1
|
Summers RJ, Teachey DT, Hunger SP. How I treat ETP-ALL in children. Blood 2025; 145:43-52. [PMID: 38364183 DOI: 10.1182/blood.2023023155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a unique subtype of immature T-cell ALL that was initially associated with a dramatically inferior prognosis compared with non-ETP T-cell ALL (Not-ETP) when it was first described in 2009. Analyses of larger patient cohorts treated with more contemporary regimens, however, have shown minimal survival differences between ETP and Not-ETP. In this manuscript, we use representative cases to explore therapeutic advances and address common clinical questions regarding the management of children, adolescents, and young adults with ETP-ALL. We describe our recommended treatment approach for a child or adolescent with newly diagnosed ETP-ALL, with an emphasis on the prognostic significance of induction failure and detectable minimal residual disease and the role of hematopoietic stem cell transplant in first remission. We discuss the interplay between the ETP immunophenotype and genomic markers of immaturity in T-cell ALL. Finally, we review novel therapeutic approaches that should be considered when managing relapsed or refractory ETP-ALL.
Collapse
Affiliation(s)
- Ryan J Summers
- Department of Pediatrics, Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Abubaker M, Stanton JE, Mahon O, Grabrucker AM, Newport D, Mulvihill JJE. Amyloid beta-induced signalling in leptomeningeal cells and its impact on astrocyte response. Mol Cell Biochem 2024:10.1007/s11010-024-05151-5. [PMID: 39499391 DOI: 10.1007/s11010-024-05151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Janelle E Stanton
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Olwyn Mahon
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - David Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
3
|
Dou L, Zhao Y, Yang J, Deng L, Wang N, Zhang X, Liu Q, Yang Y, Wei Z, Wang F, Jiao Y, Li F, Luan S, Hu L, Gao S, Liu C, Liu X, Yan J, Zhang X, Zhou F, Lu P, Liu D. Ruxolitinib plus steroids for acute graft versus host disease: a multicenter, randomized, phase 3 trial. Signal Transduct Target Ther 2024; 9:288. [PMID: 39438467 PMCID: PMC11496732 DOI: 10.1038/s41392-024-01987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Newly diagnosed patients with high-risk acute graft-versus-host disease (aGVHD) often experience poor clinical outcomes and low complete remission rates. Ruxolitinib with corticosteroids showed promising efficacy in improving response and failure free survival in our phase I study. This study (ClinicalTrials.gov: NCT04061876) sought to evaluate the safety and effectiveness of combining ruxolitinib (RUX, 5 mg/day) with corticosteroids (1 mg/kg/day methylprednisolone, RUX/steroids combined group) versus using methylprednisolone alone (2 mg/kg/day, steroids-only group). Newly diagnosed patients with intermediate- or high-risk aGVHD were included, with risk levels classified by either the Minnesota aGVHD Risk Score or biomarker assessment. Patients were randomized in a ratio of 1:1 into 2 groups: 99 patients received RUX combined with methylprednisolone, while the other 99 received methylprednisolone alone as the initial treatment. The RUX/steroids group showed a significantly higher overall response rate (ORR) on day 28 (92.9%) compared to the steroids-only group (70.7%, Odds Ratio [OR] = 5.8; 95% Confidence Interval [CI], 2.4-14.0; P < 0.001). Similarly, the ORR on day 56 was higher in the RUX/steroids group (85.9% vs. 46.5%; OR = 7.07; 95% CI, 3.36-15.75; P < 0.001). Additionally, the 18-month failure-free survival was significantly better in the RUX/steroids group (57.2%) compared to the steroids-only group (33.3%; Hazard Ratio = 0.46; 95% CI, 0.31-0.68; P < 0.001). Adverse events (AEs) frequencies were comparable between both groups, with the exception of fewer grade 4 AEs in the RUX/steroids group (26.3% vs. 50.5% P = 0.005). To our knowledge, this study is the first prospective, randomized controlled trial to demonstrate that adding ruxolitinib to the standard methylprednisolone regimen provides an effective and safe first-line treatment for newly diagnosed high-risk acute GVHD.
