1
|
Williams LS, Williams KM, Gillis N, Bolton K, Damm F, Deuitch NT, Farhadfar N, Gergis U, Keel SB, Michelis FV, Panch SR, Porter CC, Sucheston-Campbell L, Tamari R, Stefanski HE, Godley LA, Lai C. Donor-Derived Malignancy and Transplantation Morbidity: Risks of Patient and Donor Genetics in Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2024; 30:255-267. [PMID: 37913908 PMCID: PMC10947964 DOI: 10.1016/j.jtct.2023.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor. Increasingly, genetic testing reveals that patient and donor genetic factors contribute to the development of DDM and other allo-HSCT complications. Deleterious germline variants in CEBPA, DDX41, GATA2, and RUNX1 predispose to inferior allo-HSCT outcomes. DDM has been linked to donor-acquired somatic CH variants in DNMT3A, ASXL1, JAK2, and IDH2, often with additional new variants. We do not yet have evidence to standardize donor genetic sequencing prior to allo-HSCT. The presence of hereditary HM disorders should be considered in patients with myeloid malignancies and their related donors, and screening of unrelated donors should include family and personal history of cytopenia and HMs. Excellent multidisciplinary care is critical to ensure efficient timelines for screening and necessary discussions among medical oncologists, genetic counselors, recipients, and potential donors. After allo-HSCT, HM relapse monitoring with genetic testing effectively results in genetic sequencing of the donor, as the transplanted hematopoietic system is donor-derived, which presents ethical challenges for disclosure to patients and donors. We encourage consideration of the recent National Marrow Donor Program policy that allows donors to opt-in for notification about detection of their genetic variants after allo-HSCT, with appropriate genetic counseling when feasible. We look forward to prospective investigation of the impact of germline and acquired somatic genetic variants on hematopoietic stem cell mobilization/engraftment, graft-versus-host disease, and DDM to facilitate improved outcomes through knowledge of genetic risk.
Collapse
Affiliation(s)
- Lacey S Williams
- Lombardi Clinical Cancer Center, Georgetown University, Washington, District of Columbia.
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Nancy Gillis
- Department of Cancer Epidemiology and Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Bolton
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Usama Gergis
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Siobán B Keel
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Sandhya R Panch
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | | | - Roni Tamari
- Memorial Sloan Kettering, New York, New York
| | - Heather E Stefanski
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Lucy A Godley
- Division of Hematology/Oncology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Catherine Lai
- Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Chen H, Zhao X, Pan W, Xiao H. Integrated genomic and single-cell transcriptomic analyses reveal clonal evolution and immune signature in donor cell leukemia after haploidentical allogeneic hematopoietic stem cell transplantation. Leuk Lymphoma 2023; 64:1681-1688. [PMID: 37424322 DOI: 10.1080/10428194.2023.2232493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The pathogenesis of donor cell leukemia (DCL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear and likely multifactorial. Leukemic transformation of healthy donor HSCs in recipient's bone marrow microenvironment provides a useful in vivo model for investigating the mechanisms involved in leukemogenesis. Here, we report a rare case of late-onset DCL developing in a recipient. Whole-genome sequencing indicates that donor-derived cells harboring clonal hematopoiesis of indeterminate potential (CHIP)-associated genetic alterations expand and eventually transform to full-blown AML via acquisition of additional somatic mutations within the recipient's bone marrow microenvironment. The 10× single-cell RNA sequencing reveals the abundance of GMP-like cells with a specific transcriptional signature in DCL. Moreover, impaired immune surveillance, including dysfunction of cytotoxic T lymphocytes (CTLs) and decreased number of canonical NK cells, is discovered in DCL. Our data add valuable information to the current understanding of the mechanisms of DCL.
Collapse
Affiliation(s)
- Huiqiao Chen
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiujie Zhao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjue Pan
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Gibson CJ, Kim HT, Zhao L, Murdock HM, Hambley B, Ogata A, Madero-Marroquin R, Wang S, Green L, Fleharty M, Dougan T, Cheng CA, Blumenstiel B, Cibulskis C, Tsuji J, Duran M, Gocke CD, Antin JH, Nikiforow S, DeZern AE, Chen YB, Ho VT, Jones RJ, Lennon NJ, Walt DR, Ritz J, Soiffer RJ, Gondek LP, Lindsley RC. Donor Clonal Hematopoiesis and Recipient Outcomes After Transplantation. J Clin Oncol 2022; 40:189-201. [PMID: 34793200 PMCID: PMC8718176 DOI: 10.1200/jco.21.02286] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Clonal hematopoiesis (CH) can be transmitted from a donor to a recipient during allogeneic hematopoietic cell transplantation. Exclusion of candidate donors with CH is controversial since its impact on recipient outcomes and graft alloimmune function is uncertain. PATIENTS AND METHODS We performed targeted error-corrected sequencing on samples from 1,727 donors age 40 years or older and assessed the effect of donor CH on recipient clinical outcomes. We measured long-term engraftment of 102 donor clones and cytokine levels in 256 recipients at 3 and 12 months after transplant. RESULTS CH was present in 22.5% of donors, with DNMT3A (14.6%) and TET2 (5.2%) mutations being most common; 85% of donor clones showed long-term engraftment in recipients after transplantation, including clones with a variant allele fraction < 0.01. DNMT3A-CH with a variant allele fraction ≥ 0.01, but not smaller clones, was associated with improved recipient overall (hazard ratio [HR], 0.79; P = .042) and progression-free survival (HR, 0.72; P = .003) after adjustment for significant clinical variables. In patients who received calcineurin-based graft-versus-host disease prophylaxis, donor DNMT3A-CH was associated with reduced relapse (subdistribution HR, 0.59; P = .014), increased chronic graft-versus-host disease (subdistribution HR, 1.36; P = .042), and higher interleukin-12p70 levels in recipients. No recipient of sole DNMT3A or TET2-CH developed donor cell leukemia (DCL). In seven of eight cases, DCL evolved from donor CH with rare TP53 or splicing factor mutations or from donors carrying germline DDX41 mutations. CONCLUSION Donor CH is closely associated with clinical outcomes in transplant recipients, with differential impact on graft alloimmune function and potential for leukemic transformation related to mutated gene and somatic clonal abundance. Donor DNMT3A-CH is associated with improved recipient survival because of reduced relapse risk and with an augmented network of inflammatory cytokines in recipients. Risk of DCL in allogeneic hematopoietic cell transplantation is driven by somatic myelodysplastic syndrome-associated mutations or germline predisposition in donors.
