1
|
Qiu S, Mei Y, Gu R, Liu Y, Chen M, Xing H, Tang K, Tian Z, Rao Q, Yang D, Pang A, Wei S, Jia Y, Wang H, Feng S, Wei H, Zhu P, Wang M, Wang Y, Liu W, Wang J. The dynamic evolution of lineage switch under CD19 CAR-T treatment in non-KMT2A rearranged B-ALL patients. Leukemia 2024:10.1038/s41375-024-02449-7. [PMID: 39482352 DOI: 10.1038/s41375-024-02449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Affiliation(s)
- Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yihan Mei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Manling Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shuning Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
3
|
Allen B, Savoy L, Ryabinin P, Bottomly D, Chen R, Goff B, Wang A, McWheeny SK, Zhang H. Upregulation of HOXA3 by isoform-specific Wilms tumour 1 drives chemotherapy resistance in acute myeloid leukaemia. Br J Haematol 2024; 205:207-219. [PMID: 38867543 PMCID: PMC11448753 DOI: 10.1111/bjh.19563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Upregulation of the Wilms' tumour 1 (WT1) gene is common in acute myeloid leukaemia (AML) and is associated with poor prognosis. WT1 generates 12 primary transcripts through different translation initiation sites and alternative splicing. The short WT1 transcripts express abundantly in primary leukaemia samples. We observed that overexpression of short WT1 transcripts lacking exon 5 with and without the KTS motif (sWT1+/- and sWT1-/-) led to reduced cell growth. However, only sWT1+/- overexpression resulted in decreased CD71 expression, G1 arrest, and cytarabine resistance. Primary AML patient cells with low CD71 expression exhibit resistance to cytarabine, suggesting that CD71 may serve as a potential biomarker for chemotherapy. RNAseq differential expressed gene analysis identified two transcription factors, HOXA3 and GATA2, that are specifically upregulated in sWT1+/- cells, whereas CDKN1A is upregulated in sWT1-/- cells. Overexpression of either HOXA3 or GATA2 reproduced the effects of sWT1+/-, including decreased cell growth, G1 arrest, reduced CD71 expression and cytarabine resistance. HOXA3 expression correlates with chemotherapy response and overall survival in NPM1 mutation-negative leukaemia specimens. Overexpression of HOXA3 leads to drug resistance against a broad spectrum of chemotherapeutic agents. Our results suggest that WT1 regulates cell proliferation and drug sensitivity in an isoform-specific manner.
Collapse
MESH Headings
- Humans
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/biosynthesis
- Cell Line, Tumor
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Nucleophosmin
- Protein Isoforms
- Receptors, Transferrin
- Up-Regulation
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- WT1 Proteins/biosynthesis
Collapse
Affiliation(s)
- Basil Allen
- Division of Oncological Sciences, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Lindsey Savoy
- Division of Oncological Sciences, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Peter Ryabinin
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Daniel Bottomly
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Reid Chen
- Division of Oncological Sciences, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Bonnie Goff
- Division of Oncological Sciences, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Anthony Wang
- Division of Oncological Sciences, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Shannon K McWheeny
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Haijiao Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| |
Collapse
|
4
|
Mavridou E, Lema Fernandez AG, Nardelli C, Pierini V, Quintini M, Arniani S, Di Giacomo D, Crescenzi B, Matteucci C, Sambani C, Mecucci C. A novel t(X;21)(p11.4;q22.12) translocation adds to the role of BCOR and RUNX1 in myelodysplastic syndromes and acute myeloid leukemias. Genes Chromosomes Cancer 2024; 63:e23235. [PMID: 38656651 DOI: 10.1002/gcc.23235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
In myeloid neoplasms, both fusion genes and gene mutations are well-established events identifying clinicopathological entities. In this study, we present a thus far undescribed t(X;21)(p11.4;q22.12) in five cases with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The translocation was isolated or accompanied by additional changes. It did not generate any fusion gene or gene deregulation by aberrant juxtaposition with regulatory sequences. Molecular analysis by targeted next-generation sequencing showed that the translocation was accompanied by at least one somatic mutation in TET2, EZH2, RUNX1, ASXL1, SRSF2, ZRSR2, DNMT3A, and NRAS genes. Co-occurrence of deletion of RUNX1 in 21q22 and of BCOR in Xp11 was associated with t(X;21). BCOR haploinsufficiency corresponded to a significant hypo-expression in t(X;21) cases, compared to normal controls and to normal karyotype AML. By contrast, RUNX1 expression was not altered, suggesting a compensatory effect by the remaining allele. Whole transcriptome analysis showed that overexpression of HOXA9 differentiated t(X;21) from both controls and t(8;21)-positive AML. In conclusion, we characterized a new recurrent reciprocal t(X;21)(p11.4;q22.12) chromosome translocation in MDS and AML, generating simultaneous BCOR and RUNX1 deletions rather than a fusion gene at the genomic level.
Collapse
Affiliation(s)
- Elena Mavridou
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlotta Nardelli
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Quintini
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Caterina Matteucci
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Constantina Sambani
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Chen JN, Jin JC, Guo J, Tao Y, Xu FH, Liu Q, Li X, Chang CK, Wu LY. The bcl6 corepressor mutation regulates the progression and transformation of myelodysplastic syndromes by repressing the autophagy flux. Int J Biochem Cell Biol 2023; 165:106480. [PMID: 37884171 DOI: 10.1016/j.biocel.2023.106480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
The occurrence of autophagy dysregulation is vital in the development of myelodysplastic syndrome and its transformation to acute myeloid leukemia. However, the mechanisms are largely unknown. Here, we have investigated the mechanism of the bcl6 corepressor mutation in myelodysplastic syndrome development and its transformation to acute myeloid leukemia. We identified a novel pathway involving histone deacetylase 6 and forkhead box protein O1, which leads to autophagy defects following the bcl6 corepressor mutation. And this further causes apoptosis and cell cycle arrest. The bcl6 corepressor-mutation-repressed autophagy resulted in the accumulation of damaged mitochondria, DNA, and reactive oxygen species in myelodysplastic syndrome cells, which could then lead to genomic instability and spontaneous mutation. Our results suggest that the bcl6 corepressor inactivating mutations exert pro-carcinogenic effects through survival strike, which is only an intermediate process. These findings provide mechanistic insights into the role of the bcl6 corepressor gene in myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Jia-Cheng Jin
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Ying Tao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Qi Liu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Xiao Li
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200000, China.
| |
Collapse
|
6
|
Angelakis A, Soulioti I, Filippakis M. Diagnosis of acute myeloid leukaemia on microarray gene expression data using categorical gradient boosted trees. Heliyon 2023; 9:e20530. [PMID: 37860531 PMCID: PMC10582309 DOI: 10.1016/j.heliyon.2023.e20530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
We define an iterative method for dimensionality reduction using categorical gradient boosted trees and Shapley values and created four machine learning models which potentially could be used as diagnostic tests for acute myeloid leukaemia (AML). For the final Catboost model we use a dataset of 2177 individuals using as features 16 probe sets and the age in order to classify if someone has AML or is healthy. The dataset is multicentric and consists of data from 27 organizations, 25 cities, 15 countries and 4 continents. The performance of our last model is specificity: 0.9909, sensitivity: 0.9985, F1-score: 0.9976 and its ROC-AUC: 0.9962 using ten fold cross validation. On an inference dataset the perormance is: specificity: 0.9909, sensitivity: 0.9969, F1-score: 0.9969 and its ROC-AUC: 0.9939. To the best of our knowledge the performance of our model is the best one in the literature, as regards the diagnosis of AML using similar or not data. Moreover, there has not been any bibliographic reference which associates AML or any other type of cancer with the 16 probe sets we used as features in our final model.
