1
|
Mmakola K, Balmith M, Steel H, Said M, Potjo M, van der Mescht M, Hlatshwayo N, Meyer P, Tintinger G, Anderson R, Cholo M. Sodium, Potassium-Adenosine Triphosphatase as a Potential Target of the Anti-Tuberculosis Agents, Clofazimine and Bedaquiline. Int J Mol Sci 2024; 25:13022. [PMID: 39684733 DOI: 10.3390/ijms252313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K+) uptake by targeting the voltage-gated K+ (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs). However, the involvement of these antibiotics to regulate other K+ transporters of the CMs, as potential mechanisms of QT prolongation, has not been explored. This study determined the effects of CFZ and BDQ on sodium, potassium-adenosine triphosphatase (Na+,K+-ATPase) activity of CMs using rat cardiomyocytes (RCMs). These cells were treated with varying concentrations of CFZ and BDQ individually and in combination (1.25-5 mg/L). Thereafter, Na+,K+-ATPase activity was determined, followed by intracellular adenosine triphosphate (ATP) quantification and cellular viability determination. Furthermore, molecular docking of antibiotics with Na+,K+-ATPase was determined. Both antibiotics demonstrated dose-response inhibition of Na+,K+-ATPase activity of the RCMs. The greatest inhibition was demonstrated by combinations of CFZ and BDQ, followed by BDQ alone and, lastly, CFZ. Neither antibiotic, either individually or in combination, demonstrated cytotoxicity. Molecular docking revealed an interaction of both antibiotics with Na+,K+-ATPase, with BDQ showing higher protein-binding affinity than CFZ. The inhibitory effects of CFZ and BDQ, individually and in combination, on the activity of Na+,K+-ATPase pump of the RCMs highlight the existence of additional mechanisms of QT prolongation by these antibiotics.
Collapse
Affiliation(s)
- Khomotso Mmakola
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Marissa Balmith
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Helen Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Mohamed Said
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0001, South Africa
| | - Moliehi Potjo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0002, South Africa
| | - Mieke van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Nomsa Hlatshwayo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0002, South Africa
| | - Pieter Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0002, South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Clinical and Translational Research Unit of the Rosebank, Oncology Centre, Johannesburg 2196, South Africa
| | - Moloko Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Basic and Translational Research Unit, Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Gubič Š, Montalbano A, Sala C, Becchetti A, Hendrickx LA, Van Theemsche KM, Pinheiro-Junior EL, Altadonna GC, Peigneur S, Ilaš J, Labro AJ, Pardo LA, Tytgat J, Tomašič T, Arcangeli A, Peterlin Mašič L. Immunosuppressive effects of new thiophene-based K V1.3 inhibitors. Eur J Med Chem 2023; 259:115561. [PMID: 37454520 DOI: 10.1016/j.ejmech.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.
Collapse
Affiliation(s)
- Špela Gubič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alberto Montalbano
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy
| | - Cesare Sala
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy
| | - Andrea Becchetti
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, I-20126, Milano, Italy
| | - Louise Antonia Hendrickx
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Kenny M Van Theemsche
- University of Antwerp, Department of Biomedical Sciences, Campus Drie Eiken, Universiteisplein 1, 2610, Wilrijk, Belgium; Ghent University, Department of Basic and Applied Medical Sciences, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ernesto Lopes Pinheiro-Junior
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | | | - Steve Peigneur
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alain J Labro
- Ghent University, Department of Basic and Applied Medical Sciences, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Luis A Pardo
- Max-Planck Institute for Experimental Medicine, AG Oncophysiology, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Jan Tytgat
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Annarosa Arcangeli
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Xu J, Koval A, Katanaev VL. Clofazimine: A journey of a drug. Biomed Pharmacother 2023; 167:115539. [PMID: 37742606 DOI: 10.1016/j.biopha.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
Among different strategies to develop novel therapies, drug repositioning (aka repurposing) aims at identifying new uses of an already approved or investigational drug. This approach has the advantages of availability of the extensive pre-existing knowledge of the drug's safety, pharmacology and toxicology, manufacturing and formulation. It provides advantages to the risk-versus-rewards trade-off as compared to the costly and time-consuming de novo drug discovery process. Clofazimine, a red-colored synthetic derivative of riminophenazines initially isolated from lichens, was first synthesized in the 1950 s, and passed through several phases of repositioning in its history as a drug. Being initially developed as an anti-tuberculosis treatment, it was repurposed for the treatment of leprosy, prior to re-repositioning for the treatment of multidrug-resistant tuberculosis and other infections. Since 1990 s, reports on the anticancer properties of clofazimine, both in vitro and in vivo, started to appear. Among the diverse mechanisms of action proposed, the activity of clofazimine as a specific inhibitor of the oncogenic Wnt signaling pathway has recently emerged as the promising targeting mechanism of the drug against breast, colon, liver, and other forms of cancer. Seventy years after the initial discovery, clofazimine's journey as a drug finding new applications continues, serving as a colorful illustration of drug repurposing in modern pharmacology.