Collapse
Grants
- This work was partially supported by grants from the National Key R&D Program of China (2023YFC2507800, 2021YFA1100904), the National Natural Science Foundation of China (Nos.82270162,82270224,82200169), the Beijing Natural Science Foundation of China (No. 7222175), the Military medical support innovation and generate special program (21WQ034), the Special Research Found for Health Protection(21BJZ30), Beijing Nova Program cross-cutting Project (20230484407), the Logistics Independent Research Program (2023hqzz09), Capital's Funds for Health Improvement and Research (2024-2-5063).
Collapse
Affiliation(s)
- Liping Dou
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanli Zhao
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jingjing Yang
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lei Deng
- Department of Hematology, The 960th Hospital of The People's Liberation Army (PLA) Joint Logistics Support Force, Jinan, China
| | - Nan Wang
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiawei Zhang
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qingyang Liu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Yang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhijie Wei
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yifan Jiao
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Li
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Songhua Luan
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liangding Hu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Chuanfang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | | | - Jinsong Yan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xuejun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Zhou
- Department of Hematology, The 960th Hospital of The People's Liberation Army (PLA) Joint Logistics Support Force, Jinan, China.
| | - Peihua Lu
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China.
| | - Daihong Liu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Chen D, Wang Y, Xiao S, Cheng G, Liu Y, Zhao T, Cao J, Wen Y. Investigation on the mechanism of androsta-4,6,8,14-tetraene-3,11,16-trione against acute lymphoblastic leukemia. J Steroid Biochem Mol Biol 2024; 243:106573. [PMID: 38909867 DOI: 10.1016/j.jsbmb.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Steroids are potential anti-leukemia agents, and Epigynum auritum is a Yunnan folk medicine with high levels of androsterone, pregnane, and steroid derivatives. However, the underlying therapeutic mechanism of androsta-4,6,8,14-tetraene-3,11,16-trione (ATT), an androsterone isolated from Epigynum auritum, is not yet clear. This study aimed to explore the anti-leukemia mechanism of ATT using molecular biology, network pharmacology, and molecular docking technology. The cell viability results showed that ATT had an anti-proliferation effect in acute lymphoblastic leukemia cells (CEM/C1, MOLT-4, Jurkat, BALL-1, Nalm-6, and RS4;11). Further studies showed that ATT reduced the mitochondrial membrane potential in B-cell acute lymphoblastic leukemia cell lines (BALL-1, Nalm-6, and RS4;11) and induced cell cycle arrest in MOLT-4 and BALL-1. ATT induced BALL-1 cell apoptosis by activating Caspase 3/7 activity and causing DNA fragmentation. Network pharmacology results suggested that ATT exerts its anti-leukemia activity via the PI3K/Akt signaling pathway. In addition, molecular docking analysis showed that ATT had high scores in docking with PTGS2, NR3C1, and AR. Western blotting results showed that ATT reduced the relative protein level of P-PI3K and P-Akt, thereby increasing the relative level of pro-apoptosis protein Bax and reducing the relative level of anti-apoptosis protein Bcl-2, the apoptosis downstream protein pro-caspase3, and cell proliferation-related proteins (P-GSK3B and CyclinD1). In conclusion, these results demonstrated that ATT could be a potential candidate drug with apoptosis-induction and cell cycle arrest effects for further investigation in acute lymphoblastic leukemia therapy.
Collapse
Affiliation(s)
- Dongjie Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yan Wen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
5
|
Pourhassan H, Murphy L, Aldoss I. Glucocorticoid Therapy in Acute Lymphoblastic Leukemia: Navigating Short-Term and Long-Term Effects and Optimal Regimen Selection. Curr Hematol Malig Rep 2024; 19:175-185. [PMID: 38867099 DOI: 10.1007/s11899-024-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE OF REVIEW Glucocorticoids are a mainstay in acute lymphoblastic leukemia treatment and lack of early response is predictive for overall disease prognosis. Given the vital position of glucocorticoids and well known long and short-term side effects associated with differing glucocorticoids, we aim to highlight the wide breadth of historical and more contemporary data to describe the current landscape of glucocorticoid use in this arena. RECENT FINDINGS Emerging studies aim to overcome issues such as steroid resistance and to optimize the antileukemic effects of glucocorticoids while aiming to mitigate the risks and side effects associated with their exposure. Glucocorticoids have and likely always will be a fundamental component of acute lymphoblastic leukemia treatment and understanding how to navigate short- and long-term effects and how to optimize regimens is at the heart of continued treatment success.