Collapse
Affiliation(s)
- Athanasios Angelakis
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam Public Health Research Institute, University of Amsterdam Data Science Center, Netherlands
| | - Ioanna Soulioti
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | |
Collapse
|
7
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
8
|
Polycomb Alterations in Acute Myeloid Leukaemia: From Structure to Function. Cancers (Basel) 2023; 15:cancers15061693. [PMID: 36980579 PMCID: PMC10046783 DOI: 10.3390/cancers15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.
Collapse
|
9
|
Zavras PD, Sinanidis I, Tsakiroglou P, Karantanos T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5018. [PMID: 36902450 PMCID: PMC10002503 DOI: 10.3390/ijms24055018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm characterized by bone marrow dysplasia, failure of hematopoiesis and variable risk of progression to acute myeloid leukemia (AML). Recent large-scale studies have demonstrated that distinct molecular abnormalities detected at earlier stages of MDS alter disease biology and predict progression to AML. Consistently, various studies analyzing these diseases at the single-cell level have identified specific patterns of progression strongly associated with genomic alterations. These pre-clinical results have solidified the conclusion that high-risk MDS and AML arising from MDS or AML with MDS-related changes (AML-MRC) represent a continuum of the same disease. AML-MRC is distinguished from de novo AML by the presence of certain chromosomal abnormalities, such as deletion of 5q, 7/7q, 20q and complex karyotype and somatic mutations, which are also present in MDS and carry crucial prognostic implications. Recent changes in the classification and prognostication of MDS and AML by the International Consensus Classification (ICC) and the World Health Organization (WHO) reflect these advances. Finally, a better understanding of the biology of high-risk MDS and the mechanisms of disease progression have led to the introduction of novel therapeutic approaches, such as the addition of venetoclax to hypomethylating agents and, more recently, triplet therapies and agents targeting specific mutations, including FLT3 and IDH1/2. In this review, we analyze the pre-clinical data supporting that high-risk MDS and AML-MRC share the same genetic abnormalities and represent a continuum, describe the recent changes in the classification of these neoplasms and summarize the advances in the management of patients with these neoplasms.
Collapse
Affiliation(s)
| | | | | | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
10
|
Shultz C, Gates C, Petros W, Ross K, Veltri L, Craig M, Wen S, Primerano DA, Hazlehurst L, Denvir J, Sdrimas K. Association of genetic variants and survival in patients with acute myeloid leukemia in rural Appalachia. Cancer Rep (Hoboken) 2023; 6:e1746. [PMID: 36382570 PMCID: PMC10026309 DOI: 10.1002/cnr2.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Previous population health studies examining adults with acute myeloid leukemia (AML); however many of these, such as the Cancer Genome Atlas, are derived from databases collected by large urban centers. Due to its unique industry and environmental exposures, we hypothesized the West Virginia Appalachian population may have different mutational trends and clinical outcomes. AIMS To address the concern of under-representation of rural minorities in cancer genomic databases, we performed exploratory whole exome sequencing in patients with newly diagnosed AML in rural Appalachia. METHODS & RESULTS Correlations between genetic variants and clinical outcome variables were examined via retrospective chart review. A total of 26 patients were identified and whole exome sequencing was performed. Median age was 68 years old. Twenty-one patients had de novo AML (84%). As per European LeukemiaNet (ELN) criteria, 8 patients were favorable (32%), 12 were intermediate (48%), and 5 were adverse risk (20%). Eight patients proceeded to transplant. The median progression-free survival and overall survival were 16.5 months and 26.6 months, respectively. We noted an increased tumor mutation burden and a higher frequency of specific known driver mutations when compared to The Cancer Genome Atlas database; we also found novel mutations in MUC3A, MUC5AC, HCAR3, ORT2B, and PABPC. Survival outcomes were slightly lower than national average and BCOR mutation correlated with inferior outcomes. CONCLUSION Our findings provide novel insight into detrimental mutations in AML in a rural, underrepresented population. We discovered several novel mutations and higher frequency of some known driver mutations, which will help us identify therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Carl Shultz
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
| | - Christopher Gates
- Department of General Internal Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - William Petros
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | - Kelly Ross
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
| | - Laruen Veltri
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
| | - Michael Craig
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
| | - Sijin Wen
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Marshall University, Robert C. Byrd Biotech Center, Huntington, West Virginia, USA
| | - Lori Hazlehurst
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
- Department of General Internal Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James Denvir
- Department of Biomedical Sciences, Marshall University, Robert C. Byrd Biotech Center, Huntington, West Virginia, USA
| | - Konstantinos Sdrimas
- Osborn Hematopoietic Malignancy and Cellular Therapy Program, West Virginia University Department of Hematology/Oncology, Morgantown, West Virginia, USA
| |
Collapse
|
11
|
Pettirossi V, Venanzi A, Spanhol-Rosseto A, Schiavoni G, Santi A, Tasselli L, Naccari M, Pensato V, Pucciarini A, Martelli MP, Drexler H, Falini B, Tiacci E. The gene mutation landscape of acute myeloid leukemia cell lines and its exemplar use to study the BCOR tumor suppressor. Leukemia 2023; 37:473-477. [PMID: 36635390 DOI: 10.1038/s41375-022-01788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Valentina Pettirossi
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Alessandra Venanzi
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Ariele Spanhol-Rosseto
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Gianluca Schiavoni
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Alessia Santi
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Luisa Tasselli
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Marta Naccari
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Valentina Pensato
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Alessandra Pucciarini
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Hans Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, Braunschweig, Germany
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Enrico Tiacci
- Institute of Hematology and Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy.
| |
Collapse
|
12
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
13
|
Lin W, Hu S, Wu Z, Xu Z, Zhong Y, Lv Z, Qiu W, Xiao X. iCancer-Pred: A tool for identifying cancer and its type using DNA methylation. Genomics 2022; 114:110486. [PMID: 36126833 DOI: 10.1016/j.ygeno.2022.110486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
DNA methylation is an important epigenetics, which occurs in the early stages of tumor formation. And it also is of great significance to find the relationship between DNA methylation and cancer. This paper proposes a novel model, iCancer-Pred, to identify cancer and classify its types further. The datasets of DNA methylation information of 7 cancer types have been collected from The Cancer Genome Atlas (TCGA). The coefficient of variation firstly is used to reduce the number of features, and then the elastic network is applied to select important features. Finally, a fully connected neural network is constructed with these selected features. In predicting seven types of cancers, iCancer-Pred has achieved an overall accuracy of over 97% accuracy with 5-fold cross-validation. For the convenience of the application, a user-friendly web server: http://bioinfo.jcu.edu.cn/cancer or http://121.36.221.79/cancer/ is available. And the source codes are freely available for download at https://github.com/Huerhu/iCancer-Pred.