Collapse
Affiliation(s)
- Christopher J. Gibson
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T. Kim
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA
| | - Lin Zhao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Department of Hematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - H. Moses Murdock
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Bryan Hambley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Alana Ogata
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | | | - Shiyu Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Lisa Green
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mark Fleharty
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Tyler Dougan
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Chi-An Cheng
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | | | - Carrie Cibulskis
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Junko Tsuji
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Christopher D. Gocke
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Division of Molecular Pathology, Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Joseph H. Antin
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Sarah Nikiforow
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Amy E. DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Vincent T. Ho
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Richard J. Jones
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Niall J. Lennon
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - David R. Walt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jerome Ritz
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Robert J. Soiffer
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Lukasz P. Gondek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - R. Coleman Lindsley
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
6
|
Aldoss I, Clark M, Marcucci G, Forman SJ. Donor derived leukemia in allogeneic transplantation. Leuk Lymphoma 2021; 62:2823-2830. [PMID: 34713775 DOI: 10.1080/10428194.2021.1929966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) is a curative option for the treatment of eligible patients with hematological malignancies. This modality confers a risk for life-threatening complications, including the rare and underdiagnosed complication of donor-derived leukemia (DDL). DDL differs from relapse of the original malignancy in that DDL originates from the donor stem cells and is unrelated to the original diagnosis. Because DDL may be the same lineage as the original diagnosis, it is difficult to identify these cases and many remain unrecognized. There is no consensus of how to approach the treatment of patients with DDL, and their prognosis is poor considering that patients with DDL have already been treated for their original leukemia and have undergone alloHCT. DDL occurs following transplants using any donor stem cell source (bone marrow, peripheral blood and cord blood) and any donor type (matched/unmatched, related/unrelated and haploidentical). Both donor and recipient factors contribute to the development of DDL, and a better understanding of these factors is crucial to reduce the risk for the development of DDL. In this review, we provide an overview of DDL, including the incidence, diagnosis, etiology, prognosis, and treatment.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Mary Clark
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| |
Collapse
|
7
|
Musiu P, Quattrocchi L, Barberi W, Della Starza I, Elia L, De Novi LA, Petrucci L, De Luca G, Di Rocco A, La Rocca U. Donor cell derived mantle cell lymphoma in a HSCT sibling donor-recipient pair: intrinsic biological clock in lymphomagenesis. Leuk Lymphoma 2021; 63:499-502. [PMID: 34693859 DOI: 10.1080/10428194.2021.1984456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Paolo Musiu
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Luisa Quattrocchi
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Walter Barberi
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Irene Della Starza
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Elia
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Lucia Anna De Novi
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Luigi Petrucci
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Giulia De Luca
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alice Di Rocco
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Ursula La Rocca
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
8
|
von Bonin M, Jambor HK, Teipel R, Stölzel F, Thiede C, Damm F, Kroschinsky F, Schetelig J, Chavakis T, Bornhäuser M. Clonal hematopoiesis and its emerging effects on cellular therapies. Leukemia 2021; 35:2752-2758. [PMID: 34215849 PMCID: PMC8249428 DOI: 10.1038/s41375-021-01337-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
The accumulation of somatic mutations in hematopoietic stem cells during aging, leading to clonal expansion, is linked to a higher risk of cardiovascular mortality and hematologic malignancies. Clinically, clonal hematopoiesis is associated with a pro-inflammatory phenotype of hematopoietic cells and their progeny, inflammatory conditions and a poor outcome for patients with hematologic neoplasms and solid tumors. Here, we review the relevance and complications of clonal hematopoiesis for the treatment of hematologic malignancies with cell therapeutic approaches. In autologous and allogeneic hematopoietic stem cell transplantation native hematopoietic and immune effector cells of clonal origin are transferred, which may affect outcome of the procedure. In chimeric antigen receptor modified T-cell therapy, the effectiveness may be altered by preexisting somatic mutations in genetically modified effector cells or by unmodified bystander cells harboring clonal hematopoiesis. Registry studies and carefully designed prospective trials will be required to assess the relative roles of donor- and recipient-derived individual clonal events for autologous and allogeneic cell therapies and to incorporate novel insights into therapeutic strategies.
