1
|
Zhu AZ, Ma Z, Wolff EV, Lin Z, Gao ZJ, Li X, Du W. HES1 is required for mouse fetal hematopoiesis. Stem Cell Res Ther 2024; 15:235. [PMID: 39075526 PMCID: PMC11287931 DOI: 10.1186/s13287-024-03836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoiesis in mammal is a complex and highly regulated process in which hematopoietic stem cells (HSCs) give rise to all types of differentiated blood cells. Previous studies have shown that hairy and enhancer of split (HES) repressors are essential regulators of adult HSC development downstream of Notch signaling. METHODS In this study, we investigated the role of HES1, a member of HES family, in fetal hematopoiesis using an embryonic hematopoietic specific Hes1 conditional knockout mouse model by using phenotypic flow cytometry, histopathology analysis, and functional in vitro colony forming unit (CFU) assay and in vivo bone marrow transplant (BMT) assay. RESULTS We found that loss of Hes1 in early embryonic stage leads to smaller embryos and fetal livers, decreases hematopoietic stem progenitor cell (HSPC) pool, results in defective multi-lineage differentiation. Functionally, fetal hematopoietic cells deficient for Hes1 exhibit reduced in vitro progenitor activity and compromised in vivo repopulation capacity in the transplanted recipients. Further analysis shows that fetal hematopoiesis defects in Hes1fl/flFlt3Cre embryos are resulted from decreased proliferation and elevated apoptosis, associated with de-repressed HES1 targets, p27 and PTEN in Hes1-KO fetal HSPCs. Finally, pharmacological inhibition of p27 or PTEN improves fetal HSPCs function both in vitro and in vivo. CONCLUSION Together, our findings reveal a previously unappreciated role for HES1 in regulating fetal hematopoiesis, and provide new insight into the differences between fetal and adult HSC maintenance.
Collapse
Affiliation(s)
- Anthony Z Zhu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zhilin Ma
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Emily V Wolff
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zichen Lin
- Master of Science in Medical Science, Boston University School of Medicine Graduate Master Program, Boston, MA, USA
| | - Zhenxia J Gao
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Xue Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Sinha S, Dhankani P, Nahiyera M, Singh KB, Singh D, Mugale MN, Sharma S, Kumaravelu J, Dikshit M, Kumar S. iNOS regulates hematopoietic stem and progenitor cells via mitochondrial signaling and is critical for bone marrow regeneration. Free Radic Biol Med 2024; 219:184-194. [PMID: 38636716 DOI: 10.1016/j.freeradbiomed.2024.04.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.
Collapse
Affiliation(s)
- Supriya Sinha
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Priyanka Dhankani
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Milind Nahiyera
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Krishna Bhan Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Divya Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Madhav Nilakanth Mugale
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
3
|
Pissarra MF, Torello CO, Gomes RGB, Shiraishi RN, Santos I, Vieira Ferro KP, Lopes MR, Bergamo Favaro PM, Olalla Saad ST, Lazarini M. Arhgap21 Deficiency Results in Increase of Osteoblastic Lineage Cells in the Murine Bone Marrow Microenvironment. Front Cell Dev Biol 2021; 9:718560. [PMID: 34917608 PMCID: PMC8670086 DOI: 10.3389/fcell.2021.718560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
ARHGAP21 is a member of the RhoGAP family of proteins involved in cell growth, differentiation, and adhesion. We have previously shown that the heterozygous Arhgap21 knockout mouse model (Arhgap21+/-) presents several alterations in the hematopoietic compartment, including increased frequency of hematopoietic stem and progenitor cells (HSPC) with impaired adhesion in vitro, increased mobilization to peripheral blood, and decreased engraftment after bone marrow transplantation. Although these HSPC functions strongly depend on their interactions with the components of the bone marrow (BM) niche, the role of ARHGAP21 in the marrow microenvironment has not yet been explored. In this study, we investigated the composition and function of the BM microenvironment in Arhgap21+/- mice. The BM of Arhgap21+/- mice presented a significant increase in the frequency of phenotypic osteoblastic lineage cells, with no differences in the frequencies of multipotent stromal cells or endothelial cells when compared to the BM of wild type mice. Arhgap21+/- BM cells had increased capacity of generating osteogenic colony-forming units (CFU-OB) in vitro and higher levels of osteocalcin were detected in the Arhgap21+/- BM supernatant. Increased expression of Col1a1, Ocn and decreased expression of Trap1 were observed after osteogenic differentiation of Arhgap21+/- BM cells. In addition, Arhgap21+/- mice recipients of normal BM cells showed decreased leucocyte numbers during transplantation recovery. Our data suggest participation of ARHGAP21 in the balanced composition of the BM microenvironment through the regulation of osteogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Irene Santos
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil
| | | | | | - Patricia Maria Bergamo Favaro
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil.,Institute of Environmental, Chemical and Pharmaceutical Sciences-Federal University of São Paulo, São Paulo, Brazil
| | | | - Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil.,Institute of Environmental, Chemical and Pharmaceutical Sciences-Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
5
|
p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat Commun 2017; 8:14382. [PMID: 28176763 PMCID: PMC5309857 DOI: 10.1038/ncomms14382] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The mechanisms regulating hematopoietic stem and progenitor cell (HSPC) fate choices remain ill-defined. Here, we show that a signalling network of p190-B RhoGAP-ROS-TGF-β-p38MAPK balances HSPC self-renewal and differentiation. Upon transplantation, HSPCs express high amounts of bioactive TGF-β1 protein, which is associated with high levels of p38MAPK activity and loss of HSC self-renewal in vivo. Elevated levels of bioactive TGF-β1 are associated with asymmetric fate choice in vitro in single HSPCs via p38MAPK activity and this is correlated with the asymmetric distribution of activated p38MAPK. In contrast, loss of p190-B, a RhoGTPase inhibitor, normalizes TGF-β levels and p38MAPK activity in HSPCs and is correlated with increased HSC self-renewal in vivo. Loss of p190-B also promotes symmetric retention of multi-lineage capacity in single HSPC myeloid cell cultures, further suggesting a link between p190-B-RhoGAP and non-canonical TGF-β signalling in HSPC differentiation. Thus, intracellular cytokine signalling may serve as ‘fate determinants' used by HSPCs to modulate their activity. The success of hematopoietic stem cell (HSC) transplantation relies on understanding what regulates the fate decision to self-renew. Here, the authors show using both in vitro assays and in vivo transplantation that loss of the RhoGAP p190-B enhances self-renewal by inhibiting TGFβ/p38 signalling.
