1
|
Gener-Ricos G, Bataller A, Rodriguez-Sevilla JJ, Chien KS, Quesada AE, Almanza-Huante E, Hammond D, Sasaki K, DiNardo C, Kadia T, Daver N, Borthakur G, Issa GC, Short NJ, Kanagal-Shamanna R, Kantarjian HM, Garcia-Manero G, Montalban-Bravo G. NPM1-mutated myeloid neoplasms are a unique entity not defined by bone marrow blast percentage. Cancer 2024; 130:3452-3462. [PMID: 38896064 DOI: 10.1002/cncr.35433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION NPM1-mutated (NPM1mut) myeloid neoplasms (MNs) with <20% bone marrow (BM) blasts (NPM1mut MNs<20) are uncommon, and their classification remains inconsistent. METHODS The clinicopathologic features of 54 patients with NPM1mut MNs <20 were evaluated and compared with wild-type NPM1 MNs <20 and NPM1mut MNs≥20, respectively. RESULTS NPM1mut MNs had similar features regardless of blast percentage, except for higher IDH2 (29% vs 7%, p = .023) and FLT3 (70% vs 11%, p < .001) frequency in patients with ≥20% BM blasts. Thirty-three (61%) patients with NPM1mut MNs <20 received low-intensity chemotherapy (LIC) and 12 (22%) received intensive chemotherapy (IC). Higher complete remission rates (75% vs 27%, p = .006) and median overall survival (mOS) (not reached vs 30.4 months, p = .06) were observed with IC compared to LIC. Young patients (age <60 years) did not reach mOS either when treated with LIC or IC. Stem cell transplant was associated with increased survival only in patients treated with LIC (HR, 0.24; p = .025). No differences in mOS were observed by BM blast strata (32.2 months, not reached and 46.9 months for <10%, 10%-19%, and ≥20% blasts, p = .700) regardless of treatment modality (LIC: p = .900; IC: p = .360). Twenty-three patients (43%) with NPM1mut MNs <20 had marrow blast progression to ≥20%. CONCLUSIONS Overall, NPM1mut MNs define a unique entity independent of BM blast percentage.
Collapse
Affiliation(s)
- Georgina Gener-Ricos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Almanza-Huante
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
2
|
Li HD, Chen SS, Ding J, Zhang CL, Qiu HY, Xia XX, Yang J, Wang XR. Exploration of ETV6::ABL1-positive AML with concurrent NPM1 and FLT3-ITD mutations. Ann Hematol 2024; 103:4295-4304. [PMID: 39105739 DOI: 10.1007/s00277-024-05917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
ETV6::ABL1 is a rare fusion gene that found in MPN, ALL, and AML. It has a complex and diverse formation mechanism due to the reciprocal orientations of the ETV6 and ABL1 genes relative to the centromeres. NPM1 is frequently mutated in adult AML, often accompanied by FLT3-ITD, which suggests molecular synergisms in AML pathogenesis. Previous reports on ETV6::ABL1 mostly focus on FLT3-ITD. In this study, we present a case of AML with ETV6::ABL1, along with NPM1 and FLT3-ITD. The patient showed a rapid increase in primitive cells at the initial stage, along with the presence of immature granulocytes and erythrocytes. Through cytogenetic analysis, fluorescence in situ hybridization (FISH), and RNA-seq, we elucidated the mechanism behind the formation of the ETV6::ABL1 fusion gene. Despite conventional chemotherapy failure and rapid tumor proliferation, we attempted to add FLT3 inhibitor sorafenib to the treatment, along with chemotherapy bridging to haploidentical transplantation. After haplo-HSCT, a combination of sorafenib and dasatinib was administered as maintenance therapy. The patient achieved complete remission (CR) and maintained it for 11 months. The intricate genetic landscape observed in this case presents diagnostic dilemmas and therapeutic challenges, emphasizing the importance of a comprehensive understanding of its implications for disease classification, risk stratification, and treatment selection.
Collapse
Affiliation(s)
- Hui-Dan Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Si-Si Chen
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Ding
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chun-Ling Zhang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hui-Yin Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin-Xin Xia
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Xiao-Rui Wang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
3
|
Sportoletti P. The discovery of NPM1 mutations in acute myeloid leukemia. Haematologica 2024; 109:2753-2755. [PMID: 39221510 PMCID: PMC11367226 DOI: 10.3324/haematol.2024.286026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Paolo Sportoletti
- Institute of Hematology and CREO, University and Hospital Santa Maria della Misericordia of Perugia, Perugia.
| |
Collapse
|
4
|
Meng Z, Tan Y, Duan YL, Li M. Monaspin B, a Novel Cyclohexyl-furan from Cocultivation of Monascus purpureus and Aspergillus oryzae, Exhibits Potent Antileukemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1114-1123. [PMID: 38166364 DOI: 10.1021/acs.jafc.3c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Natural products are a rich resource for the discovery of innovative drugs. Microbial cocultivation enables discovery of novel natural products through tandem enzymatic catalysis between different fungi. In this study, Monascus purpureus, as a food fermentation strain capable of producing abundant natural products, was chosen as an example of a cocultivation pair strain. Cocultivation screening revealed that M. purpureus and Aspergillus oryzae led to the production of two novel cyclohexyl-furans, Monaspins A and B. Optimization of the cocultivation mode and media enhanced the production of Monaspins A and B to 1.2 and 0.8 mg/L, respectively. Monaspins A and B were structurally elucidated by HR-ESI-MS and NMR. Furthermore, Monaspin B displayed potent antiproliferative activity against the leukemic HL-60 cell line by inducing apoptosis, with a half-maximal inhibitory concentration (IC50) of 160 nM. Moreover, in a mouse leukemia model, Monaspin B exhibited a promising in vivo antileukemic effect by reducing white blood cell, lymphocyte, and neutrophil counts. Collectively, these results indicate that Monaspin B is a promising candidate agent for leukemia therapy.
