1
|
The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Dis 2022; 8:252. [PMID: 35523775 PMCID: PMC9076607 DOI: 10.1038/s41420-022-01042-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Osteoprotegerin (OPG), also known as tumor necrosis factor receptor superfamily member 11B (TNFRSF11B), is a member of the tumor necrosis factor (TNF) receptor superfamily. Characterized by its ability to bind to receptor activator of nuclear factor kappa B ligand (RANKL), OPG is critically involved in bone remodeling. Emerging evidence implies that OPG is far beyond a bone-specific modulator, and is involved in multiple physiological and pathological processes, such as immunoregulation, vascular function, and fibrosis. Notably, numerous preclinical and clinical studies have been conducted to assess the participation of OPG in tumorigenesis and cancer development. Mechanistic studies have demonstrated that OPG is involved in multiple hallmarks of cancer, including tumor survival, epithelial to mesenchymal transition (EMT), neo-angiogenesis, invasion, and metastasis. In this review, we systematically summarize the basis and advances of OPG from its molecular structure to translational applications. In addition to its role in bone homeostasis, the physiological and pathological impacts of OPG on human health and its function in cancer progression are reviewed, providing a comprehensive understanding of OPG. We aim to draw more attention to OPG in the field of cancer, and to propose it as a promising diagnostic or prognostic biomarker as well as potential therapeutic target for cancer.
Collapse
|
2
|
Li R, Chen G, Dang Y, He R, Liu A, Ma J, Wang C. Upregulation of ATIC in multiple myeloma tissues based on tissue microarray and gene microarrays. Int J Lab Hematol 2020; 43:409-417. [PMID: 33226193 DOI: 10.1111/ijlh.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/29/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Multiple myeloma (MM) is characterized by the malignant proliferation of plasma cells, which produce a monoclonal immunoglobulin protein. The role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) has not yet been well studied in the area of MM. Thus, in the current study, we sought to examine the expression levels, including mRNA and protein levels of ATIC in MM. METHODS Multiple myeloma microarray and RNA-seq data were screened from the SRA, GEO, ArrayExpress, and Oncomine databases. The mRNA level of ATIC was extracted from the high throughput data, and the prognostic value was studied. The protein level of ATIC was also detected by in-house immunohistochemistry on a tissue microarray. Potential signaling pathways were enriched with ATIC-related genes in MM. RESULTS Both the mRNA and protein levels of ATIC were significantly upregulated in MM samples as compared to normal samples. Furthermore, the summarized Standardized Mean Difference was 1.66 with 674 cases of MM based on 10 independent studies including the in-house tissue microarray. The overall hazard ratio of ATIC in MM was 1.7 with 1631 cases of MM based on five microarrays. In the KEGG pathway analysis, the ATIC-related genes were mainly enriched in the pathway of complement and coagulation cascades. CONCLUSION We provided the first evidence supporting the upregulation of ATIC may play an essential part in the tumorigenesis and development of MM. The promoting cancer capacity may be related to the pathway of complement and coagulation cascades.
Collapse
Affiliation(s)
- Ruolin Li
- Medical School of Chinese PLA, Beijing, China.,Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongquan He
- Departments of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Angui Liu
- Departments of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Ma
- Departments of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengbin Wang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Jin Y, Shang Y, Liu H, Ding L, Tong X, Tu H, Yuan G, Zhou F. A Retrospective Analysis: A Novel Index Predicts Survival and Risk-Stratification for Bone Destruction in 419 Newly Diagnosed Multiple Myelomas. Onco Targets Ther 2019; 12:10587-10596. [PMID: 31819538 PMCID: PMC6899072 DOI: 10.2147/ott.s229122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Multiple myeloma (MM) patients with bone destruction are difficult to restore, so it is of great clinical significance to further explore the factors affecting MM bone destruction. Methods and results This study retrospectively analyzed 419 cases with MM. Multiple linear regression analysis showed that those MM patients with a higher concentration of Ca2+ in serum, higher positive rate of CD138 immuno-phenotype and advanced in stage with 13q34 deletion in cytogenetics would be more prone to bone destruction, while total bile acid (TBA) and kappa chain isotope negatively correlated with bone destruction in MM patients. The Kaplan-Meier analysis indicated that Ca2+, serum β2-microglobulin (β2-MG), hemoglobin (HGB), creatinine (CREA), uric acid (UA) and age correlated with the survival of bone destruction in MM patients. Cox regression analysis further showed that the independent prognostic factors of β2-MG and CREA had a higher risk for early mortality in bone destruction patients. Moreover, an index was calculated based on β2-MG and globulin (GLB) to white blood cell (WBC) ratio to predict the poor survival of bone destruction patients. Conclusion We provide a novel marker to predict the prognosis of myeloma patients using routine examination method instead of bone marrow aspiration, and provide a reference for clinical evaluation.
