1
|
Zhao L, Sun L, Kong D, Cao R, Guo Z, Guo D, Li Q, Hao J, Li Y, Emails L. Chidamide and venetoclax synergistically regulate the Wnt/β-catenin pathway by MYCN/DKK3 in B-ALL. Ann Hematol 2025; 104:489-501. [PMID: 39607486 PMCID: PMC11868301 DOI: 10.1007/s00277-024-06110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
B-cell acute lymphocytic leukemia (B-ALL) is a malignant proliferative B-lymphocyte disease. Although the outcome of B-ALL has greatly improved with combined chemotherapy, immunotherapy, and hematopoietic stem cell transplantation, some patients still experience drug resistance, relapse and a low long-term survival rate, therefore, finding novel approaches to improve the outcome of adult B-ALL patients is critical. Our previous studies revealed that the selective histone deacetylase inhibitor (HDACi) chidamide can inhibit the Wnt/β-catenin signaling pathway by inhibiting MYCN and increasing the expression of DKK3 in B-ALL cells. Some studies have indicated that histone deacetylase inhibitors (HDACis) can dysregulate the B-cell lymphoma-2 (BCL2) protein family, we speculate that chidamide and BCL2 inhibitor venetoclax synergistically inhibit the Wnt/β-catenin signaling pathway by inhibiting MYCN expression and increasing DKK3 expression. In our study, the in vitro and in vivo experiments confirmed that chidamide and venetoclax synergistically inhibited the expression of MYCN and increased the expression of DKK3 by inhibiting the activity of HDAC and BCL2, inhibiting the Wnt/β-catenin signaling pathway and B-ALL cell proliferation. These findings indicate that the HDACi chidamide and the BCL2 inhibitor venetoclax can be used in combination to treat B-ALL, providing a new method and strategy for treating B-ALL.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Desheng Kong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rongyi Cao
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dan Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - JiaLi Hao
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Li Emails
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
3
|
Oikonomou A, Watrin T, Valsecchi L, Scharov K, Savino AM, Schliehe-Diecks J, Bardini M, Fazio G, Bresolin S, Biondi A, Borkhardt A, Bhatia S, Cazzaniga G, Palmi C. Synergistic drug interactions of the histone deacetylase inhibitor givinostat (ITF2357) in CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia identified by high-throughput drug screening. Heliyon 2024; 10:e34033. [PMID: 39071567 PMCID: PMC11277435 DOI: 10.1016/j.heliyon.2024.e34033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Combining multiple drugs broadens the window of therapeutic opportunities and is crucial for diseases that are currently lacking fully curative treatments. A powerful emerging tool for selecting effective drugs and combinations is the high-throughput drug screening (HTP). The histone deacetylase inhibitor (HDACi) givinostat (ITF2357) has been shown to act effectively against CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), a subtype characterized by poor outcome and enriched in children with Down Syndrome, very fragile patients with a high susceptibility to treatment-related toxicity. The aim of this study is to investigate possible synergies with givinostat for these difficult-to-treat patients by performing HTP screening with a library of 174 drugs, either approved or in preclinical studies. By applying this approach to the CRLF2-r MHH-CALL-4 cell line, we identified 19 compounds with higher sensitivity in combination with givinostat compared to the single treatments. Next, the synergy between givinostat and the promising candidates was further validated in CRLF2r cell lines with a broad matrix of concentrations. The combinations with trametinib (MEKi) or venetoclax (BCL2i) were found to be the most effective and with the greatest synergy across three metrics (ZIP, HAS, Bliss). Their efficacy was confirmed in primary blasts treated ex vivo at concentration ranges with a safe profile on healthy cells. Finally, we described givinostat-induced modifications in gene expression of MAPK and BCL-2 family members, supporting the observed synergistic interactions. Overall, our study represents a model of drug repurposing strategy using HTP screening for identifying synergistic, efficient, and safe drug combinations.
Collapse
Affiliation(s)
| | - Titus Watrin
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Luigia Valsecchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Angela Maria Savino
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Julian Schliehe-Diecks
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
4
|
Workenhe ST, Inkol JM, Westerveld MJ, Verburg SG, Worfolk SM, Walsh SR, Kallio KL. Determinants for Antitumor and Protumor Effects of Programmed Cell Death. Cancer Immunol Res 2024; 12:7-16. [PMID: 37902605 PMCID: PMC10762341 DOI: 10.1158/2326-6066.cir-23-0321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023]
Abstract
Cytotoxic anticancer therapies activate programmed cell death in the context of underlying stress and inflammatory signaling to elicit the emission of danger signals, cytokines, and chemokines. In a concerted manner, these immunomodulatory secretomes stimulate antigen presentation and T cell-mediated anticancer immune responses. In some instances, cell death-associated secretomes attract immunosuppressive cells to promote tumor progression. As it stands, cancer cell death-induced changes in the tumor microenvironment that contribute to antitumor or protumor effects remain largely unknown. This is complicated to examine because cell death is often subverted by tumors to circumvent natural, and therapy-induced, immunosurveillance. Here, we provide insights into important but understudied aspects of assessing the contribution of cell death to tumor elimination or cancer progression, including the role of tumor-associated genetics, epigenetics, and oncogenic factors in subverting immunogenic cell death. This perspective will also provide insights on how future studies may address the complex antitumor and protumor immunologic effects of cell death, while accounting for variations in tumor genetics and underlying microenvironment.
Collapse
Affiliation(s)
- Samuel T. Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordon M. Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael J. Westerveld
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayla G. Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah M. Worfolk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Scott R. Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kaslyn L.F. Kallio
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
6
|
Mehmood SA, Sahu KK, Sengupta S, Partap S, Karpoormath R, Kumar B, Kumar D. Recent advancement of HDAC inhibitors against breast cancer. Med Oncol 2023; 40:201. [PMID: 37294406 DOI: 10.1007/s12032-023-02058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Recent studies highlight the great potential impact of HDAC inhibitors (HDACis) in suppressing TNBC, even though clinical trials including a single HDACis demonstrated unsatisfactory outcomes against TNBC. New compounds created to achieve isoform selectivity and/or a polypharmacological HDAC strategy have also produced interesting results. The current study discusses the HDACis pharmacophoric models and the structural alterations that produced drugs with strong inhibitory effects on TNBC progression. With more than 2 million new cases reported in 2018, breast cancer-the most common cancer among women worldwide-poses a significant financial burden on an already deteriorating public health system. Due to a lack of therapies being developed for triple-negative breast cancers and the development of resistance to the current treatment options, it is imperative to plan novel therapeutics in order to bring new medications to the pipeline. Additionally, HDACs deacetylate a large number of nonhistone cellular substrates that control a variety of biological processes, such as the beginning and development of cancer. The significance of HDACs in cancer and the therapeutic potential of HDAC inhibitor. Furthermore, we also reported molecular docking study with four HDAC inhibitors and performed molecular dynamic stimulation of the best dock score compound. Among the four ligands belinostat compound showed best binding affinity with histone deacetylase protein which was -8.7 kJ/mol. It also formed five conventional hydrogen bond with Gly 841, His 669, His 670, pro 809, and His 709 amino acid residues.