Collapse
Affiliation(s)
- Zitong Meng
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ya-Li Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
5
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
6
|
Maurya N, Mohanty P, Dhangar S, Panchal P, Jijina F, Mathan SLP, Shanmukhaiah C, Madkaikar M, Vundinti BR. Comprehensive analysis of genetic factors predicting overall survival in Myelodysplastic syndromes. Sci Rep 2022; 12:5925. [PMID: 35396491 PMCID: PMC8993876 DOI: 10.1038/s41598-022-09864-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological disease with high risk of progression to AML. Accurate risk stratification is of importance for the proper management of MDS. Genetic lesions (Cytogenetic and Molecular mutations) are known to help in prognosticating the MDS patients. We have studied 152 MDS patients using cytogenetics and next generation sequencing (NGS). These patients were evaluated and as per cytogenetic prognostic group, majority (92.1%) of the patients classified as good (81.6%) and intermediate (10.5%) group. The NGS identified 38 different gene mutations in our cohort. Among 111 MDS patients with mutations, the most frequent mutated genes were SF3B1 (25.2%), SRSF2 (19%) U2AF1 (14.4%) ASXL1 (9.9%) RUNX1 (9.9%) TET2 (9%), TP53 (9%), ATM (6.3%), NRAS (5.4%) and JAK2/3 (5.4%). The survival analysis revealed that the mutations in TP53, JAK2/3, KRAS, NRAS and ASXL1 were significantly (P < 0.05) associated with poor survival of the patients. The univariate cox and multivariate cox analysis of our study suggested that the age, marrow morphology, cytogenetic and gene mutations with IPSS-R should be considered for prognosticating the MDS patients. We have proposed M-IPSS-R which changed the risk stratification i.e. 66.3% patients had decreased risk whereas 33.75% showed increased risk compared to IPSS-R. The survival analysis also showed that the M-IPSS-R were more significant in separating the patients as per their risk than the IPSS-R alone. The change in risk stratification could help in proper strategy for the treatment planning.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Mohanty
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Panchal
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Farah Jijina
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | - S Leo Prince Mathan
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Manisha Madkaikar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
7
|
Voso MT, Ferrara F, Galimberti S, Rambaldi A, Venditti A. Diagnostic Workup of Acute Myeloid Leukemia: What Is Really Necessary? An Italian Survey. Front Oncol 2022; 12:828072. [PMID: 35251997 PMCID: PMC8893956 DOI: 10.3389/fonc.2022.828072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a wide variety of clinical presentations, morphological features, and immunophenotypes. The diagnostic approaches to AML that are adopted in Italy have been explored using an online Delphi-based process to expand the global discussion on mandatory tests for the correct diagnosis and, consequently, for optimal management of AML in clinical practice. The final results of the panel of Italian hematologists involved in this work highlight the importance of genetic evaluation for classification and risk stratification and firmly establish that karyotyping, fluorescence in situ hybridization in cases with non-evaluable karyotype, and molecular tests must be performed in every case of AML, regardless of age. Obtaining clinically relevant genetic data at diagnosis is the basis for the success of patient-tailored therapy. The Italian specialists also confirm the role of multidisciplinary diagnostics for AML, now mandatory and expected to become more important in the future context of “precision” medicine.
Collapse
Affiliation(s)
- Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- *Correspondence: Maria Teresa Voso,
| | | | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Alessandro Rambaldi
- Department of Oncology-Hematology, University of Milan, Milan, Italy
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
8
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
9
|
La Manna S, Florio D, Di Natale C, Scognamiglio PL, Sibillano T, Netti PA, Giannini C, Marasco D. Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. Int J Biol Macromol 2021; 188:207-214. [PMID: 34364939 DOI: 10.1016/j.ijbiomac.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Protein aggregation is suggested as a reversible, wide-spread physiological process used by cells to regulate their growth and adapt to different stress conditions. Nucleophosmin 1(NPM1) protein is an abundant multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML) patients. So far, the role of NPM1 mutations in leukemogenesis has remained largely elusive considering that they have the double effect of unfolding the C-terminal domain (CTD) and delocalizing the protein in the cytosol (NPM1c+). This mislocalization heavily impacts on cell cycle regulation. Our recent investigations unequivocally demonstrated an amyloid aggregation propensity introduced by AML mutations. Herein, employing complementary biophysical assays, we have characterized a N-terminal extended version of type F AML mutation of CTD and proved that it is able to form assemblies with amyloid character and fibrillar morphology. The present study represents an additional phase of knowledge to deepen the roles exerted by different types of cytoplasmatic NPM1c+ forms to develop in the future potential therapeutics for their selective targeting.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
10
|
Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034975. [PMID: 32398288 DOI: 10.1101/cshperspect.a034975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by attenuation of lineage differentiation trajectories that results in impaired hematopoiesis and enhanced self-renewal. To date, sequencing studies have provided a rich landscape of information on the somatic mutations that contribute to AML pathogenesis. These studies show that most AML genomes harbor relatively fewer mutations, which are acquired in a stepwise manner. Our understanding of the genetic basis of leukemogenesis informs a broader understanding of what initiates and maintains the AML clone and informs the development of prognostic models and mechanism-based therapeutic strategies. Here, we explore the current knowledge of genetic and epigenetic aberrations in AML pathogenesis and how recent studies are expanding our knowledge of leukemogenesis and using this to accelerate therapeutic development for AML patients.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
11
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
12
|
NPM1-Mutated Myeloid Neoplasms with <20% Blasts: A Really Distinct Clinico-Pathologic Entity? Int J Mol Sci 2020; 21:ijms21238975. [PMID: 33255988 PMCID: PMC7730332 DOI: 10.3390/ijms21238975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.