Collapse
Affiliation(s)
- Weizhong Lin
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China.
| | - Siqin Hu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Zhicheng Wu
- Wuhan Ammunition Life Science & Technology Co., Ltd., Wuhan 430000, China
| | - Zhaochun Xu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Yu Zhong
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Zhe Lv
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Wangren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Xuan Xiao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| |
Collapse
|
14
|
Durrani J, Groarke EM. Clonality in immune aplastic anemia: Mechanisms of immune escape or malignant transformation. Semin Hematol 2022; 59:137-142. [PMID: 36115690 PMCID: PMC9938528 DOI: 10.1053/j.seminhematol.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Aplastic anemia (AA) is the prototypic bone marrow failure syndrome and can be classified as either acquired or inherited. Inherited forms are due to the effects of germline mutations, while acquired AA is suspected to result from cytotoxic T-cell mediated immune attack on hematopoietic stem and progenitor cells. Once thought to be a purely "benign" condition, clonality in the form of chromosomal abnormalities and single nucleotide variants is now well recognized in AA. Mechanisms underpinning this clonality likely relate to selection of clones that allow immune evasion or increased cell survival the marrow environment under immune attack. Widespread use and availability of next generation and other genetic sequencing techniques has enabled us to better understand the genomic landscape of aplastic anemia. This review focuses on the current concepts associated with clonality, in particular somatic mutations and their impact on diagnosis and clinical outcomes in immune aplastic anemia.
Collapse
Affiliation(s)
- Jibran Durrani
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health.
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health
| |
Collapse
|
15
|
Heterozygous variants in GATA2 contribute to DCML deficiency in mice by disrupting tandem protein binding. Commun Biol 2022; 5:376. [PMID: 35440757 PMCID: PMC9018821 DOI: 10.1038/s42003-022-03316-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Accumulating lines of clinical evidence support the emerging hypothesis that loss-of-function mutations of GATA2 cause inherited hematopoietic diseases, including Emberger syndrome; dendritic cell, monocyte B and NK lymphoid (DCML) deficiency; and MonoMAC syndrome. Here, we show that mice heterozygous for an arginine-to-tryptophan substitution mutation in GATA2 (G2R398W/+), which was found in a patient with DCML deficiency, substantially phenocopy human DCML deficiency. Mice heterozygous for the GATA2-null mutation (G2-/+) do not show such phenotypes. The G2R398W protein possesses a decreased DNA-binding affinity but obstructs the function of coexpressed wild-type GATA2 through specific cis-regulatory regions, which contain two GATA motifs in direct-repeat arrangements. In contrast, G2R398W is innocuous in mice containing single GATA motifs. We conclude that the dominant-negative effect of mutant GATA2 on wild-type GATA2 through specific enhancer/silencer of GATA2 target genes perturbs the GATA2 transcriptional network, leading to the development of the DCML-like phenotype. The present mouse model provides an avenue for the understanding of molecular mechanisms underlying the pathogenesis of GATA2-related hematopoietic diseases.
Collapse
|
16
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Cook MR, Karp JE, Lai C. The spectrum of genetic mutations in myelodysplastic syndrome: Should we update prognostication? EJHAEM 2022; 3:301-313. [PMID: 35846202 PMCID: PMC9176033 DOI: 10.1002/jha2.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
The natural history of patients with myelodysplastic syndrome (MDS) is dependent upon the presence and magnitude of diverse genetic and molecular aberrations. The International Prognostic Scoring System (IPSS) and revised IPSS (IPSS-R) are the most widely used classification and prognostic systems; however, somatic mutations are not currently incorporated into these systems, despite evidence of their independent impact on prognosis. Our manuscript reviews prognostic information for TP53, EZH2, DNMT3A, ASXL1, RUNX1, SRSF2, CBL, IDH 1/2, TET2, BCOR, ETV6, GATA2, U2AF1, ZRSR2, RAS, STAG2, and SF3B1. Mutations in TP53, EZH2, ASXL1, DNMT3A, RUNX1, SRSF2, and CBL have extensive evidence for their negative impact on survival, whereas SF3B1 is the lone mutation carrying a favorable prognosis. We use the existing literature to propose the incorporation of somatic mutations into the IPSS-R. More data are needed to define the broad spectrum of other genetic lesions, as well as the impact of variant allele frequencies, class of mutation, and impact of multiple interactive genomic lesions. We postulate that the incorporation of these data into MDS prognostication systems will not only enhance our therapeutic decision making but lead to targeted treatment in an attempt to improve outcomes in this formidable disease.
Collapse
Affiliation(s)
- Michael R. Cook
- Division of Hematology and OncologyLombardi Comprehensive Cancer CenterGeorgetown University HospitalWashingtonDistrict of ColumbiaUSA
| | - Judith E. Karp
- Divison of Hematology and OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University HospitalBaltimoreMarylandUSA
| | - Catherine Lai
- Division of Hematology and OncologyLombardi Comprehensive Cancer CenterGeorgetown University HospitalWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
18
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
19
|
Giefing M, Gearhart MD, Schneider M, Overbeck B, Klapper W, Hartmann S, Ustaszewski A, Weniger MA, Wiehle L, Hansmann ML, Melnick A, Béguelin W, Sundström C, Küppers R, Bardwell VJ, Siebert R. Loss of function mutations of BCOR in classical Hodgkin lymphoma. Leuk Lymphoma 2021; 63:1080-1090. [DOI: 10.1080/10428194.2021.2015587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center and Developmental Biology Center, University of Minnesota, Minneapolis, USA
| | - Markus Schneider
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Essen, Essen, Germany
| | - Birte Overbeck
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Sylvia Hartmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marc A. Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
| | - Laura Wiehle
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Martin-Leo Hansmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center and Developmental Biology Center, University of Minnesota, Minneapolis, USA
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
20
|
CBFB-MYH11 fusion transcripts distinguish acute myeloid leukemias with distinct molecular landscapes and outcomes. Blood Adv 2021; 5:4963-4968. [PMID: 34547772 PMCID: PMC9153007 DOI: 10.1182/bloodadvances.2021004965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022] Open
Abstract
Key Points
CBFB-MYH11 transcripts and KIT mutations predict relapse in AML. High-risk CBFB-MYH11 transcripts are associated with distinct transcriptional landscapes and upregulation of early hematopoiesis genes.