Collapse
Affiliation(s)
- Syed Abdulla Mehmood
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Humdard University, New Delhi, India
| | - Kantrol Kumar Sahu
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
7
|
Saber S, Hasan AM, Mohammed OA, Saleh LA, Hashish AA, Alamri MMS, Al-Ameer AY, Alfaifi J, Senbel A, Aboregela AM, Khalid TBA, Abdel-Reheim MA, Cavalu S. Ganetespib (STA-9090) augments sorafenib efficacy via necroptosis induction in hepatocellular carcinoma: Implications from preclinical data for a novel therapeutic approach. Biomed Pharmacother 2023; 164:114918. [PMID: 37216705 DOI: 10.1016/j.biopha.2023.114918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Sorafenib, a multikinase inhibitor, is a first-line treatment for advanced hepatocellular carcinoma, but its long-term effectiveness is limited by the emergence of resistance mechanisms. One such mechanism is the reduction of microvessel density and intratumoral hypoxia caused by prolonged sorafenib treatment. Our research has demonstrated that HSP90 plays a critical role in conferring resistance to sorafenib in HepG2 cells under hypoxic conditions and N-Nitrosodiethylamine-exposed mice as well. This occurs through the inhibition of necroptosis on the one hand and the stabilization of HIF-1α on the other hand. To augment the effects of sorafenib, we investigated the use of ganetespib, an HSP90 inhibitor. We found that ganetespib activated necroptosis and destabilized HIF-1α under hypoxia, thus enhancing the effectiveness of sorafenib. Additionally, we discovered that LAMP2 aids in the degradation of MLKL, which is the mediator of necroptosis, through the chaperone-mediated autophagy pathway. Interestingly, we observed a significant negative correlation between LAMP2 and MLKL. These effects resulted in a reduction in the number of surface nodules and liver index, indicating a regression in tumor production rates in mice with HCC. Furthermore, AFP levels decreased. Combining ganetespib with sorafenib showed a synergistic cytotoxic effect and resulted in the accumulation of p62 and inhibition of macroautophagy. These findings suggest that the combined therapy of ganetespib and sorafenib may offer a promising approach for the treatment of hepatocellular carcinoma by activating necroptosis, inhibiting macroautophagy, and exhibiting a potential antiangiogenic effect. Overall, continued research is critical to establish the full therapeutic potential of this combination therapy.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Alexandru Madalin Hasan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Abdullah A Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Ahmed Y Al-Ameer
- Department of General Surgery, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed Senbel
- Department of General Surgery, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia; Department of Surgical Oncology, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura 35516 Egypt
| | | | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical sciences, College of Pharmacy, Shaqra University, Aldawadmi 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
8
|
Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023; 9:381-396. [PMID: 36841748 PMCID: PMC10121860 DOI: 10.1016/j.trecan.2023.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Induction of cell death is inexorably linked with cancer therapy, but this can also initiate wound-healing processes that have been linked to cancer progression and therapeutic resistance. Here we describe the contribution of apoptosis and the lytic cell death pathways in the response to therapy (including chemotherapy and immunotherapy). We also discuss how necroptosis, pyroptosis, and ferroptosis function to promote tumor immunogenicity, along with emerging findings that these same forms of death can paradoxically contribute to immune suppression and tumor progression. Understanding the duality of cell death in cancer may allow for the development of therapeutics that shift the balance towards regression.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
9
|
Mustafa AHM, Ashry R, Krämer OH. Monitoring Changes in Intracellular Reactive Oxygen Species Levels in Response to Histone Deacetylase Inhibitors. Methods Mol Biol 2023; 2589:337-344. [PMID: 36255635 DOI: 10.1007/978-1-0716-2788-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) are induced by several chemotherapeutics. In this protocol, we describe a flow cytometry-based method for the analysis of the intracellular levels of ROS in vital leukemic cells in response to the histone deacetylase inhibitor vorinostat. This measurement of ROS using the cell-permeable dye CM-H2DCFDA indicates intracellular oxidative stress.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
| | - Ramy Ashry
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
10
|
The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 2022; 27:697-719. [DOI: 10.1007/s10495-022-01760-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
|
11
|
Cao L, Chen Q, Gu H, Li Y, Cao W, Liu Y, Qu J, Hou Y, Chen J, Zhang E, He J, Cai Z. Chidamide and venetoclax synergistically exert cytotoxicity on multiple myeloma by upregulating BIM expression. Clin Epigenetics 2022; 14:84. [PMID: 35799216 PMCID: PMC9264603 DOI: 10.1186/s13148-022-01306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematologic malignancy with almost all patients eventually having relapse or refractory MM (RRMM), thus novel drugs or combination therapies are needed for improved prognosis. Chidamide and venetoclax, which target histone deacetylase and BCL2, respectively, are two promising agents for the treatment of RRMM. Results Herein, we found that chidamide and venetoclax synergistically exert an anti-myeloma effect in vitro in human myeloma cell lines (HMCLs) with a combination index (CI) < 1. Moreover, the synergistic anti-myeloma effect of these two drugs was demonstrated in primary MM cells and MM xenograft mice. Mechanistically, co-exposure to chidamide and venetoclax led to cell cycle arrest at G0/G1 and a sharp increase in DNA double-strand breaks. In addition, the combination of chidamide and venetoclax resulted in BCL-XL downregulation and BIM upregulation, and the latter protein was proved to play a critical role in sensitizing HMCLs to co-treatment. Conclusion In conclusion, these results proved the high therapeutic potential of venetoclax and chidamide combination in curing MM, representing a potent and alternative salvage therapy for the treatment of RRMM. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01306-7.
Collapse
Affiliation(s)
- Liqin Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Huiyao Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| |
Collapse
|
12
|
Zhang Q, Zhu Z, Guan J, Zheng C. Identification and Assessment of Necroptosis-Related Genes in Clinical Prognosis and Immune Cells in Diffuse Large B-Cell Lymphoma. Front Oncol 2022; 12:904614. [PMID: 35814424 PMCID: PMC9257018 DOI: 10.3389/fonc.2022.904614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background With the unveiling of new mechanisms and the advent of new drugs, the prognosis of diffuse large B-cell lymphoma (DLBCL) becomes promising, but some patients still progress to the relapse or refractory stage. Necroptosis, as a relatively novel programmed cell death, is involved in the development of multiple tumors. There are no relevant studies on the prognostic significance of necroptosis in DLBCL to date. Methods We identified the differential necroptosis-related genes (NRGs) by comparing the DLBCL and normal control in GSE12195 and GSE56315 datasets. TCGA DLBC and GSE10846 containing clinical information and microarray expression profiling were merged as the entire cohort. We performed consensus clusters based on NRGs and two clusters were obtained. Kaplan–Meier (K-M) survival analysis, GSVA, GO, KEGG, and ssGSEA were used to analyze the survival, function, and immune microenvironment between two clusters. With LASSO and proportional hazard model construction, we identified differentially expressed genes (DEGs) between NRG clusters, calculated the risk score, established a prognostic model, and validated its value by calibration and ROC curves. The entire cohort was divided into the training and test cohort, and GSE87371 was included as an external validation cohort. K-M, copy number variation, tumor mutation burden, and drug sensitivity were also analyzed. Results We found significant differences in prognosis between the two NRG clusters. Cluster A with a poor prognosis had a decreased expression of NRGs and a relatively suppressed immune microenvironment. GSVA analysis indicated that cluster A was related to the downregulation of the TGF-β signaling pathway and the activation of the Notch signaling pathway. The risk score had an accurate predictive ability. The nomogram could help predict the survival probability of DLBCL patients in the entire cohort and the external validation cohort. The area under the curve (AUC) of the nomogram, risk score, and International Prognostic Index was 0.723, 0.712, and 0.537, respectively. γ/δ T cells and Macrophage 1 cells decreased while Macrophage 2 cells and Natural Killer resting cells increased in the high-risk group. In addition, the high-risk group was more sensitive to the PI3K inhibitor and the PDK inhibitor. Conclusion We explored the potential role of necroptosis in DLBCL from multiple perspectives and provided a prognostic nomogram for the survival prediction of DLBCL. Necroptosis was downregulated and was correlated with an immunosuppressed tumor microenvironment and poor prognosis in DLBCL. Our study may deepen the understanding and facilitate the development of new therapy targets for DLBCL.
