1
|
Liu K, Chen R, Zhang M, Gong Y, Wang Y, Cai W. ERBB3 deficiency causes a multisystemic syndrome in human patient and zebrafish. Clin Genet 2024; 105:283-293. [PMID: 38009810 DOI: 10.1111/cge.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene was first identified as a cause of lethal congenital contracture syndrome (OMIM 607598), while a recent study reported six additional patients carrying ERBB3 variants which exhibited distinct clinical features with evident intestinal dysmotility (OMIM 243180). The potential connection between these phenotypes remains unknown, and the ERBB3-related phenotype spectrum needs to be better characterized. Here, we described a patient presenting with a multisystemic syndrome including skip segment Hirschsprung disease, bilateral clubfoot deformity, and cardiac defect. Trio-whole exome sequencing revealed a novel compound heterozygous variant (c.1914-7C>G; c.2942_2945del) in the patient's ERBB3 gene. RT-PCR and in vitro minigene analysis demonstrated that variant c.1914-7C>G caused aberrant mRNA splicing. Both variants resulted in premature termination codon and complete loss of ERBB3 function. erbb3b knockdown in zebrafish simultaneously caused a reduction in enteric neurons in the distal intestine, craniofacial cartilage defects, and micrognathia, which phenotypically mimics ERBB3-related intestinal dysmotility and some features of lethal congenital contracture syndrome in human patients. These findings provide further patient and animal evidence supporting that ERBB3 deficiency causes a complex syndrome involving multiple systems with phenotypic variability among distinct individuals.
Collapse
Affiliation(s)
- Keqiang Liu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ru Chen
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minzhong Zhang
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Gong
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wang
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
2
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Kilroy MK, Park S, Feroz W, Patel H, Mishra R, Alanazi S, Garrett JT. HER3 Alterations in Cancer and Potential Clinical Implications. Cancers (Basel) 2022; 14:cancers14246174. [PMID: 36551663 PMCID: PMC9776947 DOI: 10.3390/cancers14246174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the third member of the HER family, kinase impaired HER3, has become a target of interest in cancer as there is accumulating evidence that HER3 plays a role in tumor growth and progression. This review focuses on HER3 activation in bladder, breast, colorectal, and lung cancer disease progression. HER3 mutations occur at a rate up to ~10% of tumors dependent on the tumor type. With patient tumors routinely sequenced for gene alterations in recent years, we have focused on HER3 mutations in bladder, breast, colon, and lung cancers particularly in response to targeted therapies and the potential to become a resistance mechanism. There are currently several HER3 targeting drugs in the pipeline, possibly improving outcomes for cancer patients with tumors containing HER3 activation and/or alterations.
Collapse
Affiliation(s)
- Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hima Patel
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Samar Alanazi
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
4
|
McInerney-Leo AM, Chew HY, Inglis PL, Leo PJ, Joseph SR, Cooper CL, Okano S, Hassall T, Anderson L, Bowman RV, Gattas M, Harris JE, Marshall MS, Shaw JG, Wheeler L, Yang IA, Brown MA, Fong KM, Simpson F, Duncan EL. Germline ERBB3 mutation in familial non-small cell lung carcinoma: Expanding ErbB's role in oncogenesis. Hum Mol Genet 2021; 30:2393-2401. [PMID: 34274969 PMCID: PMC8643496 DOI: 10.1093/hmg/ddab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the commonest cause of cancer deaths worldwide. Although strongly associated with smoking, predisposition to lung cancer is also heritable, with multiple common risk variants identified. Rarely, dominantly inherited non-small-cell lung cancer (NSCLC) has been reported due to somatic mutations in EGFR/ErbB1 and ERBB2. Germline exome sequencing was performed in a multi-generation family with autosomal dominant NSCLC, including an affected child. Tumour samples were also sequenced. Full-length wild-type (wtErbB3) and mutant ERBB3 (mutErbB3) constructs were transfected into HeLa cells. Protein expression, stability, and subcellular localization were assessed, and cellular proliferation, pAkt/Akt and pERK levels determined. A novel germline variant in ERBB3 (c.1946 T > G: p.Iso649Arg), coding for receptor tyrosine-protein kinase erbB-3 (ErbB3), was identified, with appropriate segregation. There was no loss-of-heterozygosity in tumour samples. Both wtErbB3 and mutErbB3 were stably expressed. MutErbB3-transfected cells demonstrated an increased ratio of the 80 kDa form (which enhances proliferation) compared with the full-length (180 kDa) form. MutErbB3 and wtErbB3 had similar punctate cytoplasmic localization pre- and post-epidermal growth factor stimulation; however, epidermal growth factor receptor (EGFR) levels decreased faster post-stimulation in mutErbB3-transfected cells, suggesting more rapid processing of the mutErbB3/EGFR heterodimer. Cellular proliferation was increased in mutErbB3-transfected cells compared with wtErbB3 transfection. MutErbB3-transfected cells also showed decreased pAkt/tAkt ratios and increased pERK/tERK 30 min post-stimulation compared with wtErbB3 transfection, demonstrating altered signalling pathway activation. Cumulatively, these results support this mutation as tumorogenic. This is the first reported family with a germline ERBB3 mutation causing heritable NSCLC, furthering understanding of the ErbB family pathway in oncogenesis.