Collapse
Affiliation(s)
- Jiabin Xu
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| |
Collapse
|
5
|
Dupuy M, Gueguinou M, Potier-Cartereau M, Lézot F, Papin M, Chantôme A, Rédini F, Vandier C, Verrecchia F. SK Ca- and Kv1-type potassium channels and cancer: Promising therapeutic targets? Biochem Pharmacol 2023; 216:115774. [PMID: 37678626 DOI: 10.1016/j.bcp.2023.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Ion channels are transmembrane structures that allow the passage of ions across cell membranes such as the plasma membrane or the membranes of various organelles like the nucleus, endoplasmic reticulum, Golgi apparatus or mitochondria. Aberrant expression of various ion channels has been demonstrated in several tumor cells, leading to the promotion of key functions in tumor development, such as cell proliferation, resistance to apoptosis, angiogenesis, invasion and metastasis. The link between ion channels and these key biological functions that promote tumor development has led to the classification of cancers as oncochannelopathies. Among all ion channels, the most varied and numerous, forming the largest family, are the potassium channels, with over 70 genes encoding them in humans. In this context, this review will provide a non-exhaustive overview of the role of plasma membrane potassium channels in cancer, describing 1) the nomenclature and structure of potassium channels, 2) the role of these channels in the control of biological functions that promotes tumor development such as proliferation, migration and cell death, and 3) the role of two particular classes of potassium channels, the SKCa- and Kv1- type potassium channels in cancer progression.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | | | | | - Frédéric Lézot
- Sorbonne University, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marion Papin
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | | | - Françoise Rédini
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| |
Collapse
|
6
|
Sala C, Staderini M, Lottini T, Duranti C, Angelini G, Constantin G, Arcangeli A. Expression of the ether-a-gò-gò-related gene 1 channel during B and T lymphocyte development: role in BCR and TCR signaling. Front Immunol 2023; 14:1111471. [PMID: 37744334 PMCID: PMC10515723 DOI: 10.3389/fimmu.2023.1111471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
The functional relevance of K+ and Ca2+ ion channels in the "Store Operated Calcium Entry" (SOCE) during B and T lymphocyte activation is well proven. However, their role in the process of T- and B- cell development and selection is still poorly defined. In this scenario, our aim was to characterize the expression of the ether à-go-go-related gene 1 (ERG1) and KV1.3 K+ channels during the early stages of mouse lymphopoiesis and analyze how they affect Ca2+signaling, or other signaling pathways, known to mediate selection and differentiation processes of lymphoid clones. We provide here evidence that the mouse (m)ERG1 is expressed in primary lymphoid organs, bone marrow (BM), and thymus of C57BL/6 and SV129 mice. This expression is particularly evident in the BM during the developmental stages of B cells, before the positive selection (large and small PreB). mERG1 is also expressed in all thymic subsets of both strains, when lymphocyte positive and negative selection occurs. Partially overlapping results were obtained for KV1.3 expression. mERG1 and KV1.3 were expressed at significantly higher levels in B-cell precursors of mice developing an experimental autoimmune encephalomyelitis (EAE). The pharmacological blockage of ERG1 channels with E4031 produced a significant reduction in intracellular Ca2+ after lymphocyte stimulation in the CD4+ and double-positive T-cell precursors' subsets. This suggests that ERG1 might contribute to maintaining the electrochemical gradient responsible for driving Ca2+ entry, during T-cell receptor signaling which sustains lymphocyte selection checkpoints. Such role mirrors that performed by the shaker-type KV1.3 potassium channel during the activation process of mature lymphocytes. No effects on Ca2+ signaling were observed either in B-cell precursors after blocking KV1.3 with PSORA-4. In the BM, the pharmacological blockage of ERG1 channels produced an increase in ERK phosphorylation, suggesting an effect of ERG1 in regulating B-lymphocyte precursor clones' proliferation and checkpoint escape. Overall, our results suggest a novel physiological function of ERG1 in the processes of differentiation and selection of lymphoid precursors, paving the way to further studies aimed at defining the expression and role of ERG1 channels in immune-based pathologies in addition to that during lymphocyte neoplastic transformation.
Collapse
Affiliation(s)
- Cesare Sala
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Martina Staderini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Patel SH, Bachmann M, Kadow S, Wilson GC, Abdel-Salam MML, Xu K, Keitsch S, Soddemann M, Wilker B, Becker KA, Carpinteiro A, Ahmad SA, Szabo I, Gulbins E. Simultaneous targeting of mitochondrial Kv1.3 and lysosomal acid sphingomyelinase amplifies killing of pancreatic ductal adenocarcinoma cells in vitro and in vivo. J Mol Med (Berl) 2023; 101:295-310. [PMID: 36790532 PMCID: PMC10036429 DOI: 10.1007/s00109-023-02290-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.
Collapse
Affiliation(s)
- Sameer H Patel
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Magdalena Bachmann
- Department of Biologyand , CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mostafa M L Abdel-Salam
- Department of Biologyand , CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Kui Xu
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Simone Keitsch
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Matthias Soddemann
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Alexander Carpinteiro
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ildiko Szabo
- Department of Biologyand , CNR Institute of Neurosciences, University of Padua, Padua, Italy.
| | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
8
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
9
|
Design of New Potent and Selective Thiophene-Based K V1.3 Inhibitors and Their Potential for Anticancer Activity. Cancers (Basel) 2022; 14:cancers14112595. [PMID: 35681571 PMCID: PMC9179341 DOI: 10.3390/cancers14112595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In this article, we describe the discovery of a new class of potent and selective thiophene-based inhibitors of the voltage-gated potassium channel KV1.3 and their potential to induce apoptosis and inhibit proliferation. The KV1.3 channel has only recently emerged as a molecular target in cancer therapy. The most potent KV1.3 inhibitor 44 had an IC50 KV1.3 value of 470 nM (oocytes) and 950 nM (Ltk− cells) and appropriate selectivity for other KV channels. New KV1.3 inhibitors significantly inhibited proliferation of Panc-1 cells and KV1.3 inhibitor 4 induced significant apoptosis in tumor spheroids of Colo-357 cells. Abstract The voltage-gated potassium channel KV1.3 has been recognized as a tumor marker and represents a promising new target for the discovery of new anticancer drugs. We designed a novel structural class of KV1.3 inhibitors through structural optimization of benzamide-based hit compounds and structure-activity relationship studies. The potency and selectivity of the new KV1.3 inhibitors were investigated using whole-cell patch- and voltage-clamp experiments. 2D and 3D cell models were used to determine antiproliferative activity. Structural optimization resulted in the most potent and selective KV1.3 inhibitor 44 in the series with an IC50 value of 470 nM in oocytes and 950 nM in Ltk− cells. KV1.3 inhibitor 4 induced significant apoptosis in Colo-357 spheroids, while 14, 37, 43, and 44 significantly inhibited Panc-1 proliferation.