Collapse
Affiliation(s)
- Malte von Bonin
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Helena Klara Jambor
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Raphael Teipel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
- AgenDix, Angewandte molekulare Diagnostik mbH, Dresden, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Tumor Immunology, Charitè-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank Kroschinsky
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Triantafyllos Chavakis
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany.
- Nationales Centrum für Tumorerkrankungen (NCT), Partnerstandort Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Osman A, Patel JL. Diagnostic Challenge and Clinical Dilemma: The Long Reach of Clonal Hematopoiesis. Clin Chem 2021; 67:1062-1070. [PMID: 34263288 DOI: 10.1093/clinchem/hvab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Widespread application of massively parallel sequencing has resulted in recognition of clonal hematopoiesis in various clinical settings and on a relatively frequent basis. Somatic mutations occur in individuals with normal blood counts, and increase in frequency with age. The genes affected are the same genes that are commonly mutated in overt myeloid malignancies such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). This phenomenon is referred to as clonal hematopoiesis of indeterminate potential (CHIP). CONTENT In this review, we explore the diagnostic and clinical implications of clonal hematopoiesis. In addition to CHIP, clonal hematopoiesis may be seen in patients with cytopenia who do not otherwise meet criteria for hematologic malignancy, a condition referred to as clonal cytopenia of undetermined significance (CCUS). Distinguishing CHIP and CCUS from overt myeloid neoplasm is a challenge to diagnosticians due to the overlapping mutational landscape observed in these conditions. We describe helpful laboratory and clinical features in making this distinction. CHIP confers a risk of progression to overt hematologic malignancy similar to other premalignant states. CHIP is also associated with a proinflammatory state with multisystem implications and increased mortality risk due to cardiovascular events. The current approach to follow up and management of patients with clonal hematopoiesis is described. SUMMARY Nuanced understanding of clonal hematopoiesis is essential for diagnosis and clinical management of patients with hematologic conditions. Further data are needed to more accurately predict the natural history and guide management of these patients with respect to both malignant progression as well as nonhematologic sequelae.
Collapse
Affiliation(s)
- Afaf Osman
- Division of Hematology and Hematologic Malignancies, University of Utah, and Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
10
|
Williams L, Doucette K, Karp JE, Lai C. Genetics of donor cell leukemia in acute myelogenous leukemia and myelodysplastic syndrome. Bone Marrow Transplant 2021; 56:1535-1549. [PMID: 33686252 DOI: 10.1038/s41409-021-01214-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an important therapeutic modality for patients with acute myelogenous leukemia (AML) with poor risk features. Nonetheless, roughly 30% of such patients have leukemia recurrence and up to 2% of these are donor-derived leukemias, in which malignancy develops in the donor's transplanted cells, despite extremely low rates of leukemia in the donors themselves. Notably, over 20% of these malignancies carry chromosome 7 abnormalities nearly all of which are monosomies. Recent advances in whole exome and genome sequencing have allowed for detection of candidate genes that likely contribute to the development of AML in donor cells (donor leukemia, DCL). These genes include CEBPA, GATA2, JAK2, RUNX1, DDX41, EZH2, IDH1/2, DNMT3A, ASXL1, XPD, XRCC3, and CHEK1. The potential roles of variants in these genes are evaluated based on familial clustering of MDS/AML and corresponding animal studies demonstrating their leukemogenic nature. This review describes the spectrum of genetic aberrations detected in DCL cases in the literature with regard to the character of the individual cases, existing family cohorts that carry individual genes, and functional studies that support etiologic roles in AML development. DCL presents a unique opportunity to examine genetic variants in the donors and recipients with regards to progression to malignancy.
Collapse
Affiliation(s)
- Lacey Williams
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith E Karp
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| |
Collapse
|
11
|
Burns SS, Kapur R. Clonal Hematopoiesis of Indeterminate Potential as a Novel Risk Factor for Donor-Derived Leukemia. Stem Cell Reports 2021; 15:279-291. [PMID: 32783925 PMCID: PMC7419737 DOI: 10.1016/j.stemcr.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a critical treatment modality for many hematological and non-hematological diseases that is being extended to treat older individuals. However, recent studies show that clonal hematopoiesis of indeterminate potential (CHIP), a common, asymptomatic condition characterized by the expansion of age-acquired somatic mutations in blood cell lineages, may be a risk factor for the development of donor-derived leukemia (DDL), unexplained cytopenias, and chronic graft-versus-host disease. CHIP may contribute to the pathogenesis of these significant transplant complications via various cell-autonomous and non-cell-autonomous mechanisms, and the clinical presentation of DDL may be broader than anticipated. A more comprehensive understanding of the contributions of CHIP to DDL may have important implications for the screening of donors and will improve the safety of HSCT. The objective of this review is to discuss studies linking DDL and CHIP and to explore potential mechanisms by which CHIP may contribute to DDL.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Sibling donor-derived myeloid sarcoma after hematopoietic stem cell transplant. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
13
|
Abstract
This article has a companion Counterpoint by Gibson and Lindsley.