Collapse
|
13
|
Sportoletti P, Sorcini D, Guzman AG, Reyes JM, Stella A, Marra A, Sartori S, Brunetti L, Rossi R, Papa BD, Adamo FM, Pianigiani G, Betti C, Scialdone A, Guarente V, Spinozzi G, Tini V, Martelli MP, Goodell MA, Falini B. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia 2020; 35:1949-1963. [PMID: 33159179 PMCID: PMC8257496 DOI: 10.1038/s41375-020-01075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Recurrent loss-of-function mutations of BCL6 co-repressor (BCOR) gene are found in about 4% of AML patients with normal karyotype and are associated with DNMT3a mutations and poor prognosis. Therefore, new anti-leukemia treatments and mouse models are needed for this combinatorial AML genotype. For this purpose, we first generated a Bcor-/- knockout mouse model characterized by impaired erythroid development (macrocytosis and anemia) and enhanced thrombopoiesis, which are both features of myelodysplasia/myeloproliferative neoplasms. We then created and characterized double Bcor-/-/Dnmt3a-/- knockout mice. Interestingly, these animals developed a fully penetrant acute erythroid leukemia (AEL) characterized by leukocytosis secondary to the expansion of blasts expressing c-Kit+ and the erythroid marker Ter119, macrocytic anemia and progressive reduction of the thrombocytosis associated with loss of Bcor alone. Transcriptomic analysis of double knockout bone marrow progenitors revealed that aberrant erythroid skewing was induced by epigenetic changes affecting specific transcriptional factors (GATA1-2) and cell-cycle regulators (Mdm2, Tp53). These findings prompted us to investigate the efficacy of demethylating agents in AEL, with significant impact on progressive leukemic burden and mice overall survival. Information gained from our model expands the knowledge on the biology of AEL and may help designing new rational treatments for patients suffering from this high-risk leukemia.
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| | - Daniele Sorcini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Anna G Guzman
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jaime M Reyes
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arianna Stella
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Sara Sartori
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Lorenzo Brunetti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Roberta Rossi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulia Pianigiani
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Camilla Betti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Annarita Scialdone
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulio Spinozzi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valentina Tini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Maria Paola Martelli
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Margaret A Goodell
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brunangelo Falini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
14
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
15
|
Nagdy B, Kassem HA, Abdel-Ghaffar ARB, Seoudi DM, Kassem NM. The Clinicopathological Impact of Granulocyte-Macrophage Colony-Stimulating Factor Gene Expression and Different Molecular Prognostic Biomarkers in Egyptian Acute Myeloid Leukemia Patients. Asian Pac J Cancer Prev 2020; 21:1993-2001. [PMID: 32711425 PMCID: PMC7573395 DOI: 10.31557/apjcp.2020.21.7.1993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is characterized by clonal expansion of myeloid precursors with diminished capacity for differentiation. It develops as the consequence of a series of genetic changes in a hematopoietic precursor cell. Purpose This study aimed to investigate the correlation between GM-CSF gene expression and different molecular prognostic markers such as FLT3-ITD, NPM1 mutation A and CEBPA gene expression in 100 Egyptian AML patients. As well as, correlation with the response to induction therapy, DFS andOS in these patients. Methodology: Quantitative assessment of GM-CSF gene expression was performed by qRT-PCR. Additional prognostic molecular markers were determined as FLT3-ITD and NPM1 mutation A together with quantitative assessment of CEBPA gene expression by qRT-PCR. Results: Patients with high GM-CSF expression levels had better OS and DFS with p value 0.004 and 0.02, respectively. However, no statistically significant difference between low andhigh GM-CSF gene expression was found regarding the response to therapy (p value= 0.08). Most patients with low CEBPA expression had resistant disease together with poor OS and DFS (P value = <0.001 for each). Our results showed that patients with high CEBPA gene expression whether GM-CSF gene expression was high or low had significant higher complete remission rates (p value = 0.1 for each). However, low GM-CSF gene expression andlow CEBPA gene expression showed poor response to treatment. Conclusion: Our findings suggest that molecular diagnostic biomarkers for AML are an essential tool that improves prognostication andhence better patients’ management.