Collapse
|
10
|
Mitochondrial Kv1.3 Channels as Target for Treatment of Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14081955. [PMID: 35454865 PMCID: PMC9032553 DOI: 10.3390/cancers14081955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Multiple myeloma is a non-curable disease and new therapeutic approaches are needed. PAPTP and PCARBTP, two novel mitochondria-specific inhibitors of the Kv1.3 ion channel, are effective in killing cultured myeloma cell lines and myeloma cells isolated from patient punctates, while healthy bone marrow cells are not affected. Cell death occurs through the classical mitochondrial apoptotic pathway, and further treatment with venetoclax, a BCL-2 inhibitor, has a clear synergistic effect. We identify Kv1.3 channels as a new therapeutic target for the treatment of multiple myeloma. Abstract Despite several new developments in the treatment of multiple myeloma, all available therapies are only palliative without curative potential and all patients ultimately relapse. Thus, novel therapeutic options are urgently required to prolong survival of or to even cure myeloma. Here, we show that multiple myeloma cells express the potassium channel Kv1.3 in their mitochondria. The mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP are efficient against two tested human multiple myeloma cell lines (L-363 and RPMI-8226) and against ex vivo cultured, patient-derived myeloma cells, while healthy bone marrow cells are spared from toxicity. Cell death after treatment with PAPTP and PCARBTP occurs via the mitochondrial apoptotic pathway. In addition, we identify up-regulation of the multidrug resistance pump MDR-1 as the main potential resistance mechanism. Combination with ABT-199 (venetoclax), an inhibitor of Bcl2, has a synergistic effect, suggesting that mitochondrial Kv1.3 inhibitors could potentially be used as combination partner to venetoclax, even in the treatment of t(11;14) negative multiple myeloma, which represent the major part of cases and are rather resistant to venetoclax alone. We thus identify mitochondrial Kv1.3 channels as druggable targets against multiple myeloma.
Collapse
|
11
|
Severin F, Urbani A, Varanita T, Bachmann M, Azzolini M, Martini V, Pizzi M, Tos APD, Frezzato F, Mattarei A, Ghia P, Bertilaccio MTS, Gulbins E, Paradisi C, Zoratti M, Semenzato GC, Leanza L, Trentin L, Szabò I. Pharmacological modulation of Kv1.3 potassium channel selectively triggers pathological B lymphocyte apoptosis in vivo in a genetic CLL model. J Exp Clin Cancer Res 2022; 41:64. [PMID: 35172855 PMCID: PMC8848658 DOI: 10.1186/s13046-022-02249-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ion channels are emerging as promising oncological targets. The potassium channels Kv1.3 and IKCa are highly expressed in the plasma membrane and mitochondria of human chronic lymphocytic leukemia (CLL) cells, compared to healthy lymphocytes. In vitro, inhibition of mitoKv1.3 by PAPTP was shown to kill ex vivo primary human CLL cells, while targeting IKCa with TRAM-34 decreased CLL cell proliferation. METHODS Here we evaluated the effect of the above drugs in CLL cells from ibrutinib-resistant patients and in combination with Venetoclax, two drugs used in the clinical practice. The effects of the drugs were tested also in the Eμ-TCL1 genetic CLL murine model, characterized by a lympho-proliferative disease reminiscent of aggressive human CLL. Eμ-TCL1 mice showing overt disease state were treated with intraperitoneal injections of non-toxic 5 nmol/g PAPTP or 10 nmol/g TRAM-34 once a day and the number and percentage of pathological B cells (CD19+CD5+) in different, pathologically relevant body districts were determined. RESULTS We show that Kv1.3 expression correlates with sensitivity of the human and mouse neoplastic cells to PAPTP. Primary CLL cells from ibrutinib-resistant patients could be killed with PAPTP and this drug enhanced the effect of Venetoclax, by acting on mitoKv1.3 of the inner mitochondrial membrane and triggering rapid mitochondrial changes and cytochrome c release. In vivo, after 2 week- therapy of Eμ-TCL1 mice harboring distinct CLL clones, leukemia burden was reduced by more than 85%: the number and percentage of CLL B cells fall in the spleen and peritoneal cavity and in the peripheral blood, without signs of toxicity. Notably, CLL infiltration into liver and spleen and splenomegaly were also drastically reduced upon PAPTP treatment. In contrast, TRAM-34 did not exert any beneficial effect when administered in vivo to Eμ-TCL1 mice at non-toxic concentration. CONCLUSION Altogether, by comparing vehicle versus compound effect in different Eμ-TCL1 animals bearing unique clones similarly to CLL patients, we conclude that PAPTP significantly reduced leukemia burden in CLL-relevant districts, even in animals with advanced stage of the disease. Our results thus identify PAPTP as a very promising drug for CLL treatment, even for the chemoresistant forms of the disease.
Collapse
Affiliation(s)
- Filippo Severin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | | | | | - Michele Azzolini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Marco Pizzi
- Department of Medicine, Pathology Branch, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, Pathology Branch, University of Padua School of Medicine, Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCC Ospedale San Raffaele, Milan, Italy
| | | | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Gianpietro Carlo Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.
| | - Ildiko Szabò
- Department of Biology, University of Padua, Padua, Italy. .,CNR Institute of Neurosciences, University of Padua, Padua, Italy.
| |
Collapse
|
12
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
13
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
14
|
Midazolam's Effects on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-lymphocytes. Int J Mol Sci 2021; 22:ijms22137198. [PMID: 34281255 PMCID: PMC8267671 DOI: 10.3390/ijms22137198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Midazolam (MDZ) could affect lymphocyte immune functions. However, the influence of MDZ on cell’s K+ currents has never been investigated. Thus, in the present study, the effects of MDZ on Jurkat T lymphocytes were studied using the patch-clamp technique. Results showed that MDZ suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in concentration-, time-, and state-dependent manners. The IC50 for MDZ-mediated reduction of IK(DR) density was 5.87 μM. Increasing MDZ concentration raised the rate of current-density inactivation and its inhibitory action on IK(DR) density was estimated with a dissociation constant of 5.14 μM. In addition, the inactivation curve of IK(DR) associated with MDZ was shifted to a hyperpolarized potential with no change on the slope factor. MDZ-induced inhibition of IK(DR) was not reversed by flumazenil. In addition, the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels was suppressed by MDZ. Furthermore, inhibition by MDZ on both IK(DR) and IKCa-channel activity appeared to be independent from GABAA receptors and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes. In conclusion, MDZ suppressed current density of IK(DR) in concentration-, time-, and state-dependent manners in Jurkat T-lymphocytes and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes.
Collapse
|
15
|
Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021; 41:2423-2473. [PMID: 33932253 PMCID: PMC8252768 DOI: 10.1002/med.21800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.