Collapse
|
14
|
Park JC, Kim DH, Kim MS, Hagiwara A, Lee JS. The genome of the euryhaline rotifer Brachionus paranguensis: Potential use in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100836. [PMID: 33940320 DOI: 10.1016/j.cbd.2021.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Brachionus spp. rotifers have been proposed as model organisms for ecotoxicological studies. We analyzed the whole-genome sequence of B. paranguensis through NextDenovo, resulting in a total length of 106.2 Mb and 71 contigs. The N50 and the GC content were 4.13 Mb and 28%, respectively. A total of 18,501 genes were predicted within the genome of B. paranguensis. Prominent detoxification-related gene families of phase I and II detoxifications have been investigated. In parallel with other Brachionus rotifers, high gene expansion was observed in CYP clan 3 and GST sigma class in B. paranguensis. Moreover, species-specific expansion of sulfotransferase (SULTs) and gain of UDP-glucuronosyltransferases (UGTs) through horizontal gene transfer has been specifically found within B. plicatilis complex. This whole-genome analysis of B. paranguensis provides a basis for molecular ecotoxicological studies and provides useful information for comparative studies of the evolution of detoxification mechanisms in Brachionus spp.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Farina M, Bernardi S, Gandolfi L, Zanaglio C, Morello E, Turra A, Zollner T, Gramegna D, Rambaldi B, Cattina F, Polverelli N, Malagola M, Russo D. Case Report: Late Onset of Myelodysplastic Syndrome From Donor Progenitor Cells After Allogeneic Stem Cell Transplantation. Which Lessons Can We Draw From the Reported Case? Front Oncol 2020; 10:564521. [PMID: 33178592 PMCID: PMC7591784 DOI: 10.3389/fonc.2020.564521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023] Open
Abstract
Background Myelodysplastic syndromes and acute leukemias after allogeneic stem cell transplantation (allo-SCT) are mainly caused by recurrence of the primitive leukemic clones. More rarely, they originate from donor hematopoietic stem cells, developing the so-called donor cell leukemia (DCL) or myelodysplastic syndromes (DC-MDSs). DCL and DC-MDS can be considered as an in vivo model of leukemogenesis, and even if the pathogenetic mechanisms remain speculative, a genetic predisposition of donor progenitor cells, an altered host microenvironment, and the impairment of immune surveillance are considered the main causes. Case Presentation We report a case of DC-MDS diagnosed 5 years after an allo-SCT from a matched related donor (patient’s sister) in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-ALL). The sex-mismatch allowed us to identify the donor cell origin. At the onset, the DC-MDS was characterized by chromosome seven monosomy and NRAS, RUNX1, and BCOR mutations. Because of a familiar history of colorectal neoplasia and the variant allele frequency (VAF) of NRAS mutation at the onset, this mutation was searched on germline DNA in both the donor and the recipient, but the result was negative. Moreover, after transplant (+4 months), the patient developed severe and long-lasting chronic graft-versus-host disease (cGVHD), requiring multiple lines of treatments. Because of the severe immunosuppression, recurrent infections occurred and, lately, the patient died due to septic shock. Conclusion This case report highlights the need, whenever possible, to evaluate the donor origin of the posttransplant myelodysplasia and acute leukemias. The potential key role of the impaired immune surveillance and of long-lasting immunosuppression appears to be emerging in the development of this case of DC-MDS. Finally, this case reminds the importance to investigate the familiar genetic predisposition in donors with a familiar history of neoplasia.