Collapse
Affiliation(s)
- Aideen M McInerney-Leo
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Hui Yi Chew
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Po-Ling Inglis
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Paul J Leo
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Shannon R Joseph
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Caroline L Cooper
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Brisbane.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006
| | - Satomi Okano
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Tim Hassall
- Queensland Children's Hospital, South Brisbane, QLD, 4101
| | - Lisa Anderson
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Rayleen V Bowman
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Michael Gattas
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Jessica E Harris
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Mhairi S Marshall
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Janet G Shaw
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Lawrie Wheeler
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Ian A Yang
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Matthew A Brown
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College London NIHR Biomedical Research Centre, King's College London, United Kingdom
| | - Kwun M Fong
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Fiona Simpson
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Emma L Duncan
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Twin Research and Genetic Epidemiology, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| |
Collapse
|
5
|
Braunstein EM, Chen H, Juarez F, Yang F, Tao L, Makhlin I, Williams DM, Chaturvedi S, Pallavajjala A, Karantanos T, Martin R, Wohler E, Sobreira N, Gocke CD, Moliterno AR. Germline ERBB2/ HER2 Coding Variants Are Associated with Increased Risk of Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13133246. [PMID: 34209587 PMCID: PMC8268839 DOI: 10.3390/cancers13133246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 10/29/2022] Open
Abstract
Familial cases of myeloproliferative neoplasms (MPN) are relatively common, yet few inherited risk factors have been identified. Exome sequencing of a kindred with a familial cancer syndrome characterized by both MPN and melanoma produced a germline variant in the ERBB2/HER2 gene that co-segregates with disease. To further investigate whether germline ERBB2 variants contribute to MPN predisposition, the frequency of ERBB2 variants was analyzed in 1604 cases that underwent evaluation for hematologic malignancy, including 236 cases of MPN. MPN cases had a higher frequency of rare germline ERBB2 coding variants compared to non-MPN hematologic malignancies (8.9% vs. 4.1%, OR 2.4, 95% CI: 1.4 to 4.0, p = 0.0028) as well as cases without a blood cancer diagnosis that served as an internal control (8.9% vs. 2.7%, OR 3.5, 95% CI: 1.4 to 8.3, p = 0.0053). This finding was validated via comparison to an independent control cohort of 1587 cases without selection for hematologic malignancy (8.9% in MPN cases vs. 5.2% in controls, p = 0.040). The most frequent variant identified, ERBB2 c.1960A > G; p.I654V, was present in MPN cases at more than twice its expected frequency. These data indicate that rare germline coding variants in ERBB2 are associated with an increased risk for development of MPN. The ERBB2 gene is a novel susceptibility locus which likely contributes to cancer risk in combination with additional risk alleles.
Collapse
Affiliation(s)
- Evan M. Braunstein
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
- Correspondence:
| | - Hang Chen
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Felicia Juarez
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Fanghan Yang
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Lindsay Tao
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Igor Makhlin
- Department of Medicine, Division of Hematology & Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Donna M. Williams
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Shruti Chaturvedi
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.P.); (C.D.G.)
| | - Theodoros Karantanos
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (E.W.); (N.S.)
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (E.W.); (N.S.)
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (E.W.); (N.S.)
| | - Christopher D. Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.P.); (C.D.G.)