Collapse
Affiliation(s)
- Yanxia Jin
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Yufeng Shang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Hailing Liu
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, People's Republic of China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Honglei Tu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Guolin Yuan
- Department of Hematology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China.,Key Laboratory of Tumor Biological Behavior of Hubei Province, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
4
|
Fan FY, Deng R, Qiu L, Wen Q, Zeng Y, Gao L, Zhang C, Kong P, Zhong J, Zeng N, Li Z, Su Y, Zhang X. miR-203a-3p.1 is involved in the regulation of osteogenic differentiation by directly targeting Smad9 in MM-MSCs. Oncol Lett 2019; 18:6339-6346. [PMID: 31788111 PMCID: PMC6865574 DOI: 10.3892/ol.2019.10994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of bone development and regeneration. The aim of the present study was to determine whether miR-203a-3p.1 is involved in osteogenic differentiation of multiple myeloma (MM)-mesenchymal stem cells (MSCs) and the potential underlying mechanism. MSCs were isolated from patients with MM and normal subjects and confirmed by flow cytometry using specific surface markers. The osteogenic differentiation capacity of MM-MSCs was identified by Alizarin Red S calcium deposition staining and reverse transcription-quantitative PCR (RT-qPCR) of typical osteoblast differentiation markers. The role of miR-203a-3p.1 in the osteoblast differentiation of MM-MSCs was determined by gain or loss of function experiments. The target of miR-203a-3p.1 was identified using bioinformatics (including the miRNA target prediction database TargetScan, miRDB, DIANA TOOLS and venny 2.1.0), luciferase reporter assay, RT-qPCR and western blotting. The expression levels of proteins involved in the Wnt3a/β-catenin signaling pathway were detected by western blot analysis. The results revealed that the osteogenic differentiation capacity of MM-MSCs was reduced when compared with normal (N)-MSCs, as demonstrated by a decrease in calcium deposition and mRNA expression of typical osteoblast differentiation markers, including ALP, OPN and OC. In addition, miR-203a-3p.1 was downregulated in N-MSCs following osteoblast induction, whereas no changes were observed in MM-MSCs. The downregulation of miR-203a-3p.1 resulted in increased osteogenic potential, as indicated by the increase in the mRNA expression levels of the typical osteoblast differentiation markers, including alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OC). Bioinformatics and luciferase reporter assay analysis indicated that mothers against decapentaplegic homolog 9 (Smad9) may be a direct target of miR-203a-3p.1 in N-MSCs. The RT-qPCR and western blot assays revealed that overexpression of smad9 significantly enhanced the effect of miR-203a-3p.1 inhibitors on osteoblast markers, which indicated that miR-203a-3p.1 inhibitors may regulate the osteogenic differentiation of MM-MSCs by upregulating Smad9. In addition, the Wnt3a/β-catenin signaling pathway was activated following miR-203a-3p.1 inhibition. These results suggest that miR-203a-3p.1 may serve an important role in the osteogenic differentiation of MM-MSCs by regulating Smad9 expression.