Collapse
|
21
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
22
|
Li X, Xu F, Zhang Z, Guo J, He Q, Song LX, Wu D, Zhou LY, Su JY, Xiao C, Chang CK, Wu LY. Dynamics of epigenetic regulator gene BCOR mutation and response predictive value for hypomethylating agents in patients with myelodysplastic syndrome. Clin Epigenetics 2021; 13:169. [PMID: 34461985 PMCID: PMC8404357 DOI: 10.1186/s13148-021-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background BCOR (BCL6 corepressor) is an epigenetic regulator gene involved in the specification of cell differentiation and body structure development. Recurrent somatic BCOR mutations have been identified in myelodysplastic syndrome (MDS). However, the clinical impact of BCOR mutations on MDS prognosis is controversial and the response of hypomethylating agents in MDS with BCOR mutations (BCORMUT) remains unknown. Results Among 676 MDS patients, 43 patients (6.4%) harbored BCOR mutations. A higher frequency of BCOR mutations (8.7%) was investigated in patients with normal chromosome, compared to 4.2% in patients with abnormal karyotype (p = 0.040). Compared to the BCORWT patients, the BCORMUT patients showed a higher ratio of refractory anemia with excess blasts subset (p = 0.008). The most common comutations with BCOR genes were ASXL1 (p = 0.002), DNMT3A (p = 0.114) and TET2 (p = 0.148). When the hierarchy of somatic mutations was analyzed, BCOR mutations were below the known initial mutations (ASXL1 or TET2) but were above U2AF1 mutations. Transformation-free survival was significantly shorter in BCORMUT patients than that in BCORWT patients (16 vs. 35 months; p = 0.035). RNA-sequencing was performed in bone marrow mononuclear cells from BCORMUT and BCORWT patients and revealed 2030 upregulated and 772 downregulated genes. Importantly, HOXA6, HOXB7, and HOXB9 were significantly over-expressed in BCORMUT patients, compared to BCORWT patients. Eight of 14 BCORMUT patients (57.1%) achieved complete remission (CR) with decitabine treatment, which was much higher than that in BCORWT patients (28.7%, p = 0.036). Paired sequencing results (before and after decitabine) showed three of 6 CR patients lost the mutated BCOR. The median survival of CR patients with a BCORMUT was 40 months, which was significantly longer than that in patients with BCORWT (20 months, p = 0.036). Notably, prolonged survival was observed in three BCORMUT CR patients even without any subsequent therapies. Conclusions BCOR mutations occur more frequently in CN MDS patients, predicting higher risk of leukemia transformation. BCORMUT patients showed a better response to decitabine and achieved longer post-CR survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01157-8.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
23
|
Honda A, Koya J, Yoshimi A, Miyauchi M, Taoka K, Kataoka K, Arai S, Kurokawa M. Loss-of-function mutations in BCOR contribute to chemotherapy resistance in acute myeloid leukemia. Exp Hematol 2021; 101-102:42-48.e11. [PMID: 34333045 DOI: 10.1016/j.exphem.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Primary refractory acute myeloid leukemia (AML) is unresponsive to conventional chemotherapy and has a poor prognosis. Despite the recent identification of novel driver mutations and advances in the understanding of the molecular pathogenesis, little is known about the relationship between genetic abnormalities and chemoresistance in AML. In this study, we subjected 39 samples from patients with primary refractory AML to whole-exome and targeted sequencing analyses to identify somatic mutations contributing to chemoresistance in AML. First, we identified 49 genes that might contribute to chemotherapy resistance through the whole-exome sequencing of samples from 6 patients with primary refractory AML. We then identified a significantly higher frequency of mutations in the gene encoding BCL-6 co-repressor (BCOR) in patients with primary refractory AML through the targeted sequencing of all coding sequence of 49 genes. Notably, the presence of BCOR mutations appeared to have a negative impact on prognosis in our cohort and previous larger studies. Subsequently, to investigate the biological effect of BCOR mutations on sensitivity to anticancer drugs, we established BCOR knockout human leukemic cell lines using the CRISPR/Cas9 system. Here, BCOR knockout cell lines exhibited statistically significant reductions in sensitivity to anticancer drugs, compared with the wild-type controls both in vitro and in vivo in xenograft mouse models. In conclusion, loss-of-function BCOR mutations appear to contribute to chemotherapy resistance and may be a promising therapeutic target in primary refractory AML.
Collapse
Affiliation(s)
- Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Miyauchi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuki Taoka
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
24
|
Manjur ABMK, Lempiäinen JK, Malinen M, Varjosalo M, Palvimo JJ, Niskanen EA. BCOR modulates transcriptional activity of a subset of glucocorticoid receptor target genes involved in cell growth and mobility. J Steroid Biochem Mol Biol 2021; 210:105873. [PMID: 33722704 DOI: 10.1016/j.jsbmb.2021.105873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Glucocorticoid (GC) receptor (GR) is a key transcription factor (TF) that regulates vital metabolic and anti-inflammatory processes. We have identified BCL6 corepressor (BCOR) as a dexamethasone-stimulated interaction partner of GR. BCOR is a component of non-canonical polycomb repressor complex 1.1 (ncPCR1.1) and linked to different developmental disorders and cancers, but the role of BCOR in GC signaling is poorly characterized. Here, using ChIP-seq we show that, GC induces genome-wide redistribution of BCOR chromatin binding towards GR-occupied enhancers in HEK293 cells. As assessed by RNA-seq, depletion of BCOR altered the expression of hundreds of GC-regulated genes, especially the ones linked to TNF signaling, GR signaling and cell migration pathways. Biotinylation-based proximity mapping revealed that GR and BCOR share several interacting partners, including nuclear receptor corepressor NCOR1. ChIP-seq showed that the NCOR1 co-occurs with both BCOR and GR on a subset of enhancers upon GC treatment. Simultaneous depletion of BCOR and NCOR1 influenced GR target gene expression in a combinatorial and gene-specific manner. Finally, we show using live cell imaging that the depletion of BCOR together with NCOR1 markedly enhances cell migration. Collectively, our data suggest BCOR as an important gene and pathway selective coregulator of GR transcriptional activity.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
25
|
BCOR gene alterations in hematological diseases. Blood 2021; 138:2455-2468. [PMID: 33945606 DOI: 10.1182/blood.2021010958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The BCL6 co-repressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homologue BCORL1 have been detected in several hematological malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR. BCOR and BCORL1 mutations are similar to those causing two rare X-linked diseases: the oculo-facio-cardio-dental (OFCD) and the Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and non-malignant hematological diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (e.g. Dnmt3a and Tet2), in promoting hematological malignancies and in providing a useful platform for the development of new targeted therapies.
Collapse
|
26
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
27
|
Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13092095. [PMID: 33926021 PMCID: PMC8123716 DOI: 10.3390/cancers13092095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.