Collapse
Affiliation(s)
- Qikai Zhang
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zongsi Zhu
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jiaqiang Guan
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Cuiping Zheng
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Cuiping Zheng,
| |
Collapse
|
13
|
Chen Y, Sun Y, Luo Z, Lin J, Qi B, Kang X, Ying C, Guo C, Yao M, Chen X, Wang Y, Wang Q, Chen J, Chen S. Potential Mechanism Underlying Exercise Upregulated Circulating Blood Exosome miR-215-5p to Prevent Necroptosis of Neuronal Cells and a Model for Early Diagnosis of Alzheimer's Disease. Front Aging Neurosci 2022; 14:860364. [PMID: 35615585 PMCID: PMC9126031 DOI: 10.3389/fnagi.2022.860364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise is crucial for preventing Alzheimer's disease (AD), although the exact underlying mechanism remains unclear. The construction of an accurate AD risk prediction model is beneficial as it can provide a theoretical basis for preventive exercise prescription. In recent years, necroptosis has been confirmed as an important manifestation of AD, and exercise is known to inhibit necroptosis of neuronal cells. In this study, we extracted 67 necroptosis-related genes and 32 necroptosis-related lncRNAs and screened for key predictive AD risk genes through a random forest analysis. Based on the neural network Prediction model, we constructed a new logistic regression-based AD risk prediction model in order to provide a visual basis for the formulation of exercise prescription. The prediction model had an area under the curve (AUC) value of 0.979, indicative of strong predictive power and a robust clinical application prospect. In the exercise group, the expression of exosomal miR-215-5p was found to be upregulated; miR-215-5p could potentially inhibit the expressions of IDH1, BCL2L11, and SIRT1. The single-cell SCENIC assay was used to identify key transcriptional regulators in skeletal muscle. Among them, CEBPB and GATA6 were identified as putative transcriptional regulators of miR-215. After "skeletal muscle removal of load," the expressions of CEBPB and GATA6 increased substantially, which in turn led to the elevation of miR-215 expression, thereby suggesting a putative mechanism for negative feedback regulation of exosomal homeostasis.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenting Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | | | - Yi Wang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
15
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Soto-Diaz K, Vailati-Riboni M, Louie AY, McKim DB, Gaskins HR, Johnson RW, Steelman AJ. Treatment With the CSF1R Antagonist GW2580, Sensitizes Microglia to Reactive Oxygen Species. Front Immunol 2021; 12:734349. [PMID: 34899694 PMCID: PMC8664563 DOI: 10.3389/fimmu.2021.734349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia. Systemic treatment with central nervous system (CNS) penetrant, CSFR1 antagonists, results in microglia death in a dose dependent matter, while others, such as GW2580, suppress activation during disease states without altering viability. However, it is not known how treatment with non-penetrant CSF1R antagonists, such as GW2580, affect the normal physiology of microglia. To determine how GW2580 affects microglia function, C57BL/6J mice were orally gavaged with vehicle or GW2580 (80mg/kg/d) for 8 days. Body weights and burrowing behavior were measured throughout the experiment. The effects of GW2580 on circulating leukocyte populations, brain microglia morphology, and the transcriptome of magnetically isolated adult brain microglia were determined. Body weights, burrowing behavior, and circulating leukocytes were not affected by treatment. Analysis of Iba-1 stained brain microglia indicated that GW2580 treatment altered morphology, but not cell number. Analysis of RNA-sequencing data indicated that genes related to reactive oxygen species (ROS) regulation and survival were suppressed by treatment. Treatment of primary microglia cultures with GW2580 resulted in a dose-dependent reduction in viability only when the cells were concurrently treated with LPS, an inducer of ROS. Pre-treatment with the ROS inhibitor, YCG063, blocked treatment induced reductions in viability. Finally, GW2580 sensitized microglia to hydrogen peroxide induced cell death. Together, these data suggest that partial CSF1R antagonism may render microglia more susceptible to reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Katiria Soto-Diaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
17
|
Zhang H, Wu J, Yuan J, Li H, Zhang Y, Wu W, Chen W, Wang C, Meng S, Chen S, Huo M, He Y, Zhang C. Ethaselen synergizes with oxaliplatin in tumor growth inhibition by inducing ROS production and inhibiting TrxR1 activity in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:260. [PMID: 34412665 PMCID: PMC8375208 DOI: 10.1186/s13046-021-02052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
Background Oxaliplatin is one of the most commonly used chemotherapeutic agent for the treatment of various cancers, including gastric cancer. It has, however, a narrow therapeutic index due to its toxicity and the occurrence of drug resistance. Hence, it is of great significance to develop novel therapies to potentiate the anti-tumor effect and reduce the toxicity of oxaliplatin. In our previous study, we demonstrated that ethaselen (BBSKE), an inhibitor of thioredoxin reductase, effectively inhibited the growth of gastric cancer cells and promoted apoptosis in vitro. In the present study, we investigated whether BBSKE can potentiate the anti-tumor effect of oxaliplatin in gastric cancer in vivo and vitro. Methods Cellular apoptosis and ROS levels were analyzed by flow cytometry. Thioredoxin reductase 1 (TrxR1) activity in gastric cancer cells, organoid and tumor tissues was determined by using the endpoint insulin reduction assay. Western blot was used to analyze the expressions of the indicated proteins. Nude mice xenograft models were used to test the effects of BBSKE and oxaliplatin combinations on gastric cancer cell growth in vivo. In addition, we also used the combined treatment of BBSKE and oxaliplatin in three cases of gastric cancer Patient-Derived organoid (GC-PDO) to detect the anti-tumor effect. Results We found that BBSKE significantly enhanced oxaliplatin-induced growth inhibition in gastric cancer cells by inhibiting TrxR1 activity. Because of the inhibition of TrxR1 activity, BBSKE synergized with oxaliplatin to enhance the production of ROS and activate p38 and JNK signaling pathways which eventually induced apoptosis of gastric cancer cells. In vivo, we also found that BBSKE synergized with oxaliplatin to suppress the gastric cancer tumor growth in xenograft nude mice model, accompanied by the reduced TrxR1 activity. Remarkably, we found that BBSKE attenuated body weight loss evoked by oxaliplatin treatment. We also used three cases of GC-PDO and found that the combined treatment of BBSKE and oxaliplatin dramatically inhibited the growth and viability of GC-PDO with increased ROS level, decreased TrxR1 activity and enhanced apoptosis. Conclusions This study elucidates the underlying mechanisms of synergistic effect of BBSKE and oxaliplatin, and suggests that the combined treatment has potential value in gastric cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02052-z.