Collapse
|
6
|
Chen R, Wang SJ, Zhang Y, Hou R, Jiang JL, Cui HY. CD147 promotes cell motility via upregulation of p190-B RhoGAP in hepatocellular carcinoma. Cancer Cell Int 2016; 16:69. [PMID: 27601938 PMCID: PMC5012051 DOI: 10.1186/s12935-016-0344-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The acquisition of inappropriate migratory feature is crucial for tumor metastasis. Rho-family GTPases including RhoA are molecular switches that play critical roles in regulating cell movement. We investigated the molecular mechanism underlying CD147 induced RhoA deactivation in hepatocellular carcinoma (HCC) cells. METHODS Wound-healing assay was performed to study the cell motility. Analysis of RhoA activation in living cells was conducted using RhoA biosensor. Changes in the expression of certain genes were determined by quantitative real-time PCR. The expression of proteins was evaluated by Western blot. Cytoskeleton reorganization and focal adhesion formation were observed by immunofluorescence staining. Further investigation on the correlation between CD147 and p190-B RhoGAP (p190-B) in HCC tissues was performed by immunological histological chemistry analysis. RESULTS CD147 promoted cell movement and suppressed RhoA activation. p190-B, a negative regulator of RhoA activity, was upregulated by CD147 at both mRNA and protein levels. This regulatory relationship was further confirmed by analyzing the expression pattern of CD147 and p190-B in human HCC tissues. Silencing of p190-B caused the increased formation of stress fiber and focal adhesion and blunted the impact of CD147 overexpression on cell movement, indicating that the regulatory effect of CD147 on cell movement is mediated, at least partially, by p190-B. CONCLUSIONS These findings indicated that p190-B, a negative regulator of RhoA, is positively regulated by CD147 and contributes to the regulation of cell movement in HCC. CD147 plays critical roles in the motility of cancer cells and may be therefore a valuable drug target for anti-cancer therapy.
Collapse
Affiliation(s)
- Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032 People's Republic of China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Shi-Jie Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032 People's Republic of China
| | - Yang Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032 People's Republic of China
| | - Rong Hou
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032 People's Republic of China
| | - Jian-Li Jiang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032 People's Republic of China
| | - Hong-Yong Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032 People's Republic of China
| |
Collapse
|
7
|
Song Y, Jiang J, Vermeren S, Tong W. ARAP3 functions in hematopoietic stem cells. PLoS One 2014; 9:e116107. [PMID: 25542002 PMCID: PMC4277471 DOI: 10.1371/journal.pone.0116107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
ARAP3 is a GTPase-activating protein (GAP) that inactivates Arf6 and RhoA small GTPases. ARAP3 deficiency in mice causes a sprouting angiogenic defect resulting in embryonic lethality by E11. Mice with an ARAP3 R302,303A mutation (Arap3KI/KI) that prevents activation by phosphoinositide-3-kinase (PI3K) have a similar angiogenic phenotype, although some animals survive to adulthood. Here, we report that hematopoietic stem cells (HSCs) from rare adult Arap3KI/KI bone marrow are compromised in their ability to reconstitute recipient mice and to self-renew. To elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in hematopoiesis, we conditionally deleted Arap3 in hematopoietic cells and in several cell types within the HSC niche. Excision of Arap3 in hematopoietic cells using Vav1-Cre does not alter the ability of ARAP3-deficient progenitor cells to proliferate and differentiate in vitro or ARAP3-deficient HSCs to provide multi-lineage reconstitution and to undergo self-renewal in vivo. Thus, our data suggest that ARAP3 does not play a cell-autonomous role in HSPCs. Deletion of Arap3 in osteoblasts and mesenchymal stromal cells using Prx1-Cre resulted in no discernable phenotypes in hematopoietic development or HSC homeostasis in adult mice. In contrast, deletion of Arap3 using vascular endothelial cadherin (VEC or Cdh5)-driven Cre resulted in embryonic lethality, however HSCs from surviving adult mice were largely normal. Reverse transplantations into VEC-driven Arap3 conditional knockout mice revealed no discernable difference in HSC frequencies or function in comparison to control mice. Taken together, our investigation suggests that despite a critical role for ARAP3 in embryonic vascular development, its loss in endothelial cells minimally impacts HSCs in adult bone marrow.
Collapse
Affiliation(s)
- Yiwen Song
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sonja Vermeren
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Wei Tong
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|