Collapse
Affiliation(s)
- Bassant Nagdy
- Molecular Oncology Unit, Kasr Al-Aiby Centre of Clinical Oncology; Nuclear Medicine, School of Medicine, Cairo University, Egypt
| | - Hebatallah A Kassem
- Department of Clinical and Chemical Pathology, Kasr Al Ainy Centre of Clinical Oncology, Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| | | | - Dina M Seoudi
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Neemat M Kassem
- Department of Clinical and Chemical Pathology, Kasr Al Ainy Centre of Clinical Oncology, Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv 2020; 3:922-933. [PMID: 30902805 DOI: 10.1182/bloodadvances.2018026989] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/09/2019] [Indexed: 11/20/2022] Open
Abstract
Nucleophosmin (NPM1) mutations are common in acute myeloid leukemia and are associated with high remission rates and prolonged survival with intensive chemotherapy. NPM1 mutations are rare in myelodysplastic syndromes (MDS) or myelodysplastic/myeloproliferative neoplasm (MDS/MPN), and the clinical outcomes of these patients, when treated with intensive chemotherapy, are unknown. We retrospectively evaluated the clinicopathologic characteristics and the impact of therapy in 31 patients with MDS or MDS/MPN and NPM1 mutations. Next-generation sequencing was performed at diagnosis in 22 patients. Median age was 62 years (range, 19-86). Twenty-four patients (77%) had normal karyotype, and all had multilineage dysplasia. Most patients could be classified as MDS with excess blasts (19/31, 61%). NPM1 mutations were detected at a median allele frequency of 0.38 (range, 0.09-0.49). Mutation burden did not correlate with bone marrow blast frequency, and its clearance seemed to be associated with decreased morphologic dysplasia. Ten of the 31 patients (32%) received cytotoxic chemotherapy, 20 (65%) hypomethylating agents, and 1 (4%) lenalidomide. Sequential sequencing was available in 16 (52%) patients, and mutation burden correlated with disease status and response to therapy. Patients treated with chemotherapy had higher complete response rates (90% vs 28%, P = .004), longer median progression-free survival (not reached vs 7.5 months, P = .023), and overall survival (not reached vs 16 months, P = .047). Intensive chemotherapy and allogeneic stem cell transplantation (SCT) may be associated with improved clinical outcomes in patients with NPM1-mutated MDS or MDS/MPN who are candidates for this form of therapy.
Collapse
|
17
|
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620719899818. [PMID: 32071709 PMCID: PMC6997955 DOI: 10.1177/2040620719899818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein that is
implicated in a variety of biological processes and in the pathogenesis of
several human malignancies. For hematologic malignancies, approximately
one-third of anaplastic large-cell non-Hodgkin’s lymphomas were found to express
a fusion between NPM1 and the catalytic domain of anaplastic
lymphoma receptor tyrosine kinase. About 50–60% of acute myeloid leukemia
patients with normal karyotype carry NPM1 mutations, which are
characterized by cytoplasmic dislocation of the NPM1 protein.
Nevertheless, NPM1 is overexpressed in various hematologic and
solid tumor malignancies. NPM1 overexpression is considered a
prognostic marker of recurrence and progression of cancer. Thus,
NPM1 abnormalities play a critical role in several types of
hematologic malignancies. This has led to intense interest in the development of
an NPM1 targeting strategy for cancer therapy. The aim of this
review is to summarize present knowledge on NPM1 origin,
pathogenesis, and therapeutic interventions in hematologic malignancies.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Zeng H, Wu H, Yan M, Tang L, Guo X, Zhao X. Characterization of a 4 lncRNAs-based prognostic risk scoring system in adults with acute myeloid leukemia. Leuk Res 2019; 88:106261. [PMID: 31739140 DOI: 10.1016/j.leukres.2019.106261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The study aims to develop a prognostic scoring system based on prognostic lncRNAs for acute myeloid leukemia (AML). METHODS Based on lncRNA expression profiles downloaded from The Cancer Genome Atlas (TCGA), differentially expressed long noncoding RNAs (DELs) between good prognosis and bad prognosis samples were screened, from which prognosis-related lncRNAs were selected using uni-variate and multi-variate Cox regression analysis. Based on the expression profiles of these signature prognosis-related lncRNAs, a risk scoring system was developed and applied to a training set and validated on a testing set. With sample-matched mRNAs of the signature lncRNAs, lncRNA-mRNA networks were built, followed by function analysis for the mRNAs in these networks. RESULT Total 66 DELs were identified between good prognosis and bad prognosis samples. Among these DELs, LINC01003, CTD-2234N14, RP1-137K24, and RP11-834C111 were found to be independent predictors of prognosis. A risk scoring system based on the expressions of the 4 signature lncRNAs was developed. Kaplan-Meier survival analysis found that the risk score system could classify patients into high-risk and low-risk groups with significantly different survival outcomes. Function analysis showed that the mRNAs in these lncRNA-mRNA networks were significantly linked to mTOR signaling pathway, apoptosis, Fc epsilon RI signaling pathway, B cell receptor signaling pathway, natural killer cell mediated cytotoxicity, and T cell receptor signaling pathway. CONCLUSION This study suggested a promising 4 prognostic lncRNAs-based risk scoring system in AML. These 4 lncRNAs may play roles in regulating prognosis partly via mTOR signaling pathway, apoptosis, and some immune-related pathways.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Haibing Wu
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Minchao Yan
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Lun Tang
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Xiaojun Guo
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Xiaoyan Zhao
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China.