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Alison R. Moliterno
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| |
Collapse
|
6
|
Zhang M, Cheng K, Chen H, Tu J, Shen Y, Pang L, Wu W, Yu Z. LncRNA AK020546 protects against cardiac ischemia-reperfusion injury by sponging miR-350-3p. Aging (Albany NY) 2021; 13:14219-14233. [PMID: 33988127 PMCID: PMC8202874 DOI: 10.18632/aging.203038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the development of cardiovascular diseases. We observed that lncRNA AK020546 was downregulated following ischemia/reperfusion injury to the myocardium and following H2O2 treatment in H9c2 cardiomyocytes. In vivo and in vitro studies showed that AK020546 overexpression attenuated the size of the ischemic area, reduced apoptosis among H9c2 cardiomyocytes, and suppressed the release of reactive oxygen species, lactic acid dehydrogenase, and malondialdehyde. AK020546 served as a competing endogenous RNA for miR-350-3p and activated the miR-350-3p target gene ErbB3. MiR-350-3p overexpression reversed the effects of AK020546 on oxidative stress injury and apoptosis in H9c2 cardiomyocytes. Moreover, ErbB3 knockdown alleviated the effects of AK020546 on the expression of ErbB3, Bcl-2, phosphorylated AKT, cleaved Caspase 3, and phosphorylated Bad. These findings suggest lncRNA AK020546 protects against ischemia/reperfusion and oxidative stress injury by sequestering miR-350-3p and activating ErbB3, which highlights its potential as a therapeutic target for ischemic heart diseases.
Collapse
Affiliation(s)
- Meiqi Zhang
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kang Cheng
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Chen
- Department of Emergency Medicine, Zhejiang Provincial Peoples Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianfeng Tu
- Department of Emergency Medicine, Zhejiang Provincial Peoples Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Emergency Medicine, Zhejiang Provincial Peoples Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingxiao Pang
- Department of Emergency Medicine, Zhejiang Provincial Peoples Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weihua Wu
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhenfei Yu
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Doddato G, Valentino F, Giliberti A, Papa FT, Tita R, Bruno LP, Resciniti S, Fallerini C, Benetti E, Palmieri M, Mencarelli MA, Fabbiani A, Bruttini M, Orrico A, Baldassarri M, Fava F, Lopergolo D, Lo Rizzo C, Lamacchia V, Mannucci S, Pinto AM, Currò A, Mancini V, Mari F, Renieri A, Ariani F. Exome sequencing in BRCA1-2 candidate familias: the contribution of other cancer susceptibility genes. Front Oncol 2021; 11:649435. [PMID: 34026625 PMCID: PMC8139251 DOI: 10.3389/fonc.2021.649435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is a condition in which the risk of breast and ovarian cancer is higher than in the general population. The prevalent pathogenesis is attributable to inactivating variants of the BRCA1-2 highly penetrant genes, however, other cancer susceptibility genes may also be involved. By Exome Sequencing (WES) we analyzed a series of 200 individuals selected for genetic testing in BRCA1-2 genes according to the updated National Comprehensive Cancer Network (NCCN) guidelines. Analysis by MLPA was performed to detect large BRCA1-2 deletions/duplications. Focusing on BRCA1-2 genes, data analysis identified 11 cases with pathogenic variants (4 in BRCA1 and 7 in BRCA1-2) and 12 with uncertain variants (7 in BRCA1 and 5 in BRCA2). Only one case was found with a large BRCA1 deletion. Whole exome analysis allowed to characterize pathogenic variants in 21 additional genes: 10 genes more traditionally associated to breast and ovarian cancer (ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and TP53) (5% diagnostic yield) and 11 in candidate cancer susceptibility genes (DPYD, ERBB3, ERCC2, MUTYH, NQO2, NTHL1, PARK2, RAD54L, and RNASEL). In conclusion, this study allowed a personalized risk assessment and clinical surveillance in an increased number of HBOC families and to broaden the spectrum of causative variants also to candidate non-canonical genes.
Collapse
Affiliation(s)
- Gabriella Doddato
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Floriana Valentino
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Annarita Giliberti
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filomena Tiziana Papa
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Pia Bruno
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Resciniti
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Alessandra Fabbiani
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alfredo Orrico
- Molecular Diagnosis and Characterization of Pathogenic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese and Clinical Genetics, ASL Toscana SudEst. Ospedale della Misericordia, Grosseto, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Diego Lopergolo
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Vittoria Lamacchia
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sara Mannucci
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aurora Currò
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Mancini
- Unit of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
8
|
Le TL, Galmiche L, Levy J, Suwannarat P, Hellebrekers DM, Morarach K, Boismoreau F, Theunissen TE, Lefebvre M, Pelet A, Martinovic J, Gelot A, Guimiot F, Calleroz A, Gitiaux C, Hully M, Goulet O, Chardot C, Drunat S, Capri Y, Bole-Feysot C, Nitschké P, Whalen S, Mouthon L, Babcock HE, Hofstra R, de Coo IF, Tabet AC, Molina TJ, Keren B, Brooks A, Smeets HJ, Marklund U, Gordon CT, Lyonnet S, Amiel J, Bondurand N. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. J Clin Invest 2021; 131:145837. [PMID: 33497358 DOI: 10.1172/jci145837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.