Collapse
Affiliation(s)
- Haiyong Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jing Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Jinqiu Yuan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Huafu Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yawei Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Wang Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Chunming Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Sijun Meng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China. .,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China. .,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Lu Z, Song W, Zhang Y, Wu C, Zhu M, Wang H, Li N, Zhou Y, Xu H. Combined Anti-Cancer Effects of Platycodin D and Sorafenib on Androgen-Independent and PTEN-Deficient Prostate Cancer. Front Oncol 2021; 11:648985. [PMID: 34026624 PMCID: PMC8138035 DOI: 10.3389/fonc.2021.648985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Castration-resistant (androgen-independent) and PTEN-deficient prostate cancer is a challenge in clinical practice. Sorafenib has been recommended for the treatment of this type of cancer, but is associated with several adverse effects. Platycodin D (PD) is a triterpene saponin with demonstrated anti-cancer effects and a good safety profile. Previous studies have indicated that PC3 cells (PTEN -/-, AR -/-) are sensitive to PD, suggesting that it may also be a useful treatment for castration-resistance prostate cancer. We herein investigated the effects of combining PD with sorafenib to treat PTEN-deficient prostate cancer cells. Our data show that PD promotes sorafenib-induced apoptosis and cell cycle arrest in PC3 cells. Of interest, PD only promoted the anti-cancer effects of sorafenib in Akt-positive and PTEN-negative prostate cancer cells. Mechanistic studies revealed that PD promoted p-Akt ubiquitination by increasing the p-Akt level. PD also increased the protein and mRNA expression of FOXO3a, the downstream target of Akt. Meanwhile, PD promoted the activity of FOXO3a and increased the protein expression of Fasl, Bim and TRAIL. Interestingly, when FOXO3a expression was inhibited, the antitumor effects of both PD and sorafenib were individually inhibited, and the more potent effects of the combination treatment were inhibited. Thus, the combination of PD and sorafenib may exert potent anti-cancer effects specifically via FOXO3a. The use of Akt inhibitors or FOXO3a agonists, such as PD, may represent a promising approach for the treatment of androgen-independent and PTEN-deficient prostate cancer.
Collapse
Affiliation(s)
- Zongliang Lu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Song
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaowen Zhang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Changpeng Wu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingxing Zhu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - He Wang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Na Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong Zhou
- Department of Clinical Nutrition, Banan District People's Hospital of Chongqing, Chongqing, China
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Wang C, Dong L, Li X, Li Y, Zhang B, Wu H, Shen B, Ma P, Li Z, Xu Y, Chen B, Pan S, Fu Y, Huo Z, Jiang H, Wu Y, Ma Y. The PGC1α/NRF1-MPC1 axis suppresses tumor progression and enhances the sensitivity to sorafenib/doxorubicin treatment in hepatocellular carcinoma. Free Radic Biol Med 2021; 163:141-152. [PMID: 33276082 DOI: 10.1016/j.freeradbiomed.2020.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
Targeting energy metabolism holds the potential to effectively treat a variety of malignant diseases, and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a key regulator of energy metabolism. However, PGC1α's role in cancer, especially in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we reported that PGC1α was significantly downregulated in HCC cell lines and specimens. Moreover, reduced expression of PGC1α in tumor cells was correlated with poor prognosis. PGC1α overexpression substantially inhibited cell proliferation and induced apoptosis in vitro and in vivo. On the contrary, the knockdown of PGC1α produced the opposite effect. The mechanism was at least partially due to the upregulation of mitochondrial pyruvate carrier 1 (MPC1) caused by PGC1α, which promoted mitochondrial biogenesis by binding to nuclear respiratory factor 1 (NRF1). Consequently, the production of cellular reactive oxygen species (ROS) caused by mitochondrial oxidation was elevated above a critical threshold for survival. Furthermore, we found that PGC1α could enhance the antitumor activity of sorafenib and doxorubicin in HCC through ROS accumulation-mediated cell death. These results indicate that PGC1α/NRF1-MPC1 axis is involved in HCC progression and could be a promising target for HCC treatment.
Collapse
Affiliation(s)
- Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqian Dong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaozhuang Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bao Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huibo Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Benqiang Shen
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Panfei Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zuoyu Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangliang Chen
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongqi Huo
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Liao Y, Yang Y, Pan D, Ding Y, Zhang H, Ye Y, Li J, Zhao L. HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia. Cancers (Basel) 2021; 13:cancers13020243. [PMID: 33440739 PMCID: PMC7827218 DOI: 10.3390/cancers13020243] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hypoxia is one of the characteristics of most solid tumors and induces cell resistant to chemotherapy. In this paper, we established a hypoxia model in both in vitro and in vivo to investigate the mechanisms of Sorafenib resistance in Hepatocellular carcinoma (HCC). Here, we observed that necroptosis could be an important target of Sorafenib in liver cancer and necroptosis blocking might be important in Sorafenib resistance under hypoxia. Mechanistically, our work suggests that HSP90α plays a pivotal role in Sorafenib-induced necroptosis by binding with necrosome. HSP90α could promote MLKL chaperone-mediated autophagy degradation in hypoxia, which subsequently decreased necroptosis. Consequently, the inhibition of necroptosis contributes to Sorafenib resistant. The Sorafenib resistance was reversed by HSP90α inhibitor-Demethoxygeldanamycin (17-AAG) in vivo and in vitro. This study highlights the important role of HSP90α in Sorafenib resistance under hypoxia microenvironment, and provides a potential therapy target for liver cancer. Abstract As one of the most common malignancies worldwide, Hepatocellular carcinoma (HCC) has been treated by Sorafenib, which is the first approved target drug by FDA for advanced HCC. However, drug resistance is one of the obstacles to its application. As a typical characteristic of most solid tumors, hypoxia has become a key cause of resistance to chemotherapy and radiotherapy. It is important to elucidate the underlying mechanisms of Sorafenib resistance under hypoxia. In this study, the morphological changes of hepatocellular carcinoma cells were observed by Live Cell Imaging System and Transmission Electron Microscope; Sorafenib was found to induce necroptosis in liver cancer. Under hypoxia, the distribution of necroptosis related proteins was changed, which contributed to Sorafenib resistance. HSP90α binds with the necrosome complex and promotes chaperone-mediated autophagy (CMA) degradation, which leads necroptosis blocking and results in Sorafenib resistance. The patient-derived tumor xenograft (PDX) model has been established to investigate the potential therapeutic strategies to overcome Sorafenib resistance. 17-AAG inhibited HSP90α and presented obvious reversal effects of Sorafenib resistance in vivo and in vitro. All the results emphasized that HSP90α plays a critical role in Sorafenib resistance under hypoxia and 17-AAG combined with Sorafenib is a promising therapy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yan Liao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China; (Y.L.); (Y.Y.); (D.P.); (Y.D.); (H.Z.)
| | - Yue Yang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China; (Y.L.); (Y.Y.); (D.P.); (Y.D.); (H.Z.)
| | - Di Pan
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China; (Y.L.); (Y.Y.); (D.P.); (Y.D.); (H.Z.)
| | - Youxiang Ding
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China; (Y.L.); (Y.Y.); (D.P.); (Y.D.); (H.Z.)
| | - Heng Zhang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China; (Y.L.); (Y.Y.); (D.P.); (Y.D.); (H.Z.)
| | - Yuting Ye
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing 211100, China; (Y.Y.); (J.L.)
| | - Jia Li
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing 211100, China; (Y.Y.); (J.L.)
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China; (Y.L.); (Y.Y.); (D.P.); (Y.D.); (H.Z.)