| |
Collapse
|
19
|
Shi X, Yang Y, Shang S, Wu S, Zhang W, Peng L, Huang T, Zhang R, Ren R, Mi J, Wang Y. Cooperation of Dnmt3a R878H with Nras G12D promotes leukemogenesis in knock-in mice: a pilot study. BMC Cancer 2019; 19:1072. [PMID: 31703632 PMCID: PMC6842226 DOI: 10.1186/s12885-019-6207-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND DNMT3A R882H, a frequent mutation in acute myeloid leukemia (AML), plays a critical role in malignant hematopoiesis. Recent findings suggest that DNMT3A mutant acts as a founder mutation and requires additional genetic events to induce full-blown AML. Here, we investigated the cooperation of mutant DNMT3A and NRAS in leukemogenesis by generating a double knock-in (DKI) mouse model harboring both Dnmt3a R878H and Nras G12D mutations. METHODS DKI mice with both Dnmt3a R878H and Nras G12D mutations were generated by crossing Dnmt3a R878H knock-in (KI) mice and Nras G12D KI mice. Routine blood test, flow cytometry analysis and morphological analysis were performed to determine disease phenotype. RNA-sequencing (RNA-seq), RT-PCR and Western blot were carried out to reveal the molecular mechanism. RESULTS The DKI mice developed a more aggressive AML with a significantly shortened lifespan and higher percentage of blast cells compared with KI mice expressing Dnmt3a or Nras mutation alone. RNA-seq analysis showed that Dnmt3a and Nras mutations collaboratively caused abnormal expression of a series of genes related to differentiation arrest and growth advantage. Myc transcription factor and its target genes related to proliferation and apoptosis were up-regulated, thus contributing to promote the process of leukemogenesis. CONCLUSION This study showed that cooperation of DNMT3A mutation and NRAS mutation could promote the onset of AML by synergistically disturbing the transcriptional profiling with Myc pathway involvement in DKI mice.
Collapse
Affiliation(s)
- Xiaodong Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siqi Shang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Songfang Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weina Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lijun Peng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruihong Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruibao Ren
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianqing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
20
|
Vorbach S, Gründer A, Zhou F, Koellerer C, Jutzi JS, Simoni M, Riccetti L, Valk PJ, Sanders MA, Müller-Tidow C, Nofer JR, Pahl HL, Potì F. Enhanced expression of the sphingosine-1-phosphate-receptor-3 causes acute myelogenous leukemia in mice. Leukemia 2019; 34:721-734. [PMID: 31636343 DOI: 10.1038/s41375-019-0577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) carries a 10-100 fold lower mutational burden than other neoplastic entities. Mechanistic explanations for why a low number of mutations suffice to induce leukemogenesis are therefore required. Here we demonstrate that transgenic overexpression of the wild type sphingosine-1-phosphate receptor 3 (S1P3) in murine hematopoietic stem cells is sufficient to induce a transplantable myeloid leukemia. In contrast, S1P3 expression in more mature compartments does not cause malignant transformation. Treatment with the sphingosine phosphate receptor modulator Fingolimod, which prevents receptor signaling, normalized peripheral blood cell counts and reduced spleen sizes in S1P3 expressing mice. Gene expression analyses in AML patients revealed elevated S1P3 expression specifically in two molecular subclasses. Our data suggest a previously unrecognized contribution of wild type S1P3 signaling to leukemogenesis that warrants the exploration of S1P3 antagonists in preclinical AML models.
Collapse
Affiliation(s)
- Samuel Vorbach
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Albert Gründer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fengbiao Zhou
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christoph Koellerer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jonas S Jutzi
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Manuela Simoni
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy
| | - Laura Riccetti
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy
| | - Peter J Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Francesco Potì
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy.,Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Via Volturno 39/F, 43125, Parma, Italy
| |
Collapse
|
21
|
Potter N, Miraki-Moud F, Ermini L, Titley I, Vijayaraghavan G, Papaemmanuil E, Campbell P, Gribben J, Taussig D, Greaves M. Single cell analysis of clonal architecture in acute myeloid leukaemia. Leukemia 2019; 33:1113-1123. [PMID: 30568172 PMCID: PMC6451634 DOI: 10.1038/s41375-018-0319-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022]
Abstract
We used single cell Q-PCR on a micro-fluidic platform (Fluidigm) to analyse clonal, genetic architecture and phylogeny in acute myeloid leukaemia (AML) using selected mutations. Ten cases of NPM1c mutant AML were screened for 111 mutations that are recurrent in AML and cancer. Clonal architectures were relatively simple with one to six sub-clones and were branching in some, but not all, patients. NPM1 mutations were secondary or sub-clonal to other driver mutations (DNM3TA, TET2, WT1 and IDH2) in all cases. In three of the ten cases, single cell analysis of enriched CD34+/CD33- cells revealed a putative pre-leukaemic sub-clone, undetectable in the bulk CD33+ population that had one or more driver mutations but lacked NPM1c. Cells from all cases were transplanted into NSG mice and in most (8/10), more than one sub-clone (#2-5 sub-clones) transplanted. However, the dominant regenerating sub-clone in 9/10 cases was NPM1+ and this sub-clone was either dominant or minor in the diagnostic sample from which it was derived. This study provides further evidence, at the single cell level, for genetic variegation in sub-clones and stem cells in acute leukaemia and demonstrates both a preferential order of mutation accrual and parallel evolution of sub-clones.