Collapse
|
28
|
Ochi Y, Ogawa S. Chromatin-Spliceosome Mutations in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061232. [PMID: 33799787 PMCID: PMC7999050 DOI: 10.3390/cancers13061232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recent genomic studies have identified chromatin-spliceosome (CS)-acute myeloid leukemia (AML) as a new subgroup of AML. CS-AML is defined by several mutations that perturb epigenetic regulation, such as those affecting splicing factors, cohesin components, transcription factors, and chromatin modifiers, which are also frequently mutated in other myeloid malignancies, such as myelodysplastic syndrome and secondary AML. Thus, these mutations identify myeloid neoplasms that lie on the boundaries of conventional differential diagnosis. CS-AML shares several clinical characteristics with secondary AML. Therefore, the presence of CS-mutations may help to better classify and manage patients with AML and related disorders. The aim of this review is to discuss the genetic and clinical characteristics of CS-AML and roles of driver mutations defining this unique genomic subgroup of AML. Abstract Recent genetic studies on large patient cohorts with acute myeloid leukemia (AML) have cataloged a comprehensive list of driver mutations, resulting in the classification of AML into distinct genomic subgroups. Among these subgroups, chromatin-spliceosome (CS)-AML is characterized by mutations in the spliceosome, cohesin complex, transcription factors, and chromatin modifiers. Class-defining mutations of CS-AML are also frequently identified in myelodysplastic syndrome (MDS) and secondary AML, indicating the molecular similarity among these diseases. CS-AML is associated with myelodysplasia-related changes in hematopoietic cells and poor prognosis, and, thus, can be treated using novel therapeutic strategies and allogeneic stem cell transplantation. Functional studies of CS-mutations in mice have revealed that CS-mutations typically cause MDS-like phenotypes by altering the epigenetic regulation of target genes. Moreover, multiple CS-mutations often synergistically induce more severe phenotypes, such as the development of lethal MDS/AML, suggesting that the accumulation of many CS-mutations plays a crucial role in the progression of MDS/AML. Indeed, the presence of multiple CS-mutations is a stronger indicator of CS-AML than a single mutation. This review summarizes the current understanding of the genetic and clinical features of CS-AML and the functional roles of driver mutations characterizing this unique category of AML.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
- Correspondence: ; Tel.: +81-75-753-9285
| |
Collapse
|
29
|
SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood 2021; 135:2271-2285. [PMID: 32202636 DOI: 10.1182/blood.2019001963] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.
Collapse
|
30
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
31
|
Hamline MY, Corcoran CM, Wamstad JA, Miletich I, Feng J, Lohr JL, Hemberger M, Sharpe PT, Gearhart MD, Bardwell VJ. OFCD syndrome and extraembryonic defects are revealed by conditional mutation of the Polycomb-group repressive complex 1.1 (PRC1.1) gene BCOR. Dev Biol 2020; 468:110-132. [PMID: 32692983 PMCID: PMC9583620 DOI: 10.1016/j.ydbio.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
BCOR is a critical regulator of human development. Heterozygous mutations of BCOR in females cause the X-linked developmental disorder Oculofaciocardiodental syndrome (OFCD), and hemizygous mutations of BCOR in males cause gestational lethality. BCOR associates with Polycomb group proteins to form one subfamily of the diverse Polycomb repressive complex 1 (PRC1) complexes, designated PRC1.1. Currently there is limited understanding of differing developmental roles of the various PRC1 complexes. We therefore generated a conditional exon 9-10 knockout Bcor allele and a transgenic conditional Bcor expression allele and used these to define multiple roles of Bcor, and by implication PRC1.1, in mouse development. Females heterozygous for Bcor exhibiting mosaic expression due to the X-linkage of the gene showed reduced postnatal viability and had OFCD-like defects. By contrast, Bcor hemizygosity in the entire male embryo resulted in embryonic lethality by E9.5. We further dissected the roles of Bcor, focusing on some of the tissues affected in OFCD through use of cell type specific Cre alleles. Mutation of Bcor in neural crest cells caused cleft palate, shortening of the mandible and tympanic bone, ectopic salivary glands and abnormal tongue musculature. We found that defects in the mandibular region, rather than in the palate itself, led to palatal clefting. Mutation of Bcor in hindlimb progenitor cells of the lateral mesoderm resulted in 2/3 syndactyly. Mutation of Bcor in Isl1-expressing lineages that contribute to the heart caused defects including persistent truncus arteriosus, ventricular septal defect and fetal lethality. Mutation of Bcor in extraembryonic lineages resulted in placental defects and midgestation lethality. Ubiquitous over expression of transgenic Bcor isoform A during development resulted in embryonic defects and midgestation lethality. The defects we have found in Bcor mutants provide insights into the etiology of the OFCD syndrome and how BCOR-containing PRC1 complexes function in development.
Collapse
Affiliation(s)
- Michelle Y Hamline
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA; University of Minnesota Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Connie M Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph A Wamstad
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Isabelle Miletich
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jifan Feng
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jamie L Lohr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Medical Research Council Centre for Transplantation, King's College London, London, SE1 9RT, UK
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
32
|
Sportoletti P, Sorcini D, Guzman AG, Reyes JM, Stella A, Marra A, Sartori S, Brunetti L, Rossi R, Papa BD, Adamo FM, Pianigiani G, Betti C, Scialdone A, Guarente V, Spinozzi G, Tini V, Martelli MP, Goodell MA, Falini B. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia 2020; 35:1949-1963. [PMID: 33159179 PMCID: PMC8257496 DOI: 10.1038/s41375-020-01075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Recurrent loss-of-function mutations of BCL6 co-repressor (BCOR) gene are found in about 4% of AML patients with normal karyotype and are associated with DNMT3a mutations and poor prognosis. Therefore, new anti-leukemia treatments and mouse models are needed for this combinatorial AML genotype. For this purpose, we first generated a Bcor-/- knockout mouse model characterized by impaired erythroid development (macrocytosis and anemia) and enhanced thrombopoiesis, which are both features of myelodysplasia/myeloproliferative neoplasms. We then created and characterized double Bcor-/-/Dnmt3a-/- knockout mice. Interestingly, these animals developed a fully penetrant acute erythroid leukemia (AEL) characterized by leukocytosis secondary to the expansion of blasts expressing c-Kit+ and the erythroid marker Ter119, macrocytic anemia and progressive reduction of the thrombocytosis associated with loss of Bcor alone. Transcriptomic analysis of double knockout bone marrow progenitors revealed that aberrant erythroid skewing was induced by epigenetic changes affecting specific transcriptional factors (GATA1-2) and cell-cycle regulators (Mdm2, Tp53). These findings prompted us to investigate the efficacy of demethylating agents in AEL, with significant impact on progressive leukemic burden and mice overall survival. Information gained from our model expands the knowledge on the biology of AEL and may help designing new rational treatments for patients suffering from this high-risk leukemia.
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| | - Daniele Sorcini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Anna G Guzman
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jaime M Reyes
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arianna Stella
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Sara Sartori
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Lorenzo Brunetti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Roberta Rossi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulia Pianigiani
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Camilla Betti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Annarita Scialdone
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulio Spinozzi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valentina Tini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Maria Paola Martelli
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Margaret A Goodell
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brunangelo Falini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
33
|
Abstract
The interaction between polycomb-repressive complexes 1/2 (PRC1/2) and long non-coding RNA (lncRNA), such as the X inactive specific transcript Xist and the HOX transcript antisense RNA (HOTAIR), has been the subject of intense debate. While cross-linking, immuno-precipitation and super-resolution microscopy argue against direct interaction of Polycomb with some lncRNAs, there is increasing evidence supporting the ability of both PRC1 and PRC2 to functionally associate with RNA. Recent data indicate that these interactions are in most cases spurious, but nonetheless crucial for a number of cellular activities. In this review, we suggest that while PRC1/2 recruitment by HOTAIR might be direct, in the case of Xist, it might occur indirectly and, at least in part, through the process of liquid-liquid phase separation. We present recent models of lncRNA-mediated PRC1/2 recruitment to their targets and describe potential RNA-mediated roles in the three-dimensional organization of the nucleus.