- Correspondence:
| |
Collapse
|
21
|
Wu Y, Dong G, Sheng C. Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharm Sin B 2020; 10:1601-1618. [PMID: 33088682 PMCID: PMC7563021 DOI: 10.1016/j.apsb.2020.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Necroptosis, a genetically programmed form of necrotic cell death, serves as an important pathway in human diseases. As a critical cell-killing mechanism, necroptosis is associated with cancer progression, metastasis, and immunosurveillance. Targeting necroptosis pathway by small molecule modulators is emerging as an effective approach in cancer therapy, which has the advantage to bypass the apoptosis-resistance and maintain antitumor immunity. Therefore, a better understanding of the mechanism of necroptosis and necroptosis modulators is necessary to develop novel strategies for cancer therapy. This review will summarize recent progress of the mechanisms and detecting methods of necroptosis. In particular, the relationship between necroptosis and cancer therapy and medicinal chemistry of necroptosis modulators will be focused on.
Collapse
|
22
|
Wang Y, Wang XK, Wu PP, Wang Y, Ren LY, Xu AH. Necroptosis Mediates Cigarette Smoke-Induced Inflammatory Responses in Macrophages. Int J Chron Obstruct Pulmon Dis 2020; 15:1093-1101. [PMID: 32546997 PMCID: PMC7244448 DOI: 10.2147/copd.s233506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Cigarette smoke (CS)-induced inflammation in macrophages is involved in the pathological process of chronic obstructive pulmonary disease (COPD). Necroptosis, which is a form of programmed necrosis, has a close relationship with robust inflammation, while its roles in COPD are unclear. Materials and Methods Necroptosis markers were measured in mouse alveolar macrophages and cultured bone marrow-derived macrophages (BMDMs). Necroptosis inhibitors were used to block necroptosis in BMDMs, and inflammatory cytokines were detected. We further explored the related signaling pathways. Results In this study, we demonstrated the way in which necroptosis, in addition to its upstream and downstream signals, regulates CS-induced inflammatory responses in macrophages. We observed that CS exposure caused a significant increase in the levels of necroptosis markers (receptor interacting kinases [RIPK] 1 and 3) in mouse alveolar macrophages and BMDMs. Pharmacological inhibition of RIPK1 or 3 caused a significant suppression in CS extract (CSE)-induced inflammatory cytokines, chemokine ligands (CXCL) 1 and 2, and interleukin (IL)-6 in BMDMs. CSE-induced necroptosis was regulated by mitochondrial reactive oxygen species (mitoROS), which also promoted inflammation in BMDMs. Furthermore, necroptosis regulated CSE-induced inflammatory responses in BMDMs, most likely through activation of the nuclear factor-κB pathway. Conclusion Taken together, our results demonstrate that mitoROS-dependent necroptosis is essential for CS-induced inflammation in BMDMs and suggest that inhibition of necroptosis in macrophages may represent effective therapeutic approaches for COPD patients.
Collapse
Affiliation(s)
- Yong Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Xiao-Ke Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Pei-Pei Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Liang-Yu Ren
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ai-Hui Xu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
23
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
24
|
Zhang P, Shi L, Zhang T, Hong L, He W, Cao P, Shen X, Zheng P, Xia Y, Zou P. Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell Oncol (Dordr) 2019; 42:847-860. [PMID: 31493144 DOI: 10.1007/s13402-019-00471-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Oxaliplatin is one of the most commonly used chemotherapeutic agents in the treatment of various cancers, including gastric cancer. It has, however, a narrow therapeutic index due to its toxicity and the occurrence of drug resistance. Therefore, there is a pressing need to develop novel therapies to potentiate the efficacy and reduce the toxicity of oxaliplatin. Piperlongumine (PL), an alkaloid isolated from Piper longum L., has recently been identified as a potent agent against cancer cells in vitro and in vivo. In the present study, we investigated whether PL can potentiate the antitumor effect of oxaliplatin in gastric cancer cells. METHODS Cellular apoptosis and ROS levels were analyzed by flow cytometry. Thioredoxin reductase 1 (TrxR1) activity in gastric cancer cells or tumor tissues was determined using an endpoint insulin reduction assay. Western blotting was used to analyze the expression levels of the indicated proteins. Nude mice xenograft models were used to test the effects of PL and oxaliplatin combinations on gastric cancer cell growth in vivo. RESULTS We found that PL significantly enhanced oxaliplatin-induced growth inhibition in both gastric and colon cancer cells. Moreover, we found that PL potentiated the antitumor effect of oxaliplatin by inhibiting TrxR1 activity. PL combined with oxaliplatin markedly suppressed the activity of TrxR1, resulting in the accumulation of ROS and, thereby, DNA damage induction and p38 and JNK signaling pathway activation. Pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly abrogated the combined treatment-induced ROS generation, DNA damage and apoptosis. Importantly, we found that activation of the p38 and JNK signaling pathways prompted by PL and oxaliplatin was also reversed by NAC pretreatment. In vivo, we found that PL combined with oxaliplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, we found that PL attenuated body weight loss evoked by oxaliplatin treatment. CONCLUSIONS Our data support a synergistic effect of PL and oxaliplatin and suggest that application of its combination may be more effective for the treatment of gastric cancer than oxaliplatin alone.
Collapse
Affiliation(s)
- Peichen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingyan Shi
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lin Hong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peihai Cao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peisen Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiqun Xia
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
25
|
Myricetin Loaded Solid Lipid Nanoparticles Upregulate MLKL and RIPK3 in Human Lung Adenocarcinoma. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09895-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C. The role of necroptosis in cancer biology and therapy. Mol Cancer 2019; 18:100. [PMID: 31122251 PMCID: PMC6532150 DOI: 10.1186/s12943-019-1029-8] [Citation(s) in RCA: 711] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Apoptosis resistance is to a large extent a major obstacle leading to chemotherapy failure during cancer treatment. Bypassing the apoptotic pathway to induce cancer cell death is considered to be a promising approach to overcoming this problem. Necroptosis is a regulated necrotic cell death modality in a caspase-independent fashion and is mainly mediated by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL). Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis resistance and may trigger and amplify antitumor immunity in cancer therapy.The role of necroptosis in cancer is complicated. The expression of key regulators of the necroptotic pathway is generally downregulated in cancer cells, suggesting that cancer cells may also evade necroptosis to survive; however, in certain types of cancer, the expression level of key mediators is elevated. Necroptosis can elicit strong adaptive immune responses that may defend against tumor progression; however, the recruited inflammatory response may also promote tumorigenesis and cancer metastasis, and necroptosis may generate an immunosuppressive tumor microenvironment. Necroptosis also reportedly promotes oncogenesis and cancer metastasis despite evidence demonstrating its antimetastatic role in cancer. In addition, necroptotic microenvironments can direct lineage commitment to determine cancer subtype development in liver cancer. A plethora of compounds and drugs targeting necroptosis exhibit potential antitumor efficacy, but their clinical feasibility must be validated.Better knowledge of the necroptotic pathway mechanism and its physiological and pathological functions is urgently required to solve the remaining mysteries surrounding the role of necroptosis in cancer. In this review, we briefly introduce the molecular mechanism and characteristics of necroptosis, the interplay between necroptosis and other cell death mechanisms, crosstalk of necroptosis and metabolic signaling and detection methods. We also summarize the intricate role of necroptosis in tumor progression, cancer metastasis, prognosis of cancer patients, cancer immunity regulation, cancer subtype determination and cancer therapeutics.