Collapse
Affiliation(s)
- Nicola Potter
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Luca Ermini
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Ian Titley
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | | | | | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
22
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
23
|
Kaur M, Drake AC, Hu G, Rudnick S, Chen Q, Phennicie R, Attar R, Nemeth J, Gaudet F, Chen J. Induction and Therapeutic Targeting of Human NPM1c + Myeloid Leukemia in the Presence of Autologous Immune System in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:1885-1894. [PMID: 30710044 DOI: 10.4049/jimmunol.1800366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Development of targeted cancer therapy requires a thorough understanding of mechanisms of tumorigenesis as well as mechanisms of action of therapeutics. This is challenging because by the time patients are diagnosed with cancer, early events of tumorigenesis have already taken place. Similarly, development of cancer immunotherapies is hampered by a lack of appropriate small animal models with autologous human tumor and immune system. In this article, we report the development of a mouse model of human acute myeloid leukemia (AML) with autologous immune system for studying early events of human leukemogenesis and testing the efficacy of immunotherapeutics. To develop such a model, human hematopoietic stem/progenitor cells (HSPC) are transduced with lentiviruses expressing a mutated form of nucleophosmin (NPM1), referred to as NPM1c. Following engraftment into immunodeficient mice, transduced HSPCs give rise to human myeloid leukemia, whereas untransduced HSPCs give rise to human immune cells in the same mice. The de novo AML, with CD123+ leukemic stem or initiating cells (LSC), resembles NPM1c+ AML from patients. Transcriptional analysis of LSC and leukemic cells confirms similarity of the de novo leukemia generated in mice with patient leukemia and suggests Myc as a co-operating factor in NPM1c-driven leukemogenesis. We show that a bispecific conjugate that binds both CD3 and CD123 eliminates CD123+ LSCs in a T cell-dependent manner both in vivo and in vitro. These results demonstrate the utility of the NPM1c+ AML model with an autologous immune system for studying early events of human leukemogenesis and for evaluating efficacy and mechanism of immunotherapeutics.
Collapse
Affiliation(s)
- Mandeep Kaur
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam C Drake
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Qingfeng Chen
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | - Ryan Phennicie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ricardo Attar
- Janssen Pharmaceuticals, Inc., Springhouse, PA 19477; and
| | - Jeffrey Nemeth
- Janssen Pharmaceuticals, Inc., Springhouse, PA 19477; and
| | | | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
24
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
25
|
Brunetti L, Gundry MC, Goodell MA. New insights into the biology of acute myeloid leukemia with mutated NPM1. Int J Hematol 2019; 110:150-160. [DOI: 10.1007/s12185-018-02578-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
26
|
Uckelmann HJ, Armstrong SA, Stone RM. Location, Location, Location: Mutant NPM1c Cytoplasmic Localization Is Required to Maintain Stem Cell Genes in AML. Cancer Cell 2018; 34:355-357. [PMID: 30205041 DOI: 10.1016/j.ccell.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this issue of Cancer Cell, Brunetti and colleagues elucidate the role of mutant NPM1c and its cytoplasmic mislocalization in acute myeloid leukemia. They demonstrate how mutant-specific degradation or relocalization leads to a loss of the stem cell signature characteristic of these leukemias and induces their differentiation.
Collapse
Affiliation(s)
- Hannah J Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
27
|
Barbieri E, Deflorian G, Pezzimenti F, Valli D, Saia M, Meani N, Gruszka AM, Alcalay M. Nucleophosmin leukemogenic mutant activates Wnt signaling during zebrafish development. Oncotarget 2018; 7:55302-55312. [PMID: 27486814 PMCID: PMC5342418 DOI: 10.18632/oncotarget.10878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/26/2016] [Indexed: 01/08/2023] Open
Abstract
Nucleophosmin (NPM1) is a ubiquitous multifunctional phosphoprotein with both oncogenic and tumor suppressor functions. Mutations of the NPM1 gene are the most frequent genetic alterations in acute myeloid leukemia (AML) and result in the expression of a mutant protein with aberrant cytoplasmic localization, NPMc+. Although NPMc+ causes myeloproliferation and AML in animal models, its mechanism of action remains largely unknown. Here we report that NPMc+ activates canonical Wnt signaling during the early phases of zebrafish development and determines a Wnt-dependent increase in the number of progenitor cells during primitive hematopoiesis. Coherently, the canonical Wnt pathway is active in AML blasts bearing NPMc+ and depletion of the mutant protein in the patient derived OCI-AML3 cell line leads to a decrease in the levels of active β-catenin and of Wnt target genes. Our results reveal a novel function of NPMc+ and provide insight into the molecular pathogenesis of AML bearing NPM1 mutations.