Collapse
Affiliation(s)
- Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
6
|
Lenk L, Baccelli I, Laqua A, Heymann J, Reimer C, Dietterle A, Winterberg D, Mary C, Corallo F, Taurelle J, Narbeburu E, Neyton S, Déramé M, Pengam S, Vogiatzi F, Bornhauser B, Bourquin JP, Raffel S, Dovhan V, Schüler T, Escherich G, den Boer ML, Boer JM, Wessels W, Peipp M, Alten J, Antić Ž, Bergmann AK, Schrappe M, Cario G, Brüggemann M, Poirier N, Schewe DM. The IL-7R antagonist lusvertikimab reduces leukemic burden in xenograft ALL via antibody-dependent cellular phagocytosis. Blood 2024; 143:2735-2748. [PMID: 38518105 PMCID: PMC11251409 DOI: 10.1182/blood.2023021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
ABSTRACT Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of B-cell precursors (BCP-ALL) or T cells (T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (R/R) disease, high-risk (HR) leukemias and T-ALL, in which immunotherapy approaches remain scarce. Although the interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody lusvertikimab (LUSV; formerly OSE-127) is a full antagonist of the IL-7R pathway, showing a good safety profile in healthy volunteers. Here, we show that ∼85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of LUSV immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including R/R and HR leukemias. Importantly, LUSV was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, LUSV targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). LUSV-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, LUSV may represent a novel immunotherapy option for any CD127+ ALL, particularly in combination with standard-of-care polychemotherapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Xenograft Model Antitumor Assays
- Receptors, Interleukin-7/antagonists & inhibitors
- Mice, SCID
- Phagocytosis/drug effects
- Interleukin-7 Receptor alpha Subunit
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Female
- Mice, Inbred NOD
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Cell Line, Tumor
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
- Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Anna Laqua
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Heymann
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claas Reimer
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Anna Dietterle
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dorothee Winterberg
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich, Switzerland
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vladyslava Dovhan
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wiebke Wessels
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Julia Alten
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anke K. Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Monika Brüggemann
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Denis M. Schewe
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Xu Y, Zhou Q, Wang X, Zhang A, Qi W, Li Y, Zheng C, Guan J, Sun T, Li J, Lu C, Shen Y, Zhao B. PELI2 regulates early B-cell progenitor differentiation and related leukemia via the IL-7R expression. Haematologica 2024; 109:1800-1814. [PMID: 38058209 PMCID: PMC11141684 DOI: 10.3324/haematol.2023.284041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Little is known about the transition mechanisms that govern early lymphoid lineage progenitors from common lymphoid progenitors (CLP). Pellino2 (PELI2) is a newly discovered E3 ubiquitin ligase, which plays important roles in inflammation and the immune system. However, the physiological and molecular roles of PELI2 in the differentiation of immune cells are largely unknown. Here, by using a conditional knockout mouse model, we demonstrated that PELI2 is required for early B-cell development and stressed hematopoiesis. PELI2 interacted with and stabilized PU.1 via K63-polyubiquitination to regulate IL-7R expression. The defects of B-cell development induced by PELI2 deletion were restored by overexpression of PU.1. Similarly, PELI2 promoted TCF3 protein stability via K63-polyubiquitination to regulate IL-7R expression, which is required for the proliferation of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. These results underscore the significance of PELI2 in both normal B lymphopoiesis and malignant B-cell acute lymphoblastic leukemia via the regulation of IL-7R expression, providing a potential therapeutic approach for BCP-ALL.