Collapse
Affiliation(s)
- Mirko Farina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simona Bernardi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lisa Gandolfi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Camilla Zanaglio
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy
| | - Enrico Morello
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Turra
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Tatiana Zollner
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Doriana Gramegna
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Benedetta Rambaldi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Federica Cattina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Polverelli
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michele Malagola
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
16
|
Loh JBE, Walker P, Avery S, Patil S, Spencer A, Wei A, Fleming S. Double trouble or a silver lining? A case report of two patients with NPM1-mutated donor-derived acute myeloid leukemia (AML). Leuk Lymphoma 2020; 62:489-491. [PMID: 33047641 DOI: 10.1080/10428194.2020.1832663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Patricia Walker
- Department of Haematology, Alfred Hospital, Melbourne, Australia.,Peninsula Private Hospital, Melbourne, Australia.,Department of Haematology, Peninsula Health, Melbourne, Australia
| | - Sharon Avery
- Department of Haematology, Cairns Base Hospital, Cairns, Australia
| | - Sushrut Patil
- Department of Haematology, Alfred Hospital, Melbourne, Australia.,The Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Andrew Spencer
- Department of Haematology, Alfred Hospital, Melbourne, Australia.,The Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Andrew Wei
- Department of Haematology, Alfred Hospital, Melbourne, Australia.,The Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Shaun Fleming
- Department of Haematology, Alfred Hospital, Melbourne, Australia.,Department of Haematology, Monash Health, Melbourne, Australia.,Department of Haematology, Northern Health, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Donor-cell leukemia with novel genetic features 2 years after sex-mismatched T cell-depleted haploidentical stem cell transplantation. Ann Hematol 2020; 99:899-901. [PMID: 32086586 PMCID: PMC7069896 DOI: 10.1007/s00277-020-03905-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
|
18
|
Age-related clonal hematopoiesis: implications for hematopoietic stem cell transplantation. Curr Opin Hematol 2019; 25:441-445. [PMID: 30124476 DOI: 10.1097/moh.0000000000000465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Over the past decade, advances in hematopoietic stem cell transplantation (HSCT) have enabled older individuals to undergo the procedure as well as to serve as donors. Recently, aging has been linked with the development of age-related clonal hematopoiesis (ARCH), defined as the gradual clonal expansion of hematopoietic stem and progenitor cells (HSPC) carrying recurrent disruptive genetic variants in individuals without a diagnosis of hematologic malignancy. Here we will review the implications of ARCH in the context of HSCT. RECENT FINDINGS ARCH is highly prevalent in the general population and commonly involves genes that are recurrently mutated in hematologic malignancies. Nevertheless, the vast majority of individuals with ARCH will not develop overt hematologic disease in their lifetime. The presence of ARCH may increase the risk of therapy-related myeloid neoplasms (t-MN) in individuals undergoing autologous HSCT. In the setting of allogeneic HSCT, ARCH present in the donor may contribute to adverse outcomes such as unexplained cytopenias posttransplant and donor cell leukemia. SUMMARY A better understanding of the hematopoietic milieu of HSCT recipients and of the importance of ARCH in the context of the replicative pressures imposed on transplanted HSPCs is needed in order to optimize conditioning regimens, donor selection and clinical outcomes post-HSCT.
Collapse
|
19
|
Kong D, Sun K, Shi MY, Song YP, Wen MY, Liu ZW. [Donor HSCs with a preexisting ASXL1-mutation evoluting FLT3-ITD positive AML-M 2 and FLT3-ITD negative AML-M 5 in the donor and recipient respectively: one case analysis and literatures review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:327-329. [PMID: 31104446 PMCID: PMC7343022 DOI: 10.3760/cma.j.issn.0253-2727.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- D Kong
- Department of Hematology, Henan Province People's Hospital and Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - K Sun
- Department of Hematology, Henan Province People's Hospital and Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - M Y Shi
- Department of Hematology, Henan Province People's Hospital and Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Y P Song
- Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China
| | - M Y Wen
- Henan Provincial Center for China Marrow Donor Program, Zhengzhou 450003, China
| | - Z W Liu
- Department of Hematology, Henan Province People's Hospital and Zhengzhou University People's Hospital, Zhengzhou 450003, China
| |
Collapse
|
20
|
Frick M, Chan W, Arends CM, Hablesreiter R, Halik A, Heuser M, Michonneau D, Blau O, Hoyer K, Christen F, Galan-Sousa J, Noerenberg D, Wais V, Stadler M, Yoshida K, Schetelig J, Schuler E, Thol F, Clappier E, Christopeit M, Ayuk F, Bornhäuser M, Blau IW, Ogawa S, Zemojtel T, Gerbitz A, Wagner EM, Spriewald BM, Schrezenmeier H, Kuchenbauer F, Kobbe G, Wiesneth M, Koldehoff M, Socié G, Kroeger N, Bullinger L, Thiede C, Damm F. Role of Donor Clonal Hematopoiesis in Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol 2019; 37:375-385. [DOI: 10.1200/jco.2018.79.2184] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Clonal hematopoiesis of indeterminate potential (CHIP) occurs in the blood of approximately 20% of older persons. CHIP is linked to an increased risk of hematologic malignancies and of all-cause mortality; thus, the eligibility of stem-cell donors with CHIP is questionable. We comprehensively investigated how donor CHIP affects outcome of allogeneic hematopoietic stem-cell transplantation (HSCT). Methods We collected blood samples from 500 healthy, related HSCT donors (age ≥ 55 years) at the time of stem-cell donation for targeted sequencing with a 66-gene panel. The effect of donor CHIP was assessed on recipient outcomes, including graft-versus-host disease (GVHD), cumulative incidence of relapse/progression (CIR/P), and overall survival (OS). Results A total of 92 clonal mutations with a median variant allele frequency of 5.9% were identified in 80 (16.0%) of 500 donors. CHIP prevalence was higher in donors related to patients with myeloid compared with lymphoid malignancies (19.2% v 6.3%; P ≤ .001). In recipients allografted with donor CHIP, we found a high cumulative incidence of chronic GVHD (cGVHD; hazard ratio [HR], 1.73; 95% CI, 1.21 to 2.49; P = .003) and lower CIR/P (univariate: HR, 0.62; 95% CI, 0.40 to 0.97; P = .027; multivariate: HR, 0.63; 95% CI, 0.41 to 0.98; P = .042) but no effect on nonrelapse mortality. Serial quantification of 25 mutations showed engraftment of 24 of 25 clones and disproportionate expansion in half of them. Donor-cell leukemia was observed in two recipients. OS was not affected by donor CHIP status (HR, 0.88; 95% CI, 0.65 to 1.321; P = .434). Conclusion Allogeneic HSCT from donors with CHIP seems safe and results in similar survival in the setting of older, related donors. Future studies in younger and unrelated donors are warranted to extend these results. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that donor CHIP might foster cGVHD development and reduce relapse/progression risk.