Collapse
Affiliation(s)
- Elisa Barbieri
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy.,Current address: Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Gianluca Deflorian
- The FIRC Institute of Molecular Oncology (IFOM) Foundation, Milan, Italy
| | | | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy
| | - Marco Saia
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy
| | - Natalia Meani
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy
| | - Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Sato S, Itonaga H, Taguchi M, Sawayama Y, Imanishi D, Tsushima H, Hata T, Moriuchi Y, Mishima H, Kinoshita A, Yoshiura KI, Miyazaki Y. Clonal dynamics in a case of acute monoblastic leukemia that later developed myeloproliferative neoplasm. Int J Hematol 2018; 108:213-217. [PMID: 29417354 DOI: 10.1007/s12185-018-2419-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/25/2023]
Abstract
In acute myeloid leukemia (AML), patients may harbor pre-leukemic hematopoietic stem cells (HSCs) containing some, but not all, of the mutations observed in the leukemic cells. These pre-leukemic HSCs may survive induction chemotherapy and contribute to AML relapse by obtaining additional mutations. We report here an acute monoblastic leukemia (AMoL) patient who later developed an unclassifiable myeloproliferative neoplasm (MPN-U). Whole-exome sequencing and cluster analysis demonstrated the presence of three distinct major clones during the clinical course: (1) an AMoL clone with ASXL1, CBL, and NPM1 somatic mutations, likely associated with the pathogenesis, and GATA2, SRSF2, and TET2 mutations, (2) an AMoL remission clone, with mutated GATA2, SRSF2, and TET2 only (possibly the founding clone (pre-leukemic HSC) that survived chemotherapy), (3) a small subclone which had JAK2 mutation during the AMoL remission, appearing at MPN-U manifestation with additional mutations. These findings suggest that pre-leukemic HSCs in AML patients may give rise to non-AML myeloid malignancies. This is the first report to analyze the clonal evolution from AMoL to MPN-U, which may provide new insight into the development of myeloid malignancies.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hidehiro Itonaga
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Masataka Taguchi
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | - Yasushi Sawayama
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Hideki Tsushima
- Department of Hematology, Nagasaki Harbor Medical Center City Hospital, Nagasaki, Japan
| | - Tomoko Hata
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Insutitute, Nagasaki University, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Insutitute, Nagasaki University, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Insutitute, Nagasaki University, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan. .,Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
29
|
Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget 2018; 7:44821-44840. [PMID: 27058426 PMCID: PMC5190137 DOI: 10.18632/oncotarget.8599] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin plays crucial roles in ribosome maturation and export, centrosome duplication, cell cycle progression, histone assembly and response to a variety of stress stimuli. Much interest in this protein has arisen in the past ten years, since the discovery of heterozygous mutations in the terminal exon of the NPM1 gene, which are the most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also frequently overexpressed in solid tumours and, in many cases, its overexpression correlates with mitotic index and metastatization. Therefore it is considered as a promising target for the treatment of both haematologic and solid malignancies. NPM1 targeting molecules may suppress different functions of the protein, interfere with its subcellular localization, with its oligomerization properties or drive its degradation. In the recent years, several such molecules have been described and here we review what is currently known about them, their interaction with nucleophosmin and the mechanistic basis of their toxicity. Collectively, these molecules exemplify a number of different strategies that can be adopted to target nucleophosmin and we summarize them at the end of the review.
Collapse
|
30
|
Deguelin induced differentiation of mutated NPM1 acute myeloid leukemia in vivo and in vitro. Anticancer Drugs 2017; 28:723-738. [PMID: 28471807 DOI: 10.1097/cad.0000000000000494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleophosmin (NPM1), a restricted nucleolar localization protein, shuttles between the nucleus and the cytoplasm. Mutated (Mt)-NPM1 protein, which has aberrant cytoplasmic dislocation of nucleophosmin, occurs in approximately one-third of acute myeloid leukemia cases. Deguelin, a rotenoid isolated from several plant species, is a strong antitumor agent. NOD/SCID mice xenografted with human Mt-NPM1 OCI/AML3 cell lines served as in-vivo models. Wright-Giemsa staining and flow cytometry analysis were used for differentiation assays. Associated molecular events were assessed by western blot and histological analyses. Kaplan-Meier estimates were used to calculate survival. Deguelin toxicity in mice was assessed by immunohistochemistry staining and serum markers. Clinical samples were differentiated by flow cytometry analysis. Deguelin induced differentiation by downregulating the Mt-NPM1 protein levels, which was accompanied by a decrease in SIRT1, p21, and HDAC1 and an increase in CEBPβ and granulocyte colony-stimulating factor receptor protein expression levels. A low-deguelin dose prolonged survival compared with the control group, and there were no apparent lesions to the brain, liver, heart, and kidney in vivo. In clinical samples, deguelin induced the differentiation of fresh blasts with Mt-NPM1 protein, but not with the wild-type NPM1 protein. Taken together, these findings further provide new evidence that the Mt-NPM1 protein plays an important role in inducing differentiation in vivo and in vitro. Mutated NPM1 protein may be a therapeutic target of deguelin in acute myeloid leukemia with the NPM1 mutation.
Collapse
|
31
|
Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, Andrews RM, Pacharne S, Tzelepis K, Vijayabaskar MS, Green P, Rad R, Arends M, Wright P, Yusa K, Bradley A, Varela I, Vassiliou GS. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood 2017; 130:1911-1922. [PMID: 28835438 PMCID: PMC5672315 DOI: 10.1182/blood-2017-01-760595] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.