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Qian Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Xiaoming Wang
- Department of Pediatrics, Qilu hospital of Shandong University, Jinan, Shandong, 250012
| | - Aijun Zhang
- Department of Pediatrics, Qilu hospital of Shandong University, Jinan, Shandong, 250012
| | - Wentao Qi
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Jianmin Guan
- Department of Hematology, Heze Municipal Hospital, Heze, Shandong
| | - Tao Sun
- Department of Hematology, Qilu hospital of Shandong University, Jinan, Shandong, 250012
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012
| | - Yuemao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012.
| |
Collapse
|
8
|
Wang Y, Wang Z, Li S, Ma J, Dai X, Lu J. Deciphering JAK/STAT signaling pathway: A multifaceted approach to tumorigenesis, progression and therapeutic interventions. Int Immunopharmacol 2024; 131:111846. [PMID: 38520787 DOI: 10.1016/j.intimp.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, essential for cellular communication, orchestrates a myriad of physiological and pathological processes. Recently, the intricate association between the pathway's dysregulation and the progression of malignant tumors has garnered increasing attention. Nevertheless, there is no systematic summary detailing the anticancer effects of molecules targeting the JAK/STAT pathway in the context of tumor progression. This review offers a comprehensive overview of pharmaceutical agents targeting the JAK/STAT pathway, encompassing phytochemicals, synthetic drugs, and biomolecules. These agents can manifest their anticancer effects through various mechanisms, including inhibiting proliferation, inducing apoptosis, suppressing tumor metastasis, and angiogenesis. Notably, we emphasize the clinical challenges of drug resistance while spotlighting the potential of integrating JAK/STAT inhibitors with other therapies as a transformative approach in cancer treatment. Moreover, this review delves into the avant-garde strategy of employing nanocarriers to enhance the solubility and bioavailability of anticancer drugs, significantly amplifying their therapeutic prowess. Through this academic exploration of the multifaceted roles of the JAK/STAT pathway in the cancer milieu, we aim to sketch a visionary trajectory for future oncological interventions.
Collapse
Affiliation(s)
- Yihui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Anesthesiology, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Zhe Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Juntao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
9
|
Wood BL, Devidas M, Summers RJ, Chen Z, Asselin B, Rabin KR, Zweidler-McKay PA, Winick NJ, Borowitz MJ, Carroll WL, Raetz EA, Loh ML, Hunger SP, Dunsmore KP, Teachey DT, Winter SS. Prognostic significance of ETP phenotype and minimal residual disease in T-ALL: a Children's Oncology Group study. Blood 2023; 142:2069-2078. [PMID: 37556734 PMCID: PMC10862241 DOI: 10.1182/blood.2023020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The early thymic precursor (ETP) immunophenotype was previously reported to confer poor outcome in T-cell acute lymphoblastic leukemia (T-ALL). Between 2009 and 2014, 1256 newly diagnosed children and young adults enrolled in Children's Oncology Group (COG) AALL0434 were assessed for ETP status and minimal residual disease (MRD) using flow cytometry at a central reference laboratory. The subject phenotypes were categorized as ETP (n = 145; 11.5%), near-ETP (n = 209; 16.7%), or non-ETP (n = 902; 71.8%). Despite higher rates of induction failure for ETP (6.2%) and near-ETP (6.2%) than non-ETP (1.2%; P < .0001), all 3 groups showed excellent 5-year event-free survival (EFS) and overall survival (OS): ETP (80.4% ± 3.9% and 86.8 ± 3.4%, respectively), near-ETP (81.1% ± 3.3% and 89.6% ± 2.6%, respectively), and non-ETP (85.3% ± 1.4% and 90.0% ± 1.2%, respectively; P = .1679 and P = .3297, respectively). There was no difference in EFS or OS for subjects with a day-29 MRD <0.01% vs 0.01% to 0.1%. However, day-29 MRD ≥0.1% was associated with inferior EFS and OS for patients with near-ETP and non-ETP, but not for those with ETP. For subjects with day-29 MRD ≥1%, end-consolidation MRD ≥0.01% was a striking predictor of inferior EFS (80.9% ± 4.1% vs 52.4% ± 8.1%, respectively; P = .0001). When considered as a single variable, subjects with all 3 T-ALL phenotypes had similar outcomes and subjects with persistent postinduction disease had inferior outcomes, regardless of their ETP phenotype. This clinical trial was registered at AALL0434 as #NCT00408005.