Collapse
Affiliation(s)
- Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
27
|
Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radic Biol Med 2019; 134:177-189. [PMID: 30639617 DOI: 10.1016/j.freeradbiomed.2019.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Redox changes and generation of reactive oxygen species (ROS) are part of normal cell metabolism. While low ROS levels are implicated in cellular signaling pathways necessary for survival, higher levels play major roles in cancer development as well as cell death signaling and execution. A role for redox changes in apoptosis has been long established; however, several new modalities of regulated cell death have been brought to light, for which the importance of ROS production as well as ROS source and targets are being actively investigated. In this review, we summarize recent findings on the role of ROS and redox changes in the activation and execution of two major forms of regulated cell death, necroptosis and ferroptosis. We also discuss the potential of using modulators of these two forms of cell death to exacerbate ROS as a promising anticancer therapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Sungmi Song
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
29
|
Differential Mechanisms of Cell Death Induced by HDAC Inhibitor SAHA and MDM2 Inhibitor RG7388 in MCF-7 Cells. Cells 2018; 8:cells8010008. [PMID: 30583560 PMCID: PMC6356663 DOI: 10.3390/cells8010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is often altered by epigenetic modifications that can significantly influence the growth ability and progression of cancers. SAHA (Suberoylanilide hydroxamic acid, also known as Vorinostat), a well-known Histone deacetylase (HDAC) inhibitor, can stop cancer growth and metastatic processes through epigenetic alterations. On the other hand, Letrozole is an aromatase inhibitor that can elicit strong anti-cancer effects on breast cancer through direct and indirect mechanisms. A newly developed inhibitor, RG7388 specific for an oncogene-derived protein called MDM2, is in clinical trials for the treatment of various cancers. In this paper, we performed assays to measure the effects of cell cycle arrest resulting from individual drug treatments or combination treatments with SAHA + letrozole and SAHA + RG7388, using the MCF-7 breast cancer cells. When SAHA was used individually, or in combination treatments with RG7388, a significant increase in the cytotoxic effect was obtained. Induction of cell cycle arrest by SAHA in cancer cells was evidenced by elevated p21 protein levels. In addition, SAHA treatment in MCF-7 cells showed significant up-regulation in phospho-RIP3 and MLKL levels. Our results confirmed that cell death caused by SAHA treatment was primarily through the induction of necroptosis. On the other hand, the RG7388 treatment was able to induce apoptosis by elevating BAX levels. It appears that, during combination treatments, with SAHA and RG7388, two parallel pathways might be induced simultaneously, that could lead to increased cancer cell death. SAHA appears to induce cell necroptosis in a p21-dependent manner, and RG7388 seems to induce apoptosis in a p21-independent manner, outlining differential mechanisms of cell death induction. However, further studies are needed to fully understand the intracellular mechanisms that are triggered by these two anti-cancer agents.
Collapse
|
30
|
Huang R, Zhang X, Min Z, Shadia AS, Yang S, Liu X. MGCD0103 induces apoptosis and simultaneously increases the expression of NF-κB and PD-L1 in classical Hodgkin's lymphoma. Exp Ther Med 2018; 16:3827-3834. [PMID: 30344659 PMCID: PMC6176203 DOI: 10.3892/etm.2018.6677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
At present there is no consensus on the treatment of classical Hodgkin's lymphoma (CHL) following relapse. The aim of the present study was to access the class I-selective histone deacetylase (HDAC) inhibitor (HDACI) MGCD0103 on the expression levels of Bcl-2, nuclear factor (NF)-κB and programmed death-ligand 1 (PD-L1) in CHL, to explore the possible therapeutic value of MGCD0103 in combined relative target drugs for patients with CHL. In L1236 and L428 cell lines, apoptosis and cell cycle stage were identified using flow cytometry, and the effects of HDACI on CHL were assessed in terms of Bcl-2, NF-κB and PD-L1 expression levels, which were detected by western blotting and co-focusing experiments. The results demonstrated that MGCD0103 could induce cell apoptosis and cell cycle arrest, down-regulate Bcl-2 and increase NF-κB and PD-L1 expression levels in L1236 and L428 cell lines. MGCD0103 decreases Bcl-2 levels and upregulates PD-L1, which indicates that the combined use of HDACIs and a PD-L1 inhibitor in theory may improve treatment outcomes in patients with CHL. MGCD0103 may also up-regulate NF-κB, which seems to induce resistance towards anti-apoptotic drugs. Clinical trials combining HDACIs with NF-κB and/or PD-L1 inhibitors should be designed to further improve treatment outcomes for patients with CHL.
Collapse
Affiliation(s)
- Renhong Huang
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Xiaowei Zhang
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200031, P.R. China
| | - Zhijun Min
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Abdelbari Sophia Shadia
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200031, P.R. China
| | - Shun'e Yang
- Department of Lymphoma, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xiaojian Liu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
31
|
Yu M, Liu T, Chen Y, Li Y, Li W. Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:114. [PMID: 29866132 PMCID: PMC5987653 DOI: 10.1186/s13046-018-0779-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tetrandrine, a bisbenzylisoquinoline alkaloid that was isolated from the medicinal plant Stephania tetrandrine S. Moore, was recently identified as a novel chemotherapy drug. Tetrandrine exhibited a potential antitumor effect on multiple types of cancer. Notably, an enhanced therapeutic efficacy was identified when tetrandrine was combined with a molecularly targeted agent. H89 is a potent inhibitor of protein kinase A and is an isoquinoline sulfonamide. METHODS The effects of H89 combined with tetrandrine were investigated in vitro with respect to cell viability, apoptosis and autophagy, and synergy was assessed by calculation of the combination index. The mechanism was examined by western blot, flow cytometry and fluorescence microscopy. This combination was also evaluated in a mouse xenograft model; tumor growth and tumor lysates were analyzed, and a TUNEL assay was performed. RESULTS Combined treatment with H89 and tetrandrine exerts a mostly synergistic anti-tumor effect on human cancer cells in vitro and in vivo while sparing normal cells. Mechanistically, the combined therapy significantly induced cancer cell apoptosis and autophagy, which were mediated by ROS regulated PKA and ERK signaling. Moreover, Mcl-1 and c-Myc were shown to play a critical role in H89/tetrandrine combined treatment. Mcl-1 ectopic expression significantly diminished H89/tetrandrine sensitivity and amplified c-Myc sensitized cancer cells in the combined treatment. CONCLUSION Our findings demonstrate that the combination of tetrandrine and H89 exhibits an enhanced therapeutic effect and may become a promising therapeutic strategy for cancer patients. They also indicate a significant clinical application of tetrandrine in the treatment of human cancer. Moreover, the combination of H89/tetrandrine provides new selectively targeted therapeutic strategies for patients with c-Myc amplification.