Collapse
Affiliation(s)
- Andrea Cerase
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
34
|
Kutscher LM, Okonechnikov K, Batora NV, Clark J, Silva PBG, Vouri M, van Rijn S, Sieber L, Statz B, Gearhart MD, Shiraishi R, Mack N, Orr BA, Korshunov A, Gudenas BL, Smith KS, Mercier AL, Ayrault O, Hoshino M, Kool M, von Hoff K, Graf N, Fleischhack G, Bardwell VJ, Pfister SM, Northcott PA, Kawauchi D. Functional loss of a noncanonical BCOR-PRC1.1 complex accelerates SHH-driven medulloblastoma formation. Genes Dev 2020; 34:1161-1176. [PMID: 32820036 PMCID: PMC7462063 DOI: 10.1101/gad.337584.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
In this study, Kutscher et al. investigated the transcriptional corepressor BCOR as a putative tumor suppressor and used a genetically engineered mouse model to delete exons 9/10 of Bcor in GNPs during development. Their data suggest that BCOR–PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors. Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9–10) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9–10). While BcorΔE9–10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9–10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/−;BcorΔE9–10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/− GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/−;BcorΔE9–10 tumors. Overall, our data suggests that BCOR–PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.
Collapse
Affiliation(s)
- Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nadja V Batora
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jessica Clark
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Patricia B G Silva
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Mikaella Vouri
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Sjoerd van Rijn
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Laura Sieber
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Britta Statz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Micah D Gearhart
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-0031, Japan
| | - Norman Mack
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Audrey L Mercier
- Institut Curie, PSL Research University, UMR 3347, Centre National de la Recherche Scientifique (CNRS), U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay 91405, France.,Université Paris Sud, Université, UMR 3347, CNRS, U1021, INSERM, Orsay 91405, France
| | - Olivier Ayrault
- Institut Curie, PSL Research University, UMR 3347, Centre National de la Recherche Scientifique (CNRS), U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay 91405, France.,Université Paris Sud, Université, UMR 3347, CNRS, U1021, INSERM, Orsay 91405, France
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-0031, Japan
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Katja von Hoff
- Department for Paediatric Oncology and Haematology, Charité University Medicine, 13354 Berlin, Germany
| | - Norbert Graf
- Department for Pediatric Oncology and Hematology, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Gudrun Fleischhack
- Pediatric Haematology and Oncology, Pediatrics III, University Hospital of Essen, 45147 Essen, Germany
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Schmidt CR, Achille NJ, Kuntimaddi A, Boulton AM, Leach BI, Zhang S, Zeleznik-Le NJ, Bushweller JH. BCOR Binding to MLL-AF9 Is Essential for Leukemia via Altered EYA1, SIX, and MYC Activity. Blood Cancer Discov 2020; 1:162-177. [PMID: 32954361 DOI: 10.1158/2643-3230.bcd-20-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MLL is a target of chromosomal translocations in acute leukemias with poor prognosis. The common MLL fusion partner AF9 (MLLT3) can directly bind to AF4, DOT1L, BCOR, and CBX8. To delineate the relevance of BCOR and CBX8 binding to MLL-AF9 for leukemogenesis, here we determine protein structures of AF9 complexes with CBX8 and BCOR, and show that binding of all four partners to AF9 is mutually exclusive. Using the structural analyses, we identify point mutations that selectively disrupt AF9 interactions with BCOR and CBX8. In bone marrow stem/progenitor cells expressing point mutant CBX8 or point mutant MLL-AF9, we show that disruption of direct CBX8/MLL-AF9 binding does not impact in vitro cell proliferation, whereas loss of direct BCOR/MLL-AF9 binding causes partial differentiation and increased proliferation. Strikingly, loss of MLL-AF9/BCOR binding abrogated its leukemogenic potential in a mouse model. The MLL-AF9 mutant deficient for BCOR binding reduces the expression of the EYA1 phosphatase and the protein level of c-Myc. Reduction in BCOR binding to MLL-AF9 alters a MYC-driven gene expression program, as well as altering expression of SIX-regulated genes, likely contributing to the observed reduction in the leukemia-initiating cell population.
Collapse
Affiliation(s)
- Charles R Schmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Nicholas J Achille
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Adam M Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Benjamin I Leach
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Shubin Zhang
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Nancy J Zeleznik-Le
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
- Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
36
|
Shahid S, Shakeel M, Siddiqui S, Ahmed S, Sohail M, Khan IA, Abid A, Shamsi T. Novel Genetic Variations in Acute Myeloid Leukemia in Pakistani Population. Front Genet 2020; 11:560. [PMID: 32655615 PMCID: PMC7324646 DOI: 10.3389/fgene.2020.00560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion of blast cells that exhibit great genetic heterogeneity. In this study, we describe the mutational landscape and its clinico-pathological significance in 26 myeloid neoplasm patients from a South Asian population (Pakistan) by using ultra-deep targeted next-generation DNA sequencing of 54 genes (∼5000×) and its subsequent bioinformatics analysis. The data analysis indicated novel non-silent somatic mutational events previously not reported in AML, including nine non-synonymous and one stop-gain mutations. Notably, two recurrent somatic non-synonymous mutations, i.e., STAG2 (causing p.L526F) and BCORL1 (p.A400V), were observed in three unrelated cases each. The BCOR was found to have three independent non-synonymous somatic mutations in three cases. Further, the SRSF2 with a protein truncating somatic mutation (p.Q88X) was observed for the first time in AML in this study. The prioritization of germline mutations with ClinVar, SIFT, Polyphen2, and Combined Annotation Dependent Depletion (CADD) highlighted 18 predicted deleterious/pathogenic mutations, including two recurrent deleterious mutations, i.e., a novel heterozygous non-synonymous SNV in GATA2 (p.T358P) and a frameshift insertion in NPM1 (p.L258fs), found in two unrelated cases each. The WT1 was observed with three independent potential detrimental germline mutations in three different cases. Collectively, non-silent somatic and/or germline mutations were observed in 23 (88.46%) of the cases (0.92 mutation per case). Furthermore, the pharmGKB database exploration showed a missense SNV rs1042522 in TP53, exhibiting decreased response to anti-cancer drugs, in 19 (73%) of the cases. This genomic profiling of AML provides deep insight into the disease pathophysiology. Identification of pharmacogenomics markers will help to adopt personalized approach for the management of AML patients in Pakistan.