Collapse
Affiliation(s)
- Fang-Yi Fan
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China.,Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Rui Deng
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yunjing Zeng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chen Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Peiyan Kong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jiangfan Zhong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Ningyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, P.R. China
| | - Zhengyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, P.R. China
| | - Yi Su
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
5
|
Peng W, Zhang J, Zhang F, Zhao Y, Dong W. Expression of osteoprotegerin and receptor activator for the nuclear factor-κB ligand in XACB/LV-bFGF/MSCs transplantation for repair of rabbit femoral head defect necrosis. J Cell Biochem 2019; 120:1427-1434. [PMID: 30335890 DOI: 10.1002/jcb.27201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/24/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study is to observe the changes in osteoprotegerin (OPG) and receptor activator for the nuclear factor-κB ligand (RANKL) in a rabbit model, and to explore the therapeutic effect of tissue engineering bone on femoral head necrosis. A total of 60 rabbits were randomly divided into 5 groups. The necrosis model of femoral head defects was created by dexamethasone combined with a horse serum injection. The model of femoral head necrosis was reconstructed by tissue engineering bone. The protein expressions of OPG and RANKL were detected by Western blot analysis. The expression of OPG and the RANKL protein in group E was higher than that in the other 4 groups (P < .05); there was no significant difference between groups C and D ( P > .05). The expression of OPG protein in the rabbit femoral head necrosis group was improved by xenogeneic antigens of cancellous bone/lentiviral-basic fibroblast growth factor/mesenchymal stem cells, which were expected to be used as an effective tissue engineering material to repair the necrosis of the femoral head.
Collapse
Affiliation(s)
- Wuxun Peng
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Zhang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yin Zhao
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wentao Dong
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Wang Z, Yuan Y, Zhang L, Min Z, Zhou D, Yu S, Wang P, Ju S, Jun L, Fu J. Impact of cell fusion in myeloma marrow microenvironment on tumor progression. Oncotarget 2018; 9:30997-31006. [PMID: 30123422 PMCID: PMC6089556 DOI: 10.18632/oncotarget.25742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/05/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) represent a subset of non-hematopoietic adult stem cells, which can also fuse with other cells spontaneously in bone marrow and capable of adopting the phenotype of other cells. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of bone marrow mesenchymal stem cells(BM-MSCs) and MM cells demonstrate that the fused cells can exhibit stemness and cancer cell-like characteristics. RESULTS We successfully produced a hybrid cells that acquired larger size and multinucleation, in which partial chromatin condensation, a visible nucleolus, and one or more round or oval nucleus. Experiments results showed that the stemness markers highly expressed in these fused cells and there were much more chromosomes in fused cells than those in parental cells as well as exhibited increased resistance to drug treatment. CONCLUSIONS Our results suggest that cell fusion between BM-MSCs and MM cells could contribute it genomic heterogeneity and play a role on disease progression. METHODS We fused human BM-MSCs with MM cells lines RPMI 8226 or XG1 in vitro by polyethylene glycol (PEG), and the hybrid cells were sorted by sedimentation assays. The growth, migration, cell cycle, chromosome and drug sensitive of hybrids were assessed by cell counting, cell colony formation, transwell assays, cytogenetic assay and flow cytometry (FCM). The proteins and genes related to stemness and cytokines were tested by western blot and/or real-time quantitative RT-PCR.
Collapse
Affiliation(s)
- Ziyan Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Yuqing Yuan
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Liying Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Zhou Min
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Dongming Zhou
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Sun Yu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Panjun Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Songguang Ju
- Institute of Biotechnology, Soochow University, Suzhou 215007, PR China
| | - Li Jun
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| |
Collapse
|
7
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
8
|
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, and patients typically present with bone marrow infiltration of clonal plasma cells and monoclonal protein in the serum and/or urine. The diagnosis of multiple myeloma is made when clear end-organ damage attributable to the plasma cell proliferative disorder or when findings that suggest a high likelihood of their development are present. Distinguishing symptomatic multiple myeloma that requires treatment from the precursor stages of monoclonal gammopathy of undetermined significance and smouldering multiple myeloma is important, as observation is the standard for those conditions. Much progress has been made over the past decade in the understanding of disease biology and individualized treatment approaches. Several new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have joined the traditional armamentarium (corticosteroids, alkylating agents and anthracyclines) and, along with high-dose therapy and autologous haemopoietic stem cell transplantation, have led to deeper and durable clinical responses. Indeed, an increasing proportion of patients are achieving lasting remissions, raising the possibility of cure for this disease. Success will probably depend on using combinations of effective agents and treating patients in the early stages of disease, such as patients with smouldering multiple myeloma.
Collapse
|
9
|
Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130:410-423. [PMID: 28600336 DOI: 10.1182/blood-2017-02-734541] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1- MPNs, which are largely defined by mutations in JAK2, CALR, or MPL In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63 Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells.
Collapse
|
10
|
Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 2016; 14:100-113. [DOI: 10.1038/nrclinonc.2016.122] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|