Collapse
Affiliation(s)
- Špela Gubič
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Louise A. Hendrickx
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Žan Toplak
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Maša Sterle
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Steve Peigneur
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Luis A. Pardo
- AG OncophysiologyMax‐Planck Institute for Experimental MedicineGöttingenGermany
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Anamarija Zega
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
16
|
Choudhary D, Goykar H, Karanwad T, Kannaujia S, Gadekar V, Misra M. An understanding of mitochondria and its role in targeting nanocarriers for diagnosis and treatment of cancer. Asian J Pharm Sci 2021; 16:397-418. [PMID: 34703491 PMCID: PMC8520044 DOI: 10.1016/j.ajps.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology has changed the entire paradigm of drug targeting and has shown tremendous potential in the area of cancer therapy due to its specificity. In cancer, several targets have been explored which could be utilized for the better treatment of disease. Mitochondria, the so-called powerhouse of cell, portrays significant role in the survival and death of cells, and has emerged as potential target for cancer therapy. Direct targeting and nanotechnology based approaches can be tailor-made to target mitochondria and thus improve the survival rate of patients suffering from cancer. With this backdrop, in present review, we have reemphasized the role of mitochondria in cancer progression and inhibition, highlighting the different targets that can be explored for targeting of disease. Moreover, we have also summarized different nanoparticulate systems that have been used for treatment of cancer via mitochondrial targeting.
Collapse
Affiliation(s)
- Devendra Choudhary
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Hanmant Goykar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Tukaram Karanwad
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Suraj Kannaujia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Vedant Gadekar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | | |
Collapse
|
17
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
18
|
Bachmann M, Rossa A, Antoniazzi G, Biasutto L, Carrer A, Campagnaro M, Leanza L, Gonczi M, Csernoch L, Paradisi C, Mattarei A, Zoratti M, Szabo I. Synthesis and cellular effects of a mitochondria-targeted inhibitor of the two-pore potassium channel TASK-3. Pharmacol Res 2021; 164:105326. [PMID: 33338625 DOI: 10.1016/j.phrs.2020.105326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.
Collapse
Affiliation(s)
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Monika Gonczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Mario Zoratti
- CNR Institute of Neuroscience, Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
19
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
20
|
Xie Z, Zhao Y, Yang W, Li W, Wu Y, Chen Z. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region. Biochem Biophys Res Commun 2020; 532:265-270. [PMID: 32863001 DOI: 10.1016/j.bbrc.2020.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Methotrexate (MTX) has been widely used for the treatment of many types of autoimmune diseases, such as rheumatoid arthritis, psoriasis and dermatomyositis. However, its pharmacological mechanism is still unclear completely. In this study, we found that MTX is a potent and selective inhibitor of the Kv1.3 channel, a class of potassium channels highly associated with autoimmune diseases. Electrophysiological experiments showed that MTX inhibited human Kv1.3 channel with an IC50 of 41.5 ± 24.9 nM, and 1 μM MTX inhibited 32.6 ± 1.3% and 25.6 ± 2.2% of human Kv1.1 and Kv1.2 channel currents, respectively. These data implied the unique selectivity of MTX towards the Kv1.3 channel. Excitingly, using channel activation and chimeric experiments, we found that MTX bound to the outer pore region of Kv1.3 channel. Mutagenesis experiments in the Kv.3 channel extracellular pore region further showed that the Dsp371, Thr373 and His399 residues of outer pore region of Kv1.3 channel played important roles in MTX inhibiting activities. In conclusion, MTX inhibited Kv1.3 channel by targeting extracellular pore region, which is different form all the report small molecules, such as PAP-1 and 4-AP, but similar with many natural animal toxin peptides, such as ChTX, ShK and BmKTX. To the best of our knowledge, MTX is the first small molecular scaffold targeting the Kv1.3 channel extracellular pore region, suggesting its potential applications for designing novel Kv1.3 lead drugs and treating Kv1.3 channel-associated autoimmune diseases.
Collapse
Affiliation(s)
- Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
21
|
Actions of FTY720 (Fingolimod), a Sphingosine-1-Phosphate Receptor Modulator, on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-Lymphocytes. Molecules 2020; 25:molecules25194525. [PMID: 33023219 PMCID: PMC7582672 DOI: 10.3390/molecules25194525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023] Open
Abstract
FTY720 (fingolimod), a modulator of sphingosine-1-phosphate receptors, is known to produce the immunomodulatory actions and to be beneficial for treating the relapsing multiple sclerosis. However, whether it exerts any effects on membrane ion currents in immune cells remains largely unknown. Herein, the effects of FTY720 on ionic currents in Jurkat T-lymphocytes were investigated. Cell exposure to FTY720 suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner with an IC50 value of 1.51 μM. Increasing the FTY720 concentration not only decreased the IK(DR) amplitude but also accelerated the inactivation time course of the current. By using the minimal reaction scheme, the effect of FTY720 on IK(DR) inactivation was estimated with a dissociation constant of 3.14 μM. FTY720 also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor, and recovery from IK(DR) became slow during the exposure to this compound. Cumulative inactivation for IK(DR) in response to repetitive depolarizations was enhanced in the presence of FTY720. In SEW2871-treated cells, FTY720-induced inhibition of IK(DR) was attenuated. This compound also exerted a stimulatory action on the activity of intermediate-conductance Ca2+-activated K+ channels in Jurkat T-lymphocytes. However, in NSC-34 neuronal cells, FTY720 did not modify the inactivation kinetics of KV3.1-encoded IK(DR), although it suppressed IK(DR) amplitude in these cells. Collectively, the perturbations by FTY720 on different types of K+ channels may contribute to the functional activities of immune cells, if similar findings appear in vivo.