Collapse
Affiliation(s)
- Mareike Frick
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Willy Chan
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christopher Maximilian Arends
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Raphael Hablesreiter
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adriane Halik
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - David Michonneau
- David Michonneau and Gérard Socié, INSERM U1160, Institut Universitaire d’Hematologie, Paris/University Paris Diderot, Paris, France
| | - Olga Blau
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Kaja Hoyer
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friederike Christen
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Joel Galan-Sousa
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Noerenberg
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | - Igor Wolfgang Blau
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Tomasz Zemojtel
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité, University Medical Center, Berlin, Germany
| | - Armin Gerbitz
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Eva M. Wagner
- UCT Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bernd M. Spriewald
- University Hospital Erlangen, Friedrich Alexander University Erlangen Nürnberg (FAU), Erlangen, Germany
| | - Hubert Schrezenmeier
- German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Institute of Transfusion Medicine, Ulm, Germany
| | | | - Guido Kobbe
- Heinrich Heine University, Düsseldorf, Germany
| | - Markus Wiesneth
- German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Institute of Transfusion Medicine, Ulm, Germany
| | - Michael Koldehoff
- West German Cancer Centre, University Hospital of Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Gérard Socié
- David Michonneau and Gérard Socié, INSERM U1160, Institut Universitaire d’Hematologie, Paris/University Paris Diderot, Paris, France
| | | | - Lars Bullinger
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Thiede
- Carl Gustav Carus University Hospital Dresden, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Damm
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Bouvier A, Ribourtout B, François S, Orvain C, Paz DL, Beucher A, Guérard A, Guardiola P, Ugo V, Blanchet O, Geneviève F, Schmidt A, Hunault-Berger M. Donor cell-derived acute promyelocytic leukemia after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2018; 101:570-574. [PMID: 30007088 DOI: 10.1111/ejh.13143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
Abstract
Donor cell leukemia (DCL) is an infrequent complication after allogeneic hematopoietic stem cell transplantation (HSCT). Its true incidence is difficult to assess, although improvements in chimerism studies contributed to a better diagnosis of DCL. We report two rare cases of donor cell-derived acute promyelocytic leukemia (APL). To our knowledge, only two cases have been described in the literature. Here, we report one male and one female patients with acute myeloid leukemia (AML), who developed an APL in donor cells after HSCT. The latency between HSCT and DCL was 279 and 43 months, respectively. Fluorescent in situ hybridation and chimerism monitoring analysis proved the donor origin of APL. Surprisingly, donor lymphocyte infusion provided a hematological response during 19 months in the female patient. The mechanisms associated with pathogenesis of DCL are unclear and seem to be multifactorial. Increasing worldwide allogeneic hematopoietic stem cell transplantation activity and potentially the age of donor could explain the increasing incidence of DCL in the future. It is highlighted that long-term follow up of recipients will allow to report all cases of DCL, to clarify the genetic landscape and factors which contribute to DCL, to understand the response to DLI.
Collapse
Affiliation(s)
- Anne Bouvier
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Bénédicte Ribourtout
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France
| | - Sylvie François
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,Service des maladies du sang, CHU d'Angers, Angers, France
| | - Corentin Orvain
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Service des maladies du sang, CHU d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France
| | - Damien Luque Paz
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France
| | - Annaëlle Beucher
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France
| | - Alexandre Guérard
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,UFR Santé, Université d'Angers, Angers, France
| | - Philippe Guardiola
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Service des maladies du sang, CHU d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France.,Service de Génomique Onco-Hématologique, CHU Angers, Angers, France
| | - Valérie Ugo
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France
| | - Odile Blanchet
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France.,Centre de ressources biologiques, CHU Angers, Angers, France
| | - Franck Geneviève
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France.,Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France
| | - Aline Schmidt
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Service des maladies du sang, CHU d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France
| | - Mathilde Hunault-Berger
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Service des maladies du sang, CHU d'Angers, Angers, France.,UFR Santé, Université d'Angers, Angers, France
| |
Collapse
|
22
|
European experience and risk factor analysis of donor cell-derived leukaemias/MDS following haematopoietic cell transplantation. Leukemia 2018; 33:508-517. [PMID: 30050122 DOI: 10.1038/s41375-018-0218-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Abstract
Donor cell leukaemia (DCL) is a rare complication of allogeneic haematopoietic cell transplantation (HCT). We have investigated the prevalence and outcome of donor cell haematology malignancies within centres registered with the European Society of Blood and Marrow transplantation (EBMT). We have sought to identify risk factors to shed light on the pathogenesis of DCL as a model for leukaemogenesis. DCL cases were identified by questionnaire and a follow-up questionnaire requested detailed data. Control subjects from the EBMT registry who had not developed DCL were used for a matched pair analysis to identify risk factors. We identified 38 patients with DCL; the estimated prevalence was 80.5/100,000 transplants. Patients were predominantly treated for haematological malignancy. A clone was retrospectively identified in 7/25 (28%) donors for whom data was available. Overall survival was poor with 29/38 patients dead a median of 11 (range 0-91) months after DCL diagnosis. Matched case-pair analysis identified three factors on multivariate analysis as significantly associated with an increased risk for DCL: use of growth factors within the first 100 days after transplantation, in vivo T-cell depletion and multiple allografts. The risk factors identified, support reduced immune surveillance and replicative stress as pathogenic in the development of DCL.