Collapse
Affiliation(s)
- Oliver M Dovey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jonathan L Cooper
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Annalisa Mupo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Carolyn S Grove
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
- PathWest Division of Clinical Pathology, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Claire Lynn
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Nathalie Conte
- Sample Phenotype Ontology Team, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Robert M Andrews
- Institute of Translation, Innovation, Methodology, and Engagement, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Suruchi Pacharne
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - M S Vijayabaskar
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Paul Green
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mark Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Penny Wright
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| |
Collapse
|
32
|
Zou Q, Tan S, Yang Z, Zhan Q, Jin H, Xian J, Zhang S, Yang L, Wang L, Zhang L. NPM1 Mutant Mediated PML Delocalization and Stabilization Enhances Autophagy and Cell Survival in Leukemic Cells. Am J Cancer Res 2017; 7:2289-2304. [PMID: 28740552 PMCID: PMC5505061 DOI: 10.7150/thno.19439] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence has defined nucleophosmin 1 (NPM1) mutation as a driver genetic event in acute myeloid leukemia (AML), whereas the pathogenesis of NPM1-mutated AML remains to be fully elucidated. In this study, we showed that mutant NPM1 elevated autophagic activity and autophagic activation contributed to leukemic cell survival in vitro. Meanwhile, we also found high expression of promyelocytic leukemia gene (PML) and its cytoplasmic dislocation in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. Mechanically, mutant NPM1 interacted with PML and mediated it delocalization as well as stabilization. Notably, NPM1-mA knockdown impaired autophagic activity, while induced expression of PML reversed this effect. Finally, we confirmed that PML modulated autophagic activity via AKT signal. These findings suggest that aberrant PML expression and autophagy are beneficial to the leukemic transformation driven by NPM1 mutations. This indicates an attractive therapeutic avenue for PML targeting and/or autophagy inhibition in the treatment of NPM1-mutated AML.
Collapse
|
33
|
Gill H, Leung AYH, Kwong YL. Molecularly targeted therapy in acute myeloid leukemia. Future Oncol 2016; 12:827-38. [PMID: 26828965 DOI: 10.2217/fon.15.314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is molecularly heterogeneous. Formerly categorized cytogenetically and molecularly, AML may be classified by genomic and epigenomic analyses. These genetic lesions provide therapeutic targets. Genes targeted currently include mutated FLT3, NPM1 and KIT with drugs entering Phase III trials. Complete remission can be achieved in relapsed/refractory AML, albeit mostly transient. Mutated epigenetic modifiers, including DNMT3A, IDH1/2 and TET2, can be targeted by small molecule inhibitors, hypomethylating agents and histone deacetylase inhibitors. Other agents include cellular signaling pathway inhibitors and monoclonal antibodies against myeloid-associated antigens. Combinatorial strategies appear logical, mostly involving smaller molecular inhibitors partnering with hypomethylating agents. Currently limited to relapsed/refractory AML, targeted therapies are increasingly tested in frontline treatment with or without standard chemotherapy.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, Queen Mary Hospital, Hong Kong
| | | | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong
| |
Collapse
|
34
|
Falini B, Martelli MP. Impact of genomics in the clinical management of patients with cytogenetically normal acute myeloid leukemia. Best Pract Res Clin Haematol 2015; 28:90-7. [PMID: 26590764 DOI: 10.1016/j.beha.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease. Cytogenetics and FISH have contributed to the stratification of AML patients into favorable, intermediate, and unfavorable risk categories. However, until recently, the prognostic stratification and treatment decision for the intermediate risk category, mostly comprising AML patients with normal cytogenetics (CN-AML), has been difficult due to the scarce knowledge of the molecular alterations underlying this large AML subgroup (which accounts for about 50% of all adult AML). During the past decade, the discovery of numerous mutations associated with CN-AML has resulted in significant advances in the AML field. Here, we review the biological characteristics of the most common mutations underlying CN-AML and outline their clinical impact in the following settings: (i) definition of new molecular leukemia entities in the WHO classification; (ii) risk stratification of CN-AML patients according to mutational profile; and (iii) monitoring of minimal residual disease by specific quantitative molecular assays.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Italy.
| | - Maria Paola Martelli
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Italy
| |
Collapse
|
35
|
Falini B, Sportoletti P, Brunetti L, Martelli MP. Perspectives for therapeutic targeting of gene mutations in acute myeloid leukaemia with normal cytogenetics. Br J Haematol 2015; 170:305-22. [PMID: 25891481 DOI: 10.1111/bjh.13409] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The acute myeloid leukaemia (AML) genome contains more than 20 driver recurrent mutations. Here, we review the potential for therapeutic targeting of the most common mutations associated with normal cytogenetics AML, focusing on those affecting the FLT3, NPM1 and epigenetic modifier genes (DNMT3A, IDH1/2, TET2). As compared to early compounds, second generation FLT3 inhibitors are more specific and have better pharmacokinetics. They also show higher anti-leukaemic activity, leading to about 50% of composite complete remissions in refractory/relapsed FLT3-internal tandem duplication-mutated AML. However, rapid relapses invariably occur due to various mechanisms of resistance to FLT3 inhibitors. This issue and the best way for using FLT3 inhibitors in combination with other therapeutic modalities are discussed. Potential approaches for therapeutic targeting of NPM1-mutated AML include: (i) reverting the aberrant nuclear export of NPM1 mutant using exportin-1 inhibitors; (ii) disruption of the nucleolus with drugs blocking the oligomerization of wild-type nucleophosmin or inducing nucleolar stress; and (iii) immunotherapeutic targeting of highly expressed CD33 and IL3RA (CD123) antigens. Finally, we discuss the role of demethylating agents (decitabine and azacitidine) and IDH1/2 inhibitors in the treatment of AML patients carrying mutations of genes (DNMT3A, IDH1/2 and TET2) involved in the epigenetic regulation of transcription.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| | - Lorenzo Brunetti
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| | - Maria Paola Martelli
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| |
Collapse
|
36
|
Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 2015; 125:3455-65. [PMID: 25795919 DOI: 10.1182/blood-2014-11-611459] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/12/2015] [Indexed: 11/20/2022] Open
Abstract
Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics.
Collapse
|