Collapse
|
22
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
23
|
Peruzzo R, Mattarei A, Azzolini M, Becker-Flegler KA, Romio M, Rigoni G, Carrer A, Biasutto L, Parrasia S, Kadow S, Managò A, Urbani A, Rossa A, Semenzato G, Soriano ME, Trentin L, Ahmad S, Edwards M, Gulbins E, Paradisi C, Zoratti M, Leanza L, Szabò I. Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biol 2020; 37:101705. [PMID: 33007503 PMCID: PMC7527709 DOI: 10.1016/j.redox.2020.101705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool. The mitochondrial channel mitoKv1.3 is a promising pharmacological target. MitoKv1.3 interacts with Complex I of the respiratory chain. Psoralenic inhibitors of Kv1.3 facilitate the diversion of e− from complex I to O2. A novel psoralenic Kv1.3 inhibitor with increased solubility reduces melanoma volume.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | | | | | - Matteo Romio
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Sofia Parrasia
- Department of Biomedical Sciences, University of Padua, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Andrea Urbani
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | | | | | - Syed Ahmad
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Michael Edwards
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
24
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
25
|
Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules 2020; 10:E1200. [PMID: 32824877 PMCID: PMC7466137 DOI: 10.3390/biom10081200] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (B.A.); (M.Ż.)
| |
Collapse
|
26
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
27
|
Teisseyre A, Palko-Labuz A, Sroda-Pomianek K, Michalak K. Voltage-Gated Potassium Channel Kv1.3 as a Target in Therapy of Cancer. Front Oncol 2019; 9:933. [PMID: 31612103 PMCID: PMC6769076 DOI: 10.3389/fonc.2019.00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated potassium channel Kv1.3 is an integral membrane protein, which is selectively permeable for potassium ions and is activated upon a change of membrane potential. Channel activation enables transportation of potassium ions down their electrochemical gradient. Kv1.3 channel is expressed in many cell types, both normal and cancer. Activity of the channel plays an important role in cell proliferation and apoptosis. Inhibition of Kv1.3 channel may be beneficial in therapy of several diseases including some cancer disorders. This review focuses on Kv1.3 channel as a new potentially attractive molecular target in cancer therapy. In the first part, changes in the channel expression in selected cancer disorders are described. Then, the role of the channel activity in cancer cell proliferation and apoptosis is presented. Finally, it is shown that some low molecular weight organic inhibitors of the channel including selected biologically active plant-derived polycyclic compounds may selectively induce apoptosis of Kv1.3-expressing cancer cells while sparing normal cells and healthy organs. These compounds may be promising candidates for putative application in therapy of some cancer disorders, such as melanoma, pancreatic ductal adenocarcinoma (PDAC), or B-type chronic lymphocytic leukemia (B-CLL).
Collapse
Affiliation(s)
- Andrzej Teisseyre
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - Anna Palko-Labuz
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | | | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
28
|
Hu T, Buus TB, Krejsgaard T, Nansen A, Lundholt BK, Spee P, Fredholm S, Petersen DL, Blümel E, Gluud M, Monteiro MN, Willerslev-Olsen A, Andersen MH, Straten PT, Met Ö, Stolearenco V, Fogh H, Gniadecki R, Nastasi C, Litman T, Woetmann A, Gjerdrum LMR, Ødum N. Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget 2019; 10:4894-4906. [PMID: 31448055 PMCID: PMC6690676 DOI: 10.18632/oncotarget.27122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by a subset of chronically activated memory T cells and plays an important role in their activation and proliferation. Here, we show that primary malignant T cells isolated from patients with Sézary syndrome (SS) express Kv1.3 and are sensitive to potent Kv1.3 inhibitors ShK and Vm24, but not sensitive to a less potent inhibitor [N17A/F32T]-AnTx. Kv1.3 blockade inhibits CD3/CD28-induced proliferation and IL-9 expression by SS cells in a concentration-dependent manner. In parallel, CD3/CD28-mediated CD25 induction is inhibited, whereas Kv1.3 blockade has no effect on apoptosis or cell death as judged by Annexin V and PI staining. In conclusion, we provide the first evidence that malignant T cells in SS express functional Kv1.3 channels and that Kv1.3 blockade inhibits activation-induced proliferation as well as cytokine and cytokine receptor expression in malignant T cells, suggesting that Kv1.3 is a potential target for therapy in SS.
Collapse
Affiliation(s)
- Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anneline Nansen
- Department of Molecular Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | | | | | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David Leander Petersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Madalena N. Monteiro
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Per thor Straten
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Özcan Met
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Veronica Stolearenco
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Fogh
- Department of Dermatology, Copenhagen University Hospital at Bispebjerg, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Copenhagen University Hospital at Bispebjerg, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Prosdocimi E, Checchetto V, Leanza L. Targeting the Mitochondrial Potassium Channel Kv1.3 to Kill Cancer Cells: Drugs, Strategies, and New Perspectives. SLAS DISCOVERY 2019; 24:882-892. [PMID: 31373829 DOI: 10.1177/2472555219864894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the consequence of aberrations in cell growth or cell death. In this scenario, mitochondria and ion channels play a critical role in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. In this review, we focus on Kv1.3 and specifically on mitoKv1.3, which showed an aberrant expression in cancer cells compared with healthy tissues and which is involved in the apoptotic pathway. In recent years, mitoKv1.3 has become an oncological target since its pharmacological modulation has been demonstrated to reduce tumor growth and progression both in vitro and in vivo using preclinical mouse models of different types of tumors.
Collapse
Affiliation(s)
| | | | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Kumar H, Chattopadhyay S, Das N, Shree S, Patel D, Mohapatra J, Gurjar A, Kushwaha S, Singh AK, Dubey S, Lata K, Kushwaha R, Mohammed R, Dastidar KG, Yadav N, Vishwakarma AL, Gayen JR, Bandyopadhyay S, Chatterjee A, Jain MR, Tripathi AK, Trivedi AK, Chattopadhyay N, Ramachandran R, Sanyal S. Leprosy drug clofazimine activates peroxisome proliferator-activated receptor-γ and synergizes with imatinib to inhibit chronic myeloid leukemia cells. Haematologica 2019; 105:971-986. [PMID: 31371410 PMCID: PMC7109729 DOI: 10.3324/haematol.2018.194910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Leukemia stem cells contribute to drug-resistance and relapse in chronic myeloid leukemia (CML) and BCR-ABL1 inhibitor monotherapy fails to eliminate these cells, thereby necessitating alternate therapeutic strategies for patients CML. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone downregulates signal transducer and activator of transcription 5 (STAT5) and in combination with imatinib induces complete molecular response in imatinib-refractory patients by eroding leukemia stem cells. Thiazolidinediones such as pioglitazone are, however, associated with severe side effects. To identify alternate therapeutic strategies for CML we screened Food and Drug Administration-approved drugs in K562 cells and identified the leprosy drug clofazimine as an inhibitor of viability of these cells. Here we show that clofazimine induced apoptosis of blood mononuclear cells derived from patients with CML, with a particularly robust effect in imatinib-resistant cells. Clofazimine also induced apoptosis of CD34+38- progenitors and quiescent CD34+ cells from CML patients but not of hematopoietic progenitor cells from healthy donors. Mechanistic evaluation revealed that clofazimine, via physical interaction with PPARγ, induced nuclear factor kB-p65 proteasomal degradation, which led to sequential myeloblastoma oncoprotein and peroxiredoxin 1 downregulation and concomitant induction of reactive oxygen species-mediated apoptosis. Clofazimine also suppressed STAT5 expression and consequently downregulated stem cell maintenance factors hypoxia-inducible factor-1α and -2α and Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). Combining imatinib with clofazimine caused a far superior synergy than that with pioglitazone, with clofazimine reducing the half maximal inhibitory concentration (IC50) of imatinib by >4 logs and remarkably eroding quiescent CD34+ cells. In a K562 xenograft study clofazimine and imatinib co-treatment showed more robust efficacy than the individual treatments. We propose clinical evaluation of clofazimine in imatinib-refractory CML.