Collapse
|
23
|
Suárez-González J, Martínez-Laperche C, Kwon M, Balsalobre P, Carbonell D, Chicano M, Rodríguez-Macías G, Serrano D, Gayoso J, Díez-Martín JL, Buño I. Donor Cell-Derived Hematologic Neoplasms after Hematopoietic Stem Cell Transplantation: A Systematic Review. Biol Blood Marrow Transplant 2018; 24:1505-1513. [PMID: 29410295 DOI: 10.1016/j.bbmt.2018.01.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Development of de novo hematologic malignancies in donor cells after allogeneic stem cell transplantation (allo-SCT) provides a useful in vivo model to study the process of leukemogenesis. A systematic analysis of the cases reported in the literature was performed to identify risk factors and mechanisms involved in the pathogenesis of donor cell-derived hematologic neoplasms (DCHN) and leukemogenic transformation. Relevant data were extracted from 137 cases. Cases of DCHN show a wide heterogeneity with regard to recipient/donor age, sex mismatch, and conditioning regimen. Some characteristics, such as the type of primary disease, the type of hematologic malignancy of the DCHN, and the stem cell source used in the transplant procedure, differ from those expected. Mechanisms involved in the pathogenesis of DCHN are complex, and several hypotheses have been proposed, such as pre-existing hematologic neoplasms or premalignant clones in the donor, decreased immune surveillance, and damage to bone marrow microenvironment in the recipient. Most likely several if not all these mechanisms play a role in DCHN development. Novel approaches, such as next-generation sequencing to study consecutive samples after allo-SCT in these patients, appear to be promising to decipher the mechanisms of leukemogenesis.
Collapse
Affiliation(s)
- Julia Suárez-González
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.
| | - Mi Kwon
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Pascual Balsalobre
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Diego Carbonell
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - María Chicano
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | | | - David Serrano
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Jorge Gayoso
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - José Luis Díez-Martín
- Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain; Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Translational Oncology, Gregorio Marañón Health Research Institute, Madrid, Spain; Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| |
Collapse
|
24
|
Taniguchi R, Muramatsu H, Okuno Y, Suzuki K, Obu S, Nakatochi M, Shimamura T, Takahashi Y, Horikoshi Y, Watanabe K, Kojima S. Comprehensive genetic analysis of donor cell derived leukemia with KMT2A rearrangement. Pediatr Blood Cancer 2018; 65. [PMID: 28921816 DOI: 10.1002/pbc.26823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Donor cell leukemia (DCL) occurs after allogeneic hematopoietic stem cell transplantation. Several mechanisms, including occult leukemic/preleukemic subclones in the donor graft and germline predisposition to leukemia, are proposed to be associated with DCL's molecular pathogenesis. We report a comprehensive genetic analysis of a patient with KMT2A-rearranged DCL after allogeneic bone marrow transplantation for refractory cytopenia of childhood. PROCEDURE We performed a whole-exome sequencing of the recipient's peripheral blood before transplant and the donor's peripheral blood and the recipient's bone marrow at the time of DCL diagnosis. RNA sequencing was also performed to detect fusion genes in DCL blasts. RESULTS There were no germline mutations that were associated with a predisposition to leukemia in the recipient and donor. Furthermore, there were no detectable somatic alterations except KMT2A-MLLT10 and other related gene fusions in DCL. KMT2A-MLLT10 was not detectable in the donor's bone marrow. CONCLUSION We propose a novel pattern of the molecular pathogenesis of DCL solely involving a genetic mutation acquired after transplant with no identifiable genetic factor related to the donor and recipient.
Collapse
Affiliation(s)
- Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Obu
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuo Horikoshi
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Wong TN, Miller CA, Jotte MRM, Bagegni N, Baty JD, Schmidt AP, Cashen AF, Duncavage EJ, Helton NM, Fiala M, Fulton RS, Heath SE, Janke M, Luber K, Westervelt P, Vij R, DiPersio JF, Welch JS, Graubert TA, Walter MJ, Ley TJ, Link DC. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun 2018; 9:455. [PMID: 29386642 PMCID: PMC5792556 DOI: 10.1038/s41467-018-02858-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic clones harboring specific mutations may expand over time. However, it remains unclear how different cellular stressors influence this expansion. Here we characterize clonal hematopoiesis after two different cellular stressors: cytotoxic therapy and hematopoietic transplantation. Cytotoxic therapy results in the expansion of clones carrying mutations in DNA damage response genes, including TP53 and PPM1D. Analyses of sorted populations show that these clones are typically multilineage and myeloid-biased. Following autologous transplantation, most clones persist with stable chimerism. However, DNMT3A mutant clones often expand, while PPM1D mutant clones often decrease in size. To assess the leukemic potential of these expanded clones, we genotyped 134 t-AML/t-MDS samples. Mutations in non-TP53 DNA damage response genes are infrequent in t-AML/t-MDS despite several being commonly identified after cytotoxic therapy. These data suggest that different hematopoietic stressors promote the expansion of distinct long-lived clones, carrying specific mutations, whose leukemic potential depends partially on the mutations they harbor.