Collapse
Affiliation(s)
- Man Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ting Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yicheng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yafang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
32
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
33
|
Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H, Li C. Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia. Int J Mol Med 2018; 41:2565-2572. [PMID: 29436688 PMCID: PMC5846651 DOI: 10.3892/ijmm.2018.3466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/02/2018] [Indexed: 01/11/2023] Open
Abstract
Necrostatin-1 (Nec-1) is a selective and potent allosteric inhibitor of necroptosis by specifically inhibiting the activity of receptor-interacting protein (RIP) 1 kinase. The aim of the present study was to determine the effect of Nec-1 on an anoxia model comprising mouse skeletal C2C12 myotubes. In the present study, a hypoxic mimetic reagent, cobalt chloride (CoCl2), was used to induce hypoxia in C2C12 myotubes. The cytotoxic effects of CoCl2-induced hypoxia were determined by a Cell Counting kit-8 assay and flow cytometry. Transmission electron microscopy (TEM) was used to characterize the morphological characteristics of dead cells at the ultrastructural level. To clarify the signaling pathways in CoCl2-mediated cell death, the expression levels of RIP1, RIP3, extracellular signal-regulated kinase (ERK)1/2, hypoxia-inducible factor (HIF)-1α and B cell lymphoma-2 adenovirus E1B 19-kDa interacting protein 3 (BNIP3) were investigated by western blotting. Oxidative stress was determined using 2′,7′-dichlorofluorescin diacetate to measure intracellular reactive oxygen species (ROS) and the fluorescent dye JC-1 was used to measure mitochondrial membrane potential (Δψm). The results showed that the ratios of apoptotic and necrotic C2C12 cells were increased following CoCl2 treatment, typical necroptotic morphological characteristics were able to observe by TEM, whereas Nec-1 exhibited a protective effect against CoCl2-induced oxidative stress. Treatment with Nec-1 significantly decreased the levels of RIP1, p-ERK1/2, HIF-1α, BNIP3 and ROS induced by CoCl2, and promoted C2C12 differentiation. Nec-1 reversed the CoCl2-induced decrease in mitochondrial membrane potential. Together, these findings suggested that Nec-1 protected C2C12 myotubes under conditions of CoCl2-induced hypoxia.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jiehua Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
34
|
Feldmann F, Schenk B, Martens S, Vandenabeele P, Fulda S. Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells. Oncotarget 2017; 8:68208-68220. [PMID: 28978109 PMCID: PMC5620249 DOI: 10.18632/oncotarget.19919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Induction of necroptosis has emerged as an alternative approach to trigger programmed cell death, in particular in apoptosis-resistant cancer cells. Recent evidence suggests that kinase inhibitors targeting oncogenic B-RAF can also affect Receptor-interacting serine/threonine-protein kinase (RIP)1 and RIP3. Sorafenib, a multi-targeting kinase inhibitor with activity against B-RAF, is used for the treatment of acute leukemia. In the present study, we therefore investigated whether Sorafenib interferes with therapeutic induction of necroptosis in acute leukemia. Here, we report that Sorafenib inhibits necroptotic signaling and cell death in two models of necroptosis in acute leukemia. Sorafenib significantly reduces Second mitochondria-derived activator of caspases (Smac) mimetic-induced necroptosis in apoptosis-resistant acute myeloid leukemia (AML) cells as well as Smac mimetic/Tumor Necrosis Factor (TNF)α-induced necroptosis in FADD-deficient acute lymphoblastic leukemia (ALL) cells. Sub- to low micromolar concentrations of Sorafenib corresponding to its plasma levels reported in cancer patients are sufficient to inhibit necroptosis, emphasizing the clinical relevance of our findings. Furthermore, Sorafenib blocks Smac mimetic-mediated phosphorylation of mixed-lineage kinase domain-like protein (MLKL) that marks its activation, indicating that Sorafenib targets components upstream of MLKL such as RIP1 and RIP3. Intriguingly, Sorafenib reduces the Smac mimetic/TNFα-stimulated interaction of RIP1 with RIP3 and MLKL, demonstrating that it interferes with the assembly of the necrosome complex. Importantly, Sorafenib significantly protects primary, patient-derived AML blasts from Smac mimetic-induced necroptosis. By demonstrating that Sorafenib limits the anti-leukemic activity of necroptosis-inducing drugs in acute leukemia cells, our study has important implications for the use of Sorafenib in the treatment of acute leukemia.
Collapse
Affiliation(s)
- Friederike Feldmann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Schenk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Sofie Martens
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Karantanos T, Politikos I, Boussiotis VA. Advances in the pathophysiology and treatment of relapsed/refractory Hodgkin's lymphoma with an emphasis on targeted therapies and transplantation strategies. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2017; 7:37-52. [PMID: 28701859 PMCID: PMC5502320 DOI: 10.2147/blctt.s105458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hodgkin’s lymphoma (HL) is highly curable with first-line therapy. However, a minority of patients present with refractory disease or experience relapse after completion of frontline treatment. These patients are treated with salvage chemotherapy followed by autologous stem cell transplantation (ASCT), which remains the standard of care with curative potential for refractory or relapsed HL. Nevertheless, a significant percentage of such patients will progress after ASCT, and allogeneic hematopoietic stem cell transplantation remains the only curative approach in that setting. Recent advances in the pathophysiology of refractory or relapsed HL have provided the rationale for the development of novel targeted therapies with potent anti-HL activity and favorable toxicity profile, in contrast to cytotoxic chemotherapy. Brentuximab vedotin and programmed cell death-1-based immunotherapy have proven efficacy in the management of refractory or relapsed HL, whereas several other agents have shown promise in early clinical trials. Several of these agents are being incorporated with transplantation strategies in order to improve the outcomes of refractory or relapsed HL. In this review we summarize the current knowledge regarding the mechanisms responsible for the development of refractory/relapsed HL and the outcomes with current treatment strategies, with an emphasis on targeted therapies and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Theodoros Karantanos
- General Internal Medicine Section, Boston Medical Center, Boston University School of Medicine, Boston, MA
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
LiCl Treatment Induces Programmed Cell Death of Schwannoma Cells through AKT- and MTOR-Mediated Necroptosis. Neurochem Res 2017; 42:2363-2371. [DOI: 10.1007/s11064-017-2256-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
|
37
|
Dual PI3K/ERK inhibition induces necroptotic cell death of Hodgkin Lymphoma cells through IER3 downregulation. Sci Rep 2016; 6:35745. [PMID: 27767172 PMCID: PMC5073341 DOI: 10.1038/srep35745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in Hodgkin lymphoma (HL) patients, thus representing attractive therapeutic targets. Here we report that the PI3K/ERK dual inhibitor AEZS-136 induced significant cell proliferation inhibition in L-540, SUP-HD1, KM-H2 and L-428 HL cell lines, but a significant increase in necroptotic cell death was observed only in two out of four cell lines (L-540 and SUP-HD1). In these cells, AEZS-136-induced necroptosis was associated with mitochondrial dysfunction and reactive oxygen species (ROS) production. JNK was activated by AEZS-136, and AEZS-136-induced necroptosis was blocked by the necroptosis inhibitor necrostatin-1 or the JNK inhibitor SP600125, suggesting that JNK activation is required to trigger necroptosis following dual PI3K/ERK inhibition. Gene expression analysis indicated that the effects of AEZS-136 were associated with the modulation of cell cycle and cell death pathways. In the cell death-resistant cell lines, AEZS-136 induced the expression of immediate early response 3 (IER3) both in vitro and in vivo. Silencing of IER3 restored sensitivity to AEZS-136-induced necroptosis. Furthermore, xenograft studies demonstrated a 70% inhibition of tumor growth and a 10-fold increase in tumor necrosis in AEZS-136-treated animals. Together, these data suggest that dual PI3K/ERK inhibition might be an effective approach for improving therapeutic outcomes in HL.
Collapse
|
38
|
Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026831. [PMID: 27599530 DOI: 10.1101/cshperspect.a026831] [Citation(s) in RCA: 848] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.