Collapse
Affiliation(s)
- Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow
| | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Nabanita Das
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow
| | - Sonal Shree
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Dinesh Patel
- Zydus Research Center, Moraiya, Ahmedabad, Gujarat
| | | | - Anagha Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Sapana Kushwaha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow
| | | | - Shikha Dubey
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Kiran Lata
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Rajesh Kushwaha
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow
| | - Riyazuddin Mohammed
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow
| | | | | | | | - Jiaur Rahaman Gayen
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow
| | | | | | - Anil Kumar Tripathi
- Department of Clinical Hematology and Medical Oncology, King George's Medical University, Lucknow, Uttar Pradesh
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Ravishankar Ramachandran
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow.,Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow .,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| |
Collapse
|
31
|
Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019; 11:cancers11060761. [PMID: 31159324 PMCID: PMC6627730 DOI: 10.3390/cancers11060761] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.
Collapse
|
32
|
Implication of Voltage-Gated Potassium Channels in Neoplastic Cell Proliferation. Cancers (Basel) 2019; 11:cancers11030287. [PMID: 30823672 PMCID: PMC6468671 DOI: 10.3390/cancers11030287] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated potassium channels (Kv) are the largest group of ion channels. Kv are involved in controlling the resting potential and action potential duration in the heart and brain. Additionally, these proteins participate in cell cycle progression as well as in several other important features in mammalian cell physiology, such as activation, differentiation, apoptosis, and cell volume control. Therefore, Kv remarkably participate in the cell function by balancing responses. The implication of Kv in physiological and pathophysiological cell growth is the subject of study, as Kv are proposed as therapeutic targets for tumor regression. Though it is widely accepted that Kv channels control proliferation by allowing cell cycle progression, their role is controversial. Kv expression is altered in many cancers, and their participation, as well as their use as tumor markers, is worthy of effort. There is an ever-growing list of Kv that remodel during tumorigenesis. This review focuses on the actual knowledge of Kv channel expression and their relationship with neoplastic proliferation. In this work, we provide an update of what is currently known about these proteins, thereby paving the way for a more precise understanding of the participation of Kv during cancer development.
Collapse
|
33
|
Ahmed K, Koval A, Xu J, Bodmer A, Katanaev VL. Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett 2019; 449:45-55. [PMID: 30771433 DOI: 10.1016/j.canlet.2019.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Wnt signaling is overactivated in triple-negative breast cancer (TNBC) and several other cancers, and its suppression emerges as an effective anticancer treatment. However, no drugs targeting the Wnt pathway exist on the market nor in advanced clinical trials. Here we provide a comprehensive body of preclinical evidence that an anti-leprotic drug clofazimine is effective against TNBC. Clofazimine specifically inhibits canonical Wnt signaling in a panel of TNBC cells in vitro. In several mouse xenograft models of TNBC, clofazimine efficiently suppresses tumor growth, correlating with in vivo inhibition of the Wnt pathway in the tumors. Clofazimine is well compatible with doxorubicin, exerting additive effects on tumor growth suppression, producing no adverse effects. Its excellent and well-characterized pharmacokinetics profile, lack of serious adverse effects at moderate (yet therapeutically effective) doses, its combinability with cytotoxic therapeutics, and the novel mechanistic mode of action make clofazimine a prime candidate for the repositioning clinical trials. Our work may bring forward the anti-Wnt targeted therapy, desperately needed for thousands of patients currently lacking targeted treatments.