Collapse
Affiliation(s)
- Saba Shahid
- Department of Genomics, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saima Siddiqui
- Department of Hematology, National Institute of Blood Diseases and Bone Marrow Transplantation Karachi, Karachi, Pakistan
| | - Shariq Ahmed
- Department of Genomics, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan
| | - Misha Sohail
- Department of Genomics, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Tahir Shamsi
- Department of Hematology, National Institute of Blood Diseases and Bone Marrow Transplantation Karachi, Karachi, Pakistan
| |
Collapse
|
37
|
Zhou X, Xu X, Tian Z, Xu WY, Cui Y. Mutational profiling of lung adenocarcinoma in China detected by next-generation sequencing. J Cancer Res Clin Oncol 2020; 146:2277-2287. [DOI: 10.1007/s00432-020-03284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
38
|
Brzeźniakiewicz-Janus K, Rupa-Matysek J, Gil L. Acquired Aplastic Anemia as a Clonal Disorder of Hematopoietic Stem Cells. Stem Cell Rev Rep 2020; 16:472-481. [PMID: 32270433 PMCID: PMC7253510 DOI: 10.1007/s12015-020-09971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aplastic anemia is rare disorder presenting with bone marrow failure syndrome due to autoimmune destruction of early hematopoietic stem cells (HSCs) and stem cell progenitors. Recent advances in newer genomic sequencing and other molecular techniques have contributed to a better understanding of the pathogenesis of aplastic anemia with respect to the inflammaging, somatic mutations, cytogenetic abnormalities and defective telomerase functions of HSCs. These have been summarized in this review and may be helpful in differentiating aplastic anemia from hypocellular myelodysplastic syndrome. Furthermore, responses to immunosuppressive therapy and outcomes may be determined by molecular pathogenesis of HSCs autoimmune destruction, as well as treatment personalization in the future.
Collapse
Affiliation(s)
- Katarzyna Brzeźniakiewicz-Janus
- Department of Hematology, Multi-Specialist Hospital Gorzów Wielkopolski, Faculty of Medicine and Health Science, University of Zielona Góra, Gorzów Wielkopolski, Poland.
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
39
|
Lempiäinen JK, Manjur ABMK, Malinen M, Ketola K, Niskanen EA, Palvimo JJ. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene 2020; 39:2391-2407. [PMID: 31925334 DOI: 10.1038/s41388-020-1153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
We have identified BCL6 corepressor (BCOR) as a hormone-dependent interaction partner of androgen receptor (AR), a key transcription factor in the development of normal and cancerous prostate. BCOR is often mutated in cancers and hematological diseases and as a component of a non-canonical polycomb repressive complex 1 (ncPRC1.1) required for arranging many facets of cellular differentiation. However, its role in androgen signaling or prostate cancer cells remains unknown. Here, our genome-wide analyses reveal that BCOR is recruited in an androgen-dependent fashion to majority of AR-binding chromatin sites in castration-resistant prostate cancer (CRPC) cells. Interestingly, depletion of BCOR has a significant effect on the expression of androgen-repressed genes linked to regulation of cell proliferation, differentiation and development. At many of these genes, such as HOX genes, the depletion leads to a decrease in H2A K119 monoubiquitination and an increase in mRNA expression. Consistently, BCOR depletion impairs the proliferation and viability of CRPC cells, inducing their apoptosis. Collectively, our data indicate a key role for the BCOR-ncPRC1.1 complex in the corepression of an important subset of AR target genes and the regulation of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
40
|
Abstract
Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.
Collapse
Affiliation(s)
- Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Peter McCarthy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
41
|
Mankuzhy NP, Anderson B, Kumar C, Heider A, Koschmamn C, Mody RJ. BCOR Alterations in Pediatric and Young Adult Patients With Sarcomas and High-Grade Glial Malignancies: A Case Series. JCO Precis Oncol 2019; 3:1-8. [DOI: 10.1200/po.19.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nikhil P. Mankuzhy
- Oakland University William Beaumont School of Medicine, Rochester, MI
- University of Michigan, Ann Arbor, MI
| | | | | | | | | | | |
Collapse
|
42
|
Multi-study reanalysis of 2,213 acute myeloid leukemia patients reveals age- and sex-dependent gene expression signatures. Sci Rep 2019; 9:12413. [PMID: 31455838 PMCID: PMC6712049 DOI: 10.1038/s41598-019-48872-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
In 2019 it is estimated that more than 21,000 new acute myeloid leukemia (AML) patients will be diagnosed in the United States, and nearly 11,000 are expected to die from the disease. AML is primarily diagnosed among the elderly (median 68 years old at diagnosis). Prognoses have significantly improved for younger patients, but as much as 70% of patients over 60 years old will die within a year of diagnosis. In this study, we conducted a reanalysis of 2,213 acute myeloid leukemia patients compared to 548 healthy individuals, using curated publicly available microarray gene expression data. We carried out an analysis of normalized batch corrected data, using a linear model that included considerations for disease, age, sex, and tissue. We identified 974 differentially expressed probe sets and 4 significant pathways associated with AML. Additionally, we identified 375 age- and 70 sex-related probe set expression signatures relevant to AML. Finally, we trained a k nearest neighbors model to classify AML and healthy subjects with 90.9% accuracy. Our findings provide a new reanalysis of public datasets, that enabled the identification of new gene sets relevant to AML that can potentially be used in future experiments and possible stratified disease diagnostics.
Collapse
|
43
|
The Role of the HOXA Gene Family in Acute Myeloid Leukemia. Genes (Basel) 2019; 10:genes10080621. [PMID: 31426381 PMCID: PMC6723066 DOI: 10.3390/genes10080621] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 01/12/2023] Open
Abstract
The HOXA gene family is associated with various cancer types. However, the role of HOXA genes in acute myeloid leukemia (AML) have not been comprehensively studied. We compared the transcriptional expression, survival data, and network analysis of HOXA-associated signaling pathways in patients with AML using the ONCOMINE, GEPIA, LinkedOmics, cBioPortal, and Metascape databases. We observed that HOXA2-10 mRNA expression levels were significantly upregulated in AML and that high HOXA1-10 expression was associated with poor AML patient prognosis. The HOXA genes were altered in ~18% of the AML samples, either in terms of amplification, deep deletion, or elevated mRNA expression. The following pathways were modulated by HOXA gene upregulation: GO:0048706: embryonic skeletal system development; R-HSA-5617472: activation of HOX genes in anterior hindbrain development during early embryogenesis; GO:0060216: definitive hemopoiesis; hsa05202: transcriptional mis-regulation in cancer; and GO:0045638: negative regulation of myeloid cell differentiation, and they were significantly regulated due to alterations affecting the HOXA genes. This study identified HOXA3-10 genes as potential AML therapeutic targets and prognostic markers.