Collapse
Affiliation(s)
- Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, Saint Jude Children's Research Hospital, Memphis, TN
| | - Ryan J. Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Zhiguo Chen
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Barbara Asselin
- Department of Pediatrics, University of Rochester, Rochester, NY
| | - Karen R. Rabin
- Pediatric Hematology/Oncology, Baylor College of Medicine/Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | | | - Naomi J. Winick
- Pediatric Hematology and Oncology, UT Southwestern/Simmons Cancer Center-Dallas, Dallas, TX
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins University/Sidney Kimmel Cancer Center, Baltimore, MD
| | - William L. Carroll
- Department of Pediatrics and Pathology, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, Hassenfeld Children's Center, New York, NY
| | - Elizabeth A. Raetz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Stephen P. Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kimberly P. Dunsmore
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA
| | - David T. Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stuart S. Winter
- Cancer and Blood Disorders Program, Children’s Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
DuVall AS, Wesevich A, Larson RA. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2023; 18:217-225. [PMID: 37490229 PMCID: PMC11748120 DOI: 10.1007/s11899-023-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Collapse
Affiliation(s)
- Adam S DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA.
| | - Austin Wesevich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
11
|
Kelvin JM, Chimenti ML, Zhang DY, Williams EK, Moore SG, Humber GM, Baxter TA, Birnbaum LA, Qui M, Zecca H, Thapa A, Jain J, Jui NT, Wang X, Fu H, Du Y, Kemp ML, Lam WA, Graham DK, DeRyckere D, Dreaden EC. Development of constitutively synergistic nanoformulations to enhance chemosensitivity in T-cell leukemia. J Control Release 2023; 361:470-482. [PMID: 37543290 PMCID: PMC10544718 DOI: 10.1016/j.jconrel.2023.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Advances in multiagent chemotherapy have led to recent improvements in survival for patients with acute lymphoblastic leukemia (ALL); however, a significant fraction do not respond to frontline chemotherapy or later relapse with recurrent disease, after which long-term survival rates remain low. To develop new, effective treatment options for these patients, we conducted a series of high-throughput combination drug screens to identify chemotherapies that synergize in a lineage-specific manner with MRX-2843, a small molecule dual MERTK and FLT3 kinase inhibitor currently in clinical testing for treatment of relapsed/refractory leukemias and solid tumors. Using experimental and computational approaches, we found that MRX-2843 synergized strongly-and in a ratio-dependent manner-with vincristine to inhibit both B-ALL and T-ALL cell line expansion. Based on these findings, we developed multiagent lipid nanoparticle formulations of these drugs that not only delivered defined drug ratios intracellularly in T-ALL, but also improved anti-leukemia activity following drug encapsulation. Synergistic and additive interactions were recapitulated in primary T-ALL patient samples treated with MRX-2843 and vincristine nanoparticle formulations, suggesting their clinical relevance. Moreover, the nanoparticle formulations reduced disease burden and prolonged survival in an orthotopic murine xenograft model of early thymic precursor T-ALL (ETP-ALL), with both agents contributing to therapeutic activity in a dose-dependent manner. In contrast, nanoparticles containing MRX-2843 alone were ineffective in this model. Thus, MRX-2843 increased the sensitivity of ETP-ALL cells to vincristine in vivo. In this context, the additive particles, containing a higher dose of MRX-2843, provided more effective disease control than the synergistic particles. In contrast, particles containing an even higher, antagonistic ratio of MRX-2843 and vincristine were less effective. Thus, both the drug dose and the ratio-dependent interaction between MRX-2843 and vincristine significantly impacted therapeutic activity in vivo. Together, these findings present a systematic approach to high-throughput combination drug screening and multiagent drug delivery that maximizes the therapeutic potential of combined MRX-2843 and vincristine in T-ALL and describe a novel translational agent that could be used to enhance therapeutic responses to vincristine in patients with T-ALL. This broadly generalizable approach could also be applied to develop other constitutively synergistic combination products for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- James M Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Madison L Chimenti
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Dan Y Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Evelyn K Williams
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core Facility, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabrielle M Humber
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Travon A Baxter
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Lacey A Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Henry Zecca
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Aashis Thapa
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Nathan T Jui
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Melissa L Kemp