Collapse
Affiliation(s)
- Thuy-Linh Le
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Louise Galmiche
- INSERM UMR 1235, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, University of Nantes, Nantes, France.,Pathology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Necker-Enfants Malades Hospital, Paris, France
| | - Jonathan Levy
- Genetics Department, Robert Debré Hospital, AP-HP, Paris, France.,Université de Paris, NeuroDiderot, INSERM UMR 1141, Paris, France
| | - Pim Suwannarat
- Department of Genetics, Mid-Atlantic Permanente Medical Group, Suitland, Maryland, USA
| | - Debby Mei Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Khomgrit Morarach
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Franck Boismoreau
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale Supérieure, PSL Research University, Paris, France
| | - Tom Ej Theunissen
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, Netherlands
| | - Mathilde Lefebvre
- Fetal Pathology Unit, Armand Trousseau Hospital, AP-HP, Paris, France
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Jelena Martinovic
- Fetal Pathology Unit, Antoine Béclère Hospital, AP-HP, Paris-Saclay University, Clamart, France
| | - Antoinette Gelot
- Neuropathology, Pathology Department, Armand Trousseau Hospital, AP-HP, Paris, France.,Aix-Marseille University, INMED INSERM UMR1249, Campus de Luminy, Marseille, France
| | - Fabien Guimiot
- Université de Paris, NeuroDiderot, INSERM UMR 1141, Paris, France.,Fetal Pathology Unit, Robert Debré Hospital, AP-HP, Paris, France
| | - Amanda Calleroz
- Pathology and Laboratory Medicine Division, Children's National Hospital, Washington DC, USA
| | - Cyril Gitiaux
- Department of Pediatric Clinical Neurophysiology, Necker-Enfants Malades Hospital, AP-HP, Université de Paris, Paris, France
| | - Marie Hully
- Department of Pediatric Neurology and Rehabilitation, Necker-Enfants Malades Hospital, AP-HP, Université de Paris, Paris, France
| | - Olivier Goulet
- Department of Pediatric Gastroenterology-Hepatology-Nutrition, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Christophe Chardot
- Department of Pediatric Surgery, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Severine Drunat
- Genetics Department, Robert Debré Hospital, AP-HP, Paris, France.,Université de Paris, NeuroDiderot, INSERM UMR 1141, Paris, France
| | - Yline Capri
- Genetics Department, Robert Debré Hospital, AP-HP, Paris, France
| | - Christine Bole-Feysot
- Genomics Core Facility, Imagine Institute-Structure Federative de Recherche Necker, INSERM UMR 1163 and INSERM US24/CNRS UMS 3633, Université de Paris, Paris, France
| | | | - Sandra Whalen
- Clinical Genetics Unit and Reference Center, Anomalies du Développement et Syndromes Malformatifs, AP-HP, Sorbonne University, Armand Trousseau Hospital, Paris, France
| | - Linda Mouthon
- Department of Genetics, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Holly E Babcock
- Children's National Hospital, Rare Disease Institute, Washington, DC, USA
| | - Robert Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Irenaeus Fm de Coo
- Department of Toxicogenomics, Unit Clinical Genomics, Maastricht University, MHeNs School for Mental Health and Neuroscience, Maastricht, Netherlands
| | - Anne-Claude Tabet
- Genetics Department, Robert Debré Hospital, AP-HP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Thierry J Molina
- Pathology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Necker-Enfants Malades Hospital, Paris, France.,Université de Paris, Imagine Institute, Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France
| | - Boris Keren
- Department of Genetics, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Hubert Jm Smeets
- Department of Toxicogenomics, Unit Clinical Genomics, Maastricht University, MHeNs School for Mental Health and Neuroscience, Maastricht, Netherlands
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France.,Fédération de Génétique, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France.,Fédération de Génétique, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Nadège Bondurand
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| |
Collapse
|
9
|
Ferreira JP, Ouwerkerk W, Santema BT, van Veldhuisen DJ, Lang CC, Ng LL, Anker SD, Dickstein K, Metra M, Cleland JGF, Nilesh SJ, Filippatos G, Aboumsallem JP, de Boer RA, Figarska S, Sama IE, Voors AA, Zannad F. Differences in biomarkers and molecular pathways according to age for patients with HFrEF. Cardiovasc Res 2020; 117:2228-2236. [DOI: 10.1093/cvr/cvaa279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Aims
Elderly patients with heart failure with reduced ejection fraction (HFrEF) have worse prognosis and less often receive guideline-recommended therapies. We aim to better understand the underlying pathophysiological processes associated with ageing in HFrEF potentially leading to targeted therapies in this vulnerable population.
