with significantly different regulatory activity in one or multiple subtypes of liposarcoma with respect to normal adipose tissue. These programs were also shown to be prognostic, wherein liposarcoma patients with higher E2F4 or E2F1 activity associated with unfavorable prognosis. A total of 259 gene sets were significantly associated with patient survival in liposarcoma, among which > 50% are involved in cell cycle and proliferation. IMPLICATIONS These integrative analyses provide a general framework that can be applied to investigate the mechanism and predict prognosis of different cancer types.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| | - Shaoke Lou
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Erik H Andrews
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Matthew H Ung
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Frederick S Varn
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
12
|
Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6:6921. [PMID: 25891015 PMCID: PMC4411286 DOI: 10.1038/ncomms7921] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here we characterize an association between disease progression and DNA methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs, we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during relapse. We identify differentially methylated regulatory elements and determine a relapse-associated methylation signature converging on key pathways such as transforming growth factor-β (TGF-β) receptor activity. We also observe decreased intra-tumour methylation heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may support or drive the relapse phenotype and can be used to predict DLBCL relapse. The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here the authors characterize epigenetic evolution in aggressive B-cell lymphoma and find that epigenomic heterogeneity may not only support and drive the relapse phenotype but also be used to predict lymphoma relapse.
Collapse
|
13
|
Zamani-Ahmadmahmudi M, Najafi A, Nassiri SM. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes. J Comp Pathol 2015; 152:119-30. [PMID: 25678421 DOI: 10.1016/j.jcpa.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/21/2014] [Accepted: 11/29/2014] [Indexed: 12/17/2022]
Abstract
Lymphoma is one of the most common malignancies in dogs. Canine lymphoma is similar to human non-Hodgkin's lymphoma (NHL) with shared clinical presentation and histopathological features. This study reports the construction of a comprehensive gene regulatory network (GRN) for canine diffuse large B-cell lymphoma (DLBCL), the most common type of canine lymphoma, and performs analysis for detection of major functional modules and hub genes (the most important genes in a GRN). The canine DLBCL GRN was reconstructed from gene expression data (NCBI GEO dataset: GSE30881) using the STRING and MiMI interaction databases. Reconstructed GRNs were then assessed, using various bioinformatics programmes, in order to analyze network topology and identify major pathways and hub genes. The resultant network from both interaction databases had a logically scale-free pattern. Gene ontology (GO) analysis revealed cell activation, cell cycle phase, immune effector process, immune system development, immune system process, integrin-mediated signalling pathway, intracellular protein kinase cascade, intracellular signal transduction, leucocyte activation and differentiation, lymphocyte activation and differentiation as major GO terms in the biological processes of the networks. Moreover, bioinformatics analysis showed E2F1, E2F4, PTEN, CDKN1A, PCNA, DKC1, MNAT1, NDUFB4, ATP5J, PRKDC, BRCA1, MYCN, RFC4 and POLA1 as the most important hub genes. The phosphatidyl inositol signalling system, P53 signalling pathway, Rac CycD pathway, G1/S checkpoint, chemokine signalling pathway and telomere maintenance were the main signalling pathways in which the protein products of the hub genes are involved.
Collapse
Affiliation(s)
- M Zamani-Ahmadmahmudi
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - A Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S M Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Perez-Chacon G, de los Rios C, Zapata JM. Indole-3-carbinol induces cMYC and IAP-family downmodulation and promotes apoptosis of Epstein–Barr virus (EBV)-positive but not of EBV-negative Burkitt's lymphoma cell lines. Pharmacol Res 2014; 89:46-56. [DOI: 10.1016/j.phrs.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
|
15
|
Zhu M, Liu CC, Cheng C. REACTIN: regulatory activity inference of transcription factors underlying human diseases with application to breast cancer. BMC Genomics 2013; 14:504. [PMID: 23885756 PMCID: PMC3750236 DOI: 10.1186/1471-2164-14-504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/22/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genetic alterations of transcription factors (TFs) have been implicated in the tumorigenesis of cancers. In many cancers, alteration of TFs results in aberrant activity of them without changing their gene expression level. Gene expression data from microarray or RNA-seq experiments can capture the expression change of genes, however, it is still challenge to reveal the activity change of TFs. RESULTS Here we propose a method, called REACTIN (REgulatory ACTivity INference), which integrates TF binding data with gene expression data to identify TFs with significantly differential activity between disease and normal samples. REACTIN successfully detect differential activity of estrogen receptor (ER) between ER+ and ER- samples in 10 breast cancer datasets. When applied to compare tumor and normal breast samples, it reveals TFs that are critical for carcinogenesis of breast cancer. Moreover, Reaction can be utilized to identify transcriptional programs that are predictive to patient survival time of breast cancer patients. CONCLUSIONS REACTIN provides a useful tool to investigate regulatory programs underlying a biological process providing the related case and control gene expression data. Considering the enormous amount of cancer gene expression data and the increasingly accumulating ChIP-seq data, we expect wide application of REACTIN for revealing the regulatory mechanisms of various diseases.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
- Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA
| |
Collapse
|