Collapse
Affiliation(s)
- Yixuan Li
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|
39
|
Ganai SA. Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 2016; 28:247-54. [PMID: 27121910 DOI: 10.1080/1120009x.2016.1145375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone acetyl transferases and histone deacetylases (HDACs) are counteracting epigenetic enzymes regulating the turnover of histone acetylation thereby regulating transcriptional events in a precise manner. Deregulation of histone acetylation caused by aberrant expression of HDACs plays a key role in tumour onset and progression making these enzymes as candidate targets for anticancer drugs and therapy. Small-molecules namely histone deacetylase inhibitors (HDACi) modulating the biological function of HDACs have shown multiple biological effects including differentiation, cell cycle arrest and apoptosis in tumour models. HDACi in general have been described in plethora of reviews with respect to various cancers. However, no review article is available describing thoroughly the role of inhibitor givinostat (ITF2357 or [6-(diethylaminomethyl) naphthalen-2-yl] methyl N-[4-(hydroxycarbamoyl) phenyl] carbamate) in haematological malignancies. Thus, the present review explores the intricate role of novel inhibitor givinostat in the defined malignancies including multiple myeloma, acute myelogenous leukaemia, Hodgkin's and non-Hodgkin's lymphoma apart from myeloproliferative neoplasms. The distinct molecular mechanisms triggered by this small-molecule inhibitor in these cancers to exert cytotoxic effect have also been dealt with. The article also highlights the combination strategy that can be used for enhancing the therapeutic efficiency of this inhibitor in the upcoming future.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- a Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology , SKUAST-Kashmir , Srinagar , India
| |
Collapse
|
40
|
Chen D, Yu J, Zhang L. Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta Rev Cancer 2016; 1865:228-36. [PMID: 26968619 DOI: 10.1016/j.bbcan.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL) protein. Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells.
Collapse
Affiliation(s)
- Dongshi Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
ARHI (DIRAS3)-mediated autophagy-associated cell death enhances chemosensitivity to cisplatin in ovarian cancer cell lines and xenografts. Cell Death Dis 2015; 6:e1836. [PMID: 26247722 PMCID: PMC4558501 DOI: 10.1038/cddis.2015.208] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/24/2015] [Accepted: 06/26/2015] [Indexed: 11/08/2022]
Abstract
Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy.
Collapse
|
42
|
Carlo-Stella C, Santoro A. Microenvironment-related biomarkers and novel targets in classical Hodgkin's lymphoma. Biomark Med 2015. [DOI: 10.2217/bmm.15.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Classical Hodgkin's lymphoma accounts for approximately 10% of all malignant lymphomas. Although most patients can be cured with modern treatment strategies, approximately 25% of them experience either primary or secondary chemorefractoriness or disease relapse, thus requiring novel treatments. Increasing preclinical and clinical evidences have demonstrated the role of microenvironment in the molecular pathogenesis of classical Hodgkin's lymphoma and elucidated the complex cross-talk between the malignant Hodgkin Reed–Sternberg cells and the nonmalignant, reactive cells of the microenvironment, strongly supporting novel therapeutic approaches aimed at targeting Hodgkin's Reed–Sternberg cells along with reactive cells in order to overcome chemorefractoriness. In the near future, these novel therapies will also be tested in chemosensitive patients to reduce long-term toxicities of chemo-radiotherapy.
Collapse
Affiliation(s)
- Carmelo Carlo-Stella
- Department of Hematology & Oncology, Humanitas Cancer Center, Humanitas Clinical & Research Center, Via Manzoni 56, 20089 Rozzano (Milano), Italy
- Department of Medical Biotechnology & Translational Medicine, University of Milano, Milano, Italy
| | - Armando Santoro
- Department of Hematology & Oncology, Humanitas Cancer Center, Humanitas Clinical & Research Center, Via Manzoni 56, 20089 Rozzano (Milano), Italy
| |
Collapse
|
43
|
Carbone A, Gloghini A, Castagna L, Santoro A, Carlo-Stella C. Primary refractory and early-relapsed Hodgkin's lymphoma: strategies for therapeutic targeting based on the tumour microenvironment. J Pathol 2015; 237:4-13. [DOI: 10.1002/path.4558] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Antonino Carbone
- Department of Pathology, Centro di Riferimento Oncologico Aviano; Istituto Nazionale Tumori; IRCCS, Aviano Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS; Istituto Nazionale Tumori; Milano Italy
| | - Luca Castagna
- Department of Oncology and Haematology, Humanitas Cancer Centre; Humanitas Clinical and Research Centre; Milan Italy
| | - Armando Santoro
- Department of Oncology and Haematology, Humanitas Cancer Centre; Humanitas Clinical and Research Centre; Milan Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Haematology, Humanitas Cancer Centre; Humanitas Clinical and Research Centre; Milan Italy
- Department of Medical Biotechnology and Translational Medicine; University of Milan; Italy
| |
Collapse
|
44
|
Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FKM. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis 2015; 6:e1636. [PMID: 25675296 PMCID: PMC4669795 DOI: 10.1038/cddis.2015.16] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is a key mechanism for metazoans to eliminate unwanted cells. Resistance to apoptosis is a hallmark of many cancer cells and a major roadblock to traditional chemotherapy. Recent evidence indicates that inhibition of caspase-dependent apoptosis sensitizes many cancer cells to a form of non-apoptotic cell death termed necroptosis. This has led to widespread interest in exploring necroptosis as an alternative strategy for anti-cancer therapy. Here we show that in human colon cancer tissues, the expression of the essential necroptosis adaptors receptor interacting protein kinase (RIPK)1 and RIPK3 is significantly decreased compared with adjacent normal colon tissues. The expression of RIPK1 and RIPK3 was suppressed by hypoxia, but not by epigenetic DNA modification. To explore the role of necroptosis in chemotherapy-induced cell death, we used inhibitors of RIPK1 or RIPK3 kinase activity, and modulated their expression in colon cancer cell lines using short hairpin RNAs. We found that RIPK1 and RIPK3 were largely dispensable for classical chemotherapy-induced cell death. Caspase inhibitor and/or second mitochondria-derived activator of caspase mimetic, which sensitize cells to RIPK1- and RIPK3-dependent necroptosis downstream of tumor necrosis factor receptor-like death receptors, also did not alter the response of cancer cells to chemotherapeutic agents. In contrast to the RIPKs, we found that cathepsins are partially responsible for doxorubicin or etoposide-induced cell death. Taken together, these results indicate that traditional chemotherapeutic agents are not efficient inducers of necroptosis and that more potent pathway-specific drugs are required to fully harness the power of necroptosis in anti-cancer therapy.
Collapse
Affiliation(s)
- K Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422, USA
| | - G M Orlowski
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| | - F K M Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| |
Collapse
|
45
|
Gillani TB, Rawling T, Murray M. Cytochrome P450-Mediated Biotransformation of Sorafenib and Its N-Oxide Metabolite: Implications for Cell Viability and Human Toxicity. Chem Res Toxicol 2014; 28:92-102. [DOI: 10.1021/tx500373g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tina B. Gillani
- Pharmacogenomics
and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School
of Pharmacy, Graduate School of Health, University of Technology, Sydney, PO
Box 123, Broadway, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics
and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol 2014; 35:51-6. [PMID: 25065969 DOI: 10.1016/j.semcdb.2014.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022]
Abstract
Evasion of programmed cell death represents one of the hallmarks of cancers that contributes to tumor initiation, progression and treatment resistance. This calls for novel therapeutic concepts to reactivate cell death programs in human malignancies. Since necroptosis represents a regulated form of necrosis that is under the control of defined signal transduction pathways, it offers molecular targets for rational therapeutic intervention. Indeed, there is mounting evidence showing that many currently used anticancer agents can engage necroptotic signaling pathways and thereby elicit cell death in malignant cells. A better understanding of the signaling networks regulating necroptosis in cancer cells is expected to speed up the development of anticancer drugs for therapeutic exploitation of necroptosis for cancer therapy.
Collapse
|