Collapse
Affiliation(s)
- Kamal Ahmed
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jiabin Xu
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bodmer
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| |
Collapse
|
34
|
Lowinus T, Heidel FH, Bose T, Nimmagadda SC, Schnöder T, Cammann C, Schmitz I, Seifert U, Fischer T, Schraven B, Bommhardt U. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of K v1.3 potassium channels, AKT and ERK1/2 signaling. Cell Commun Signal 2019; 17:5. [PMID: 30651113 PMCID: PMC6335768 DOI: 10.1186/s12964-018-0317-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background Treatment of acute leukemia is challenging and long-lasting remissions are difficult to induce. Innovative therapy approaches aim to complement standard chemotherapy to improve drug efficacy and decrease toxicity. Promising new therapeutic targets in cancer therapy include voltage-gated Kv1.3 potassium channels, but their role in acute leukemia is unclear. We reported that Kv1.3 channels of lymphocytes are blocked by memantine, which is known as an antagonist of neuronal N-methyl-D-aspartate type glutamate receptors and clinically applied in therapy of advanced Alzheimer disease. Here we evaluated whether pharmacological targeting of Kv1.3 channels by memantine promotes cell death of acute leukemia cells induced by chemotherapeutic cytarabine. Methods We analyzed acute lymphoid (Jurkat, CEM) and myeloid (HL-60, Molm-13, OCI-AML-3) leukemia cell lines and patients’ acute leukemic blasts after treatment with either drug alone or the combination of cytarabine and memantine. Patch-clamp analysis was performed to evaluate inhibition of Kv1.3 channels and membrane depolarization by memantine. Cell death was determined with propidium iodide, Annexin V and SYTOX staining and cytochrome C release assay. Molecular effects of memantine co-treatment on activation of Caspases, AKT, ERK1/2, and JNK signaling were analysed by Western blot. Kv1.3 channel expression in Jurkat cells was downregulated by shRNA. Results Our study demonstrates that memantine inhibits Kv1.3 channels of acute leukemia cells and in combination with cytarabine potentiates cell death of acute lymphoid and myeloid leukemia cell lines as well as primary leukemic blasts from acute leukemia patients. At molecular level, memantine co-application fosters concurrent inhibition of AKT, S6 and ERK1/2 and reinforces nuclear down-regulation of MYC, a common target of AKT and ERK1/2 signaling. In addition, it augments mitochondrial dysfunction resulting in enhanced cytochrome C release and activation of Caspase-9 and Caspase-3 leading to amplified apoptosis. Conclusions Our study underlines inhibition of Kv1.3 channels as a therapeutic strategy in acute leukemia and proposes co-treatment with memantine, a licensed and safe drug, as a potential approach to promote cytarabine-based cell death of various subtypes of acute leukemia. Electronic supplementary material The online version of this article (10.1186/s12964-018-0317-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Present address: Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Leibniz Institute on Aging, Fritz-Lipmann Institute, Jena, Germany.,Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Tanima Bose
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Present address: Institute for Clinical Neuroimmunology, Ludwigs-Maximilians-University, Munich, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tina Schnöder
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Leibniz Institute on Aging, Fritz-Lipmann Institute, Jena, Germany.,Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
35
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Gas Signaling Molecules and Mitochondrial Potassium Channels. Int J Mol Sci 2018; 19:ijms19103227. [PMID: 30340432 PMCID: PMC6214077 DOI: 10.3390/ijms19103227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have been of increasing interest due to their beneficial effects at low concentrations. These so-called gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection, oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically their respiratory complexes, constitute an important target for these gases. On the other hand, increasing evidence of a cytoprotective role for mitochondrial potassium channels provides motivation for the analysis of the role of gasotransmitters in the regulation of channel function. A number of potassium channels have been shown to exhibit activity within the inner mitochondrial membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3). The effects of these channels include the regulation of mitochondrial respiration and membrane potential. Additionally, they may modulate the synthesis of reactive oxygen species within mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection, while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying the action of H2S, NO, and CO on potassium channels present within mitochondria.
Collapse
|
37
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
38
|
Valle-Reyes S, Valencia-Cruz G, Liñan-Rico L, Pottosin I, Dobrovinskaya O. Differential Activity of Voltage- and Ca 2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case. Front Physiol 2018; 9:499. [PMID: 29867547 PMCID: PMC5954129 DOI: 10.3389/fphys.2018.00499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.
Collapse
Affiliation(s)
- Salvador Valle-Reyes
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
39
|
|
40
|
Mattarei A, Romio M, Managò A, Zoratti M, Paradisi C, Szabò I, Leanza L, Biasutto L. Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents. Front Oncol 2018; 8:122. [PMID: 29740538 PMCID: PMC5925966 DOI: 10.3389/fonc.2018.00122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023] Open
Abstract
Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.
Collapse
Affiliation(s)
- Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Zaccagnino A, Managò A, Leanza L, Gontarewitz A, Linder B, Azzolini M, Biasutto L, Zoratti M, Peruzzo R, Legler K, Trauzold A, Kalthoff H, Szabo I. Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget 2018; 8:38276-38293. [PMID: 27542263 PMCID: PMC5503532 DOI: 10.18632/oncotarget.11299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries. Unfortunately, the overall 5-year survival rate is still less than 5%. The most frequent oncogenic mutations in PDAC are loss-of function mutations in p53 and gain-of-function mutations in KRAS. Here we show that clofazimine (Lamprene), a drug already used in the clinic for autoimmune diseases and leprosy, is able to efficiently kill in vitro five different PDAC cell lines harboring p53 mutations. We provide evidence that clofazimine induces apoptosis in PDAC cells with an EC50 in the μM range via its specific inhibitory action on the potassium channel Kv1.3. Intraperitoneal injection of clofazimine resulted in its accumulation in the pancreas of mice 8 hours after administration. Using an orthotopic PDAC xenotransplantation model in SCID beige mouse, we show that clofazimine significantly and strongly reduced the primary tumor weight. Thus, our work identifies clofazimine as a promising therapeutic agent against PDAC and further highlights ion channels as possible oncological targets.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Artur Gontarewitz
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Bernhard Linder
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Karen Legler
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
42
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
43
|
Leanza L, Romio M, Becker KA, Azzolini M, Trentin L, Managò A, Venturini E, Zaccagnino A, Mattarei A, Carraretto L, Urbani A, Kadow S, Biasutto L, Martini V, Severin F, Peruzzo R, Trimarco V, Egberts JH, Hauser C, Visentin A, Semenzato G, Kalthoff H, Zoratti M, Gulbins E, Paradisi C, Szabo I. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. Cancer Cell 2017; 31:516-531.e10. [PMID: 28399409 DOI: 10.1016/j.ccell.2017.03.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
The potassium channel Kv1.3 is highly expressed in the mitochondria of various cancerous cells. Here we show that direct inhibition of Kv1.3 using two mitochondria-targeted inhibitors alters mitochondrial function and leads to reactive oxygen species (ROS)-mediated death of even chemoresistant cells independently of p53 status. These inhibitors killed 98% of ex vivo primary chronic B-lymphocytic leukemia tumor cells while sparing healthy B cells. In orthotopic mouse models of melanoma and pancreatic ductal adenocarcinoma, the compounds reduced tumor size by more than 90% and 60%, respectively, while sparing immune and cardiac functions. Our work provides direct evidence that specific pharmacological targeting of a mitochondrial potassium channel can lead to ROS-mediated selective apoptosis of cancer cells in vivo, without causing significant side effects.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35121 Padova, Italy
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Elisa Venturini
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Andrea Mattarei
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35121 Padova, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Urbani
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy
| | - Veronica Martini
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Filippo Severin
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Valentina Trimarco
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Jan-Hendrik Egberts
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Charlotte Hauser
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Andrea Visentin
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA.
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35121 Padova, Italy.