Methods and results
From a panel of 363 cardiovascular biomarkers available in 1611 patients with HFrEF in the BIOSTAT-CHF index cohort and cross-validated in 823 patients in the BIOSTAT-CHF validation cohort, we tested which biomarkers were dysregulated in patients aged >75 vs. <65 years. Second, pathway overrepresentation analyses were performed to identify biological pathways linked to higher plasma concentrations of biomarkers in elderly vs. younger patients. After adjustment, multiple test correction [false discovery rate (FDR) 1%], and cross-validation, 27/363 biomarkers were associated with older age, 22 positively and 5 negatively. The biomarkers that were positively associated with older age were associated with tumour cell regulation, extra-cellular matrix organization, and inflammatory processes, whereas biomarkers negatively associated with older age were associated with pathways that may point to cell proliferation and tumourigenesis. Among the 27 biomarkers, WFDC2 (WAP four-disulphide core domain protein 2)—that broadly functions as a protease inhibitor—was associated with older age and had the strongest association with all outcomes. No protein-by-sex interaction was observed.
Conclusions
In elderly HFrEF patients, pathways associated with extra-cellular matrix organization, inflammatory processes, and tumour cell regulation were activated, while pathways associated with tumour proliferation functions were down-regulated. These findings may help in a better understanding of the ageing processes in HFrEF and identify potential therapeutic targets.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Université de Lorraine, Inserm, Centre d'Investigation Clinique - Plurithématique 14-33, Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 4 rue du Morvan, Nancy 54500, France
| | - Wouter Ouwerkerk
- National Heart Centre Singapore, Hospital Drive, Singapore 169659, Singapore
- Department of Dermatology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Bernadet T Santema
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kenneth Dickstein
- Cardiology Division, Stavanger University Hospital, Postboks 8100, 4068 Stavanger, Norway
| | - Marco Metra
- Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - John G F Cleland
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Samani J Nilesh
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Joseph-Pierre Aboumsallem
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Sylwia Figarska
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Iziah E Sama
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d'Investigation Clinique - Plurithématique 14-33, Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 4 rue du Morvan, Nancy 54500, France
| |
Collapse
|
10
|
Li N, Xu Y, Zhang Y, Li G, Yu T, Yao R, Zhou Y, Shen Y, Yin L, Wang X, Wang J. Biallelic ERBB3 loss-of-function variants are associated with a novel multisystem syndrome without congenital contracture. Orphanet J Rare Dis 2019; 14:265. [PMID: 31752936 PMCID: PMC6868814 DOI: 10.1186/s13023-019-1241-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/29/2019] [Indexed: 02/03/2023] Open
Abstract
Background Gain-of-function pathogenic variants of the Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene contribute to the occurrence and development of a variety of human carcinomas through activation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling. ERBB3 gene homozygous germline variants, whose loss of function may cause autosomal recessive congenital contractural syndrome, were recently identified. This study aims to identify the disease-causing gene in a Chinese pedigree with variable phenotypes involving multiple systems, including developmental delay, postnatal growth retardation, transient lower limb asymmetry, facial malformations, atrioventricular canal malformation, bilateral nystagmus and amblyopia, feeding difficulties, immunodeficiency, anemia, and liver damage, but without congenital contracture. Methods Trio-whole exome sequencing (WES) was performed to identify the disease-causing gene in a 24-month-old Chinese female patient. The pathogenicity of the identified variants was evaluated using in silico tools and in vitro functional studies. Results Trio-WES revealed compound heterozygous variants of c.1253 T > C (p.I418T) and c.3182dupA (p.N1061Kfs*16) in the ERBB3 gene. Functional studies showed that p.I418T resulted in normal expression of ERBB3, which was capable of interacting with ERBB2. However, the variant impaired ERBB3 phosphorylation, consequently blocking ERBB2 phosphorylation and AKT and ERK activation. The truncated protein resulting from the c.3182dupA variant also lacked the capacity to activate downstream signaling pathways. Conclusions We report the first patient with a novel multisystem syndrome disorder without congenital contracture resulting from biallelic loss-of-function variants of ERBB3.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - YunFang Zhou
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Yin
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
11
|
ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene 2019; 39:487-502. [DOI: 10.1038/s41388-019-1001-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023]
|
12
|
Abstract
Abstract
There is a Blood Commentary on this article in this issue.
Collapse
|