Collapse
|
44
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
45
|
Kelly MJ, So J, Rogers AJ, Gregory G, Li J, Zethoven M, Gearhart MD, Bardwell VJ, Johnstone RW, Vervoort SJ, Kats LM. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun 2019; 10:1347. [PMID: 30902969 PMCID: PMC6430802 DOI: 10.1038/s41467-019-09250-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
The BCL6 Corepressor (BCOR) is a component of a variant Polycomb repressive complex 1 (PRC1) that is essential for normal development. Recurrent mutations in the BCOR gene have been identified in acute myeloid leukaemia and myelodysplastic syndrome among other cancers; however, its function remains poorly understood. Here we examine the role of BCOR in haematopoiesis in vivo using a conditional mouse model that mimics the mutations observed in haematological malignancies. Inactivation of Bcor in haematopoietic stem cells (HSCs) results in expansion of myeloid progenitors and co-operates with oncogenic KrasG12D in the initiation of an aggressive and fully transplantable acute leukaemia. Gene expression analysis and chromatin immunoprecipitation sequencing reveals differential regulation of a subset of PRC1-target genes including HSC-associated transcription factors such as Hoxa7/9. This study provides mechanistic understanding of how BCOR regulates cell fate decisions and how loss of function contributes to the development of leukaemia.
Collapse
Affiliation(s)
- Madison J Kelly
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joan So
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Amy J Rogers
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Gareth Gregory
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.,Monash Haematology, Monash Health and School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Jason Li
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Magnus Zethoven
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
46
|
Somasundaram N, Lim JQ, Ong CK, Lim ST. Pathogenesis and biomarkers of natural killer T cell lymphoma (NKTL). J Hematol Oncol 2019; 12:28. [PMID: 30876435 PMCID: PMC6420729 DOI: 10.1186/s13045-019-0717-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Natural killer T cell lymphoma (NKTL) is an aggressive disease with very poor treatment outcomes in the advanced stages. With chemotherapy, initial response rates to treatment are high but responses are short lived. A better understanding of the complex molecular pathogenesis of this disease is essential in order to design and develop better therapeutics with improved efficacy. This review aims to summarise the key pathogenic mechanisms in NKTL which may have significant prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Choon Kiat Ong
- Duke-NUS Medical School, Singapore, Singapore
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- Genome Institute of Singapore A*STAR, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- Singhealth Duke- NUS Blood Cancer Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
47
|
Sashida G, Oshima M, Iwama A. Deregulated Polycomb functions in myeloproliferative neoplasms. Int J Hematol 2019; 110:170-178. [PMID: 30706327 DOI: 10.1007/s12185-019-02600-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
Polycomb proteins function in the maintenance of gene silencing via post-translational modifications of histones and chromatin compaction. Genetic and biochemical studies have revealed that the repressive function of Polycomb repressive complexes (PRCs) in transcription is counteracted by the activating function of Trithorax-group complexes; this balance fine-tunes the expression of genes critical for development and tissue homeostasis. The function of PRCs is frequently dysregulated in various cancer cells due to altered expression or recurrent somatic mutations in PRC genes. The tumor suppressive functions of EZH2-containing PRC2 and a PRC2-related protein ASXL1 have been investigated extensively in the pathogenesis of hematological malignancies, including myeloproliferative neoplasms (MPN). BCOR, a component of non-canonical PRC1, suppresses various hematological malignancies including MPN. In this review, we focus on recent findings on the role of PRCs in the pathogenesis of MPN and the therapeutic impact of targeting the pathological functions of PRCs in MPN.
Collapse
Affiliation(s)
- Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
48
|
Isshiki Y, Iwama A. Emerging role of noncanonical polycomb repressive complexes in normal and malignant hematopoiesis. Exp Hematol 2018; 68:10-14. [DOI: 10.1016/j.exphem.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/09/2022]
|
49
|
Di Carlo V, Mocavini I, Di Croce L. Polycomb complexes in normal and malignant hematopoiesis. J Cell Biol 2018; 218:55-69. [PMID: 30341152 PMCID: PMC6314559 DOI: 10.1083/jcb.201808028] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Di Carlo et al. discuss how the regulation/dysregulation of Polycomb group proteins contributes to hematopoiesis and hematological disorders. Epigenetic mechanisms are crucial for sustaining cell type–specific transcription programs. Among the distinct factors, Polycomb group (PcG) proteins are major negative regulators of gene expression in mammals. These proteins play key roles in regulating the proliferation, self-renewal, and differentiation of stem cells. During hematopoietic differentiation, many PcG proteins are fundamental for proper lineage commitment, as highlighted by the fact that a lack of distinct PcG proteins results in embryonic lethality accompanied by differentiation biases. Correspondingly, proteins of these complexes are frequently dysregulated in hematological diseases. In this review, we present an overview of the role of PcG proteins in normal and malignant hematopoiesis, focusing on the compositional complexity of PcG complexes, and we briefly discuss the ongoing clinical trials for drugs targeting these factors.
Collapse
Affiliation(s)
- Valerio Di Carlo
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
50
|
Terada K, Yamaguchi H, Ueki T, Usuki K, Kobayashi Y, Tajika K, Gomi S, Kurosawa S, Saito R, Furuta Y, Miyadera K, Tokura T, Marumo A, Omori I, Sakaguchi M, Fujiwara Y, Yui S, Ryotokuji T, Arai K, Kitano T, Wakita S, Fukuda T, Inokuchi K. Usefulness of BCOR gene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosomes Cancer 2018; 57:401-408. [PMID: 29663558 DOI: 10.1002/gcc.22542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
BCOR gene is a transcription regulatory factor that plays an essential role in normal hematopoiesis. The wider introduction of next-generation sequencing technology has led to reports in recent years of mutations in the BCOR gene in acute myeloid leukemia (AML), but the related clinical characteristics and prognosis are not sufficiently understood. We investigated the clinical characteristics and prognosis of 377 de novo AML cases with BCOR or BCORL1 mutation. BCOR or BCORL1 gene mutations were found in 28 cases (7.4%). Among cases aged 65 years or below that were also FLT3-ITD-negative and in the intermediate cytogenetic prognosis group, BCOR or BCORL1 gene mutations were observed in 11% of cases (12 of 111 cases), and this group had significantly lower 5-year overall survival (OS) (13.6% vs. 55.0%, P = 0.0021) and relapse-free survival (RFS) (14.3% vs. 44.5%, P = 0.0168) compared to cases without BCOR or BCORL1 gene mutations. Multivariate analysis demonstrated that BCOR mutations were an independent unfavorable prognostic factor (P = 0.0038, P = 0.0463) for both OS and RFS. In cases of AML that are FLT3-ITD-negative, aged 65 years or below, and in the intermediate cytogenetic prognosis group, which are considered to have relatively favorable prognosis, BCOR gene mutations appear to be an important prognostic factor.
Collapse
Affiliation(s)
- Kazuki Terada
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Toshimitsu Ueki
- Department of Hematology, Nagano Red Cross Hospital, Nagano, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yutaka Kobayashi
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Kenji Tajika
- Department of Hematology, Yokohama Minami Kyousai Hospital, Kanagawa, Japan
| | - Seiji Gomi
- Department of Hematology, Yokohama Minami Kyousai Hospital, Kanagawa, Japan
| | - Saiko Kurosawa
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Riho Saito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Yutaka Furuta
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Keiki Miyadera
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Taichiro Tokura
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Atsushi Marumo
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Ikuko Omori
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Yusuke Fujiwara
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Shunsuke Yui
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Kunihito Arai
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Tomoaki Kitano
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Satoshi Wakita
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|