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
44
|
de la Cruz A, Vera-Zambrano A, Peraza DA, Valenzuela C, Zapata JM, Perez-Chacon G, Gonzalez T. Fludarabine Inhibits K V1.3 Currents in Human B Lymphocytes. Front Pharmacol 2017; 8:177. [PMID: 28408885 PMCID: PMC5374215 DOI: 10.3389/fphar.2017.00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Fludarabine (F-ara-A) is a purine analog commonly used in the treatment of indolent B cell malignancies that interferes with different aspects of DNA and RNA synthesis. KV1.3 K+ channels are membrane proteins involved in the maintenance of K+ homeostasis and the resting potential of the cell, thus controlling signaling events, proliferation and apoptosis in lymphocytes. Here we show that F-ara-A inhibits KV currents in human B lymphocytes. Our data indicate that KV1.3 is expressed in both BL2 and Dana B cell lines, although total KV1.3 levels were higher in BL2 than in Dana cells. However, KV currents in the plasma membrane were similar in both cell lines and were abrogated by the specific KV1.3 channel inhibitor PAP-1, indicating that KV1.3 accounts for most of the KV currents in these cell lines. F-ara-A, at a concentration (3.5 μM) similar to that achieved in the plasma of fludarabine phosphate-treated patients (3 μM), inhibited KV1.3 currents by 61 ± 6.3% and 52.3 ± 6.3% in BL2 and Dana B cells, respectively. The inhibitory effect of F-ara-A was concentration-dependent and showed an IC50 value of 0.36 ± 0.04 μM and a nH value of 1.07 ± 0.15 in BL2 cells and 0.34 ± 0.13 μM (IC50 ) and 0.77 ± 0.11 (nH ) in Dana cells. F-ara-A inhibition of plasma membrane KV1.3 was observed irrespective of its cytotoxic effect on the cells, BL2 cells being sensitive and Dana cells resistant to F-ara-A cytotoxicity. Interestingly, PAP-1, at concentrations as high as 10 μM, did not affect the viability of BL2 and Dana cells, indicating that blockage of KV1.3 in these cells is not toxic. Finally, F-ara-A had no effect on ectopically expressed KV1.3 channels, suggesting an indirect mechanism of current inhibition. In summary, our results describe the inhibitory effect of F-ara-A on the activity of KV1.3 channel. Although KV1.3 inhibition is not sufficient to induce cell death, further research is needed to determine whether it might still contribute to F-ara-A cytotoxicity in sensitive cells or be accountable for some of the clinical side effects of the drug.
Collapse
Affiliation(s)
- Alicia de la Cruz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain
| | - Alba Vera-Zambrano
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Departamento de Bioquímica, Universidad Autónoma de MadridMadrid, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz)Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz)Madrid, Spain
| | - Teresa Gonzalez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Departamento de Bioquímica, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz)Madrid, Spain
| |
Collapse
|
45
|
Coşan DT, Öner Ç, Soyocak A, Metcalfe E, Djamgoz M. Meme kanserinde Kv 1.3 ve Kv 10.1 voltaj bağımlı potasyum kanallarının inhibisyonunun oksidatif stres üzerindeki rolü. DICLE MEDICAL JOURNAL 2017. [DOI: 10.5798/dicletip.298591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Durusu İZ, Hüsnügil HH, Ataş H, Biber A, Gerekçi S, Güleç EA, Özen C. Anti-cancer effect of clofazimine as a single agent and in combination with cisplatin on U266 multiple myeloma cell line. Leuk Res 2017; 55:33-40. [PMID: 28122281 DOI: 10.1016/j.leukres.2017.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/09/2017] [Indexed: 01/31/2023]
Abstract
Multiple Myeloma (MM) is a malignant neoplasm of bone marrow plasma B cells with high morbidity. Clofazimine (CLF) is an FDA-approved leprostatic, anti-tuberculosis, and anti-inflammatory drug that was previously shown to have growth suppression effect on various cancer types such as hepatocellular, lung, cervix, esophageal, colon, and breast cancer as well as melanoma, neuroblastoma, and leukemia. The objective of this study was to evaluate the anticancer effect and mechanism of CLF on U266 MM cell line. CLF (10μM, 24h) treatment resulted up to 72% growth suppression on a panel of hematological cell lines. Dose-response study conducted on U266 MM cell line revealed an IC50 value of 9.8±0.7μM. CLF also showed a synergistic inhibition effect in combination with cisplatin. In mechanistic assays, CLF treatment caused mitochondrial membrane depolarization, change in cell membrane asymmetry and increase in caspase-3 activity; indicating to an intrinsic apoptosis mechanism. This study provides new evidence for the anticancer effect of CLF on U266 cell line. Further in vivo and clinical studies are warranted to evaluate its therapeutic potential for MM treatment.
Collapse
Affiliation(s)
- İpek Z Durusu
- Middle East Technical University, Biotechnology Graduate Program, Üniversiteler Mahallesi Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Hazal H Hüsnügil
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Heval Ataş
- Middle East Technical University, Biotechnology Graduate Program, Üniversiteler Mahallesi Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Ayşenur Biber
- Middle East Technical University, Biotechnology Graduate Program, Üniversiteler Mahallesi Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Selin Gerekçi
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Ezgi A Güleç
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Can Özen
- Middle East Technical University, Biotechnology Department and Center of Excellence in Biomaterials and Tissue Engineering and Central Laboratory, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| |
Collapse
|
47
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
48
|
Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1385-97. [DOI: 10.1016/j.bbamcr.2015.11.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022]
|
49
|
Checchetto V, Teardo E, Carraretto L, Leanza L, Szabo I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1258-1266. [PMID: 26970213 DOI: 10.1016/j.bbabio.2016.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131 Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; CNR Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
50
|
The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2016; 240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms as well as the development of new therapeutic strategies and as a tool for gauging disease progression in neurodegeneration, diabetes, cancer, and cardiovascular disease. The view is emerging that inner mitochondrial membrane (IMM) cation channels have a profound effect on mitochondrial function and, consequently, on the metabolic state and survival of the whole cell. Since disruption of the sustained integrity of mitochondria is strongly linked to human disease, pharmacological intervention offers a new perspective concerning neurodegenerative and cardiovascular diseases as well as cancer. This review summarizes our current knowledge regarding IMM cation channels and their roles under physiological conditions as well as in cancer, with special emphasis on potassium channels and the mammalian mitochondrial calcium uniporter.
Collapse
|