Collapse
Affiliation(s)
- Terrence N Wong
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher A Miller
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew R M Jotte
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nusayba Bagegni
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jack D Baty
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Amy P Schmidt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda F Cashen
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Nichole M Helton
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark Fiala
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sharon E Heath
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Megan Janke
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kierstin Luber
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peter Westervelt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Ravi Vij
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - John S Welch
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | | | - Matthew J Walter
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Timothy J Ley
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Daniel C Link
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Corces MR, Chang HY, Majeti R. Preleukemic Hematopoietic Stem Cells in Human Acute Myeloid Leukemia. Front Oncol 2017; 7:263. [PMID: 29164062 PMCID: PMC5681525 DOI: 10.3389/fonc.2017.00263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow characterized by an uncontrolled proliferation of undifferentiated myeloid lineage cells. Decades of research have demonstrated that AML evolves from the sequential acquisition of genetic alterations within a single lineage of hematopoietic cells. More recently, the advent of high-throughput sequencing has enabled the identification of a premalignant phase of AML termed preleukemia. Multiple studies have demonstrated that AML can arise from the accumulation of mutations within hematopoietic stem cells (HSCs). These HSCs have been termed "preleukemic HSCs" as they represent the evolutionary ancestors of the leukemia. Through examination of the biological and clinical characteristics of these preleukemic HSCs, this review aims to shed light on some of the unexplored questions in the field. We note that some of the material discussed is speculative in nature and is presented in order to motivate future work.
Collapse
Affiliation(s)
- M. Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, United States
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, United States
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ravindra Majeti
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Ludwig Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
27
|
Yu J, Hu F, Dossa K, Wang Z, Ke T. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. BMC Genomics 2017. [PMID: 28645261 PMCID: PMC5481917 DOI: 10.1186/s12864-017-3844-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Glycosyltransferases comprise a highly divergent and polyphyletic multigene family that is involved in widespread modification of plant secondary metabolites in a process called glycosylation. According to conserved domains identified in their amino acid sequences, these glycosyltransferases can be classified into a single UDP-glycosyltransferase (UGT) 1 superfamily. Results We performed genome-wide comparative analysis of UGT genes to trace evolutionary history in algae, bryophytes, pteridophytes, and angiosperms; then, we further investigated the expansion mechanisms and function characterization of UGT gene families in Brassica rapa and Brassica oleracea. Using Hidden Markov Model search, we identified 3, 21, 140, 200, 115, 147, and 147 UGTs in Chlamydomonas reinhardtii, Physcomitrella patens, Selaginella moellendorffii, Oryza sativa, Arabidopsis thaliana, B. rapa, and B. oleracea, respectively. Phylogenetic analysis revealed that UGT80 gene family is an ancient gene family, which is shared by all plants and UGT74 gene family is shared by ferns and angiosperms, but the remaining UGT gene families were shared by angiosperms. In dicot lineage, UGTs among three species were classified into three subgroups containing 3, 6, and 12 UGT gene families. Analysis of chromosomal distribution indicates that 98.6 and 71.4% of UGTs were located on B. rapa and B. oleracea pseudo-molecules, respectively. Expansion mechanism analyses uncovered that whole genome duplication event exerted larger influence than tandem duplication on expansion of UGT gene families in B. rapa, and B. oleracea. Analysis of selection forces of UGT orthologous gene pairs in B. rapa, and B. oleracea compared to A. thaliana suggested that orthologous genes in B. rapa, and B. oleracea have undergone negative selection, but there were no significant differences between A. thaliana –B. rapa and A. thaliana –B. oleracea lineages. Our comparisons of expression profiling illustrated that UGTs in B. rapa performed more discrete expression patterns than these in B. oleracea indicating stronger function divergence. Combing with phylogeny and expression analysis, the UGTs in B. rapa and B. oleracea experienced parallel evolution after they diverged from a common ancestor. Conclusion We first traced the evolutionary history of UGT gene families in plants and revealed its evolutionary and functional characterization of UGTs in B. rapa, and B. oleracea. This study provides novel insights into the evolutionary history and functional divergence of important traits or phenotype-related gene families in plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3844-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyin Yu
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fan Hu
- Third Institute of Oceanography, State Oceanic Administration, Fujian, 361005, China
| | - Komivi Dossa
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhaokai Wang
- Third Institute of Oceanography, State Oceanic Administration, Fujian, 361005, China.
| | - Tao Ke
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.
| |
Collapse
|