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Wilbur A Lam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Erik C Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Fries C, Hermiston ML. Challenging T-ALL to IL-7Rp dual inhibition. Blood 2023; 142:124-126. [PMID: 37440269 DOI: 10.1182/blood.2023020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
|
13
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
14
|
Sarno J, Domizi P, Liu Y, Merchant M, Pedersen CB, Jedoui D, Jager A, Nolan GP, Gaipa G, Bendall SC, Bava FA, Davis KL. Dasatinib overcomes glucocorticoid resistance in B-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:2935. [PMID: 37217509 DOI: 10.1038/s41467-023-38456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Resistance to glucocorticoids (GC) is associated with an increased risk of relapse in B-cell progenitor acute lymphoblastic leukemia (BCP-ALL). Performing transcriptomic and single-cell proteomic studies in healthy B-cell progenitors, we herein identify coordination between the glucocorticoid receptor pathway with B-cell developmental pathways. Healthy pro-B cells most highly express the glucocorticoid receptor, and this developmental expression is conserved in primary BCP-ALL cells from patients at diagnosis and relapse. In-vitro and in vivo glucocorticoid treatment of primary BCP-ALL cells demonstrate that the interplay between B-cell development and the glucocorticoid pathways is crucial for GC resistance in leukemic cells. Gene set enrichment analysis in BCP-ALL cell lines surviving GC treatment show enrichment of B cell receptor signaling pathways. In addition, primary BCP-ALL cells surviving GC treatment in vitro and in vivo demonstrate a late pre-B cell phenotype with activation of PI3K/mTOR and CREB signaling. Dasatinib, a multi-kinase inhibitor, most effectively targets this active signaling in GC-resistant cells, and when combined with glucocorticoids, results in increased cell death in vitro and decreased leukemic burden and prolonged survival in an in vivo xenograft model. Targeting the active signaling through the addition of dasatinib may represent a therapeutic approach to overcome GC resistance in BCP-ALL.
Collapse
Affiliation(s)
- Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Pablo Domizi
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Yuxuan Liu
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Milton Merchant
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Christina Bligaard Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dorra Jedoui
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Astraea Jager
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, (MB), Italy
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Felice-Alessio Bava
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
16
|
Shah K, Al Ashiri L, Nasimian A, Ahmed M, Kazi JU. Venetoclax-Resistant T-ALL Cells Display Distinct Cancer Stem Cell Signatures and Enrichment of Cytokine Signaling. Int J Mol Sci 2023; 24:ijms24055004. [PMID: 36902436 PMCID: PMC10003524 DOI: 10.3390/ijms24055004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy resistance remains one of the major challenges for cancer treatment that largely limits treatment benefits and patient survival. The underlying mechanisms that lead to therapy resistance are highly complicated because of the specificity to the cancer subtype and therapy. The expression of the anti-apoptotic protein BCL2 has been shown to be deregulated in T-cell acute lymphoblastic leukemia (T-ALL), where different T-ALL cells display a differential response to the BCL2-specific inhibitor venetoclax. In this study, we observed that the expression of anti-apoptotic BCL2 family genes, such as BCL2, BCL2L1, and MCL1, is highly varied in T-ALL patients, and inhibitors targeting proteins coded by these genes display differential responses in T-ALL cell lines. Three T-ALL cell lines (ALL-SIL, MOLT-16, and LOUCY) were highly sensitive to BCL2 inhibition within a panel of cell lines tested. These cell lines displayed differential BCL2 and BCL2L1 expression. Prolonged exposure to venetoclax led to the development of resistance to it in all three sensitive cell lines. To understand how cells developed venetoclax resistance, we monitored the expression of BCL2, BCL2L1, and MCL1 over the treatment period and compared gene expression between resistant cells and parental sensitive cells. We observed a different trend of regulation in terms of BCL2 family gene expression and global gene expression profile including genes reported to be expressed in cancer stem cells. Gene set enrichment analysis (GSEA) showed enrichment of cytokine signaling in all three cell lines which was supported by the phospho-kinase array where STAT5 phosphorylation was found to be elevated in resistant cells. Collectively, our data suggest that venetoclax resistance can be mediated through the enrichment of distinct gene signatures and cytokine signaling pathways.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence:
| |
Collapse
|
17
|
Fernandes MB, Barata JT. Surprise, surprise: STAT5 is not enough to stop the steroids. Haematologica 2023; 108:670-672. [PMID: 35734928 PMCID: PMC9973462 DOI: 10.3324/haematol.2022.281369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Marta B Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa.
| |
Collapse
|
18
|
Van der Zwet JCG, Cordo' V, Buijs-Gladdines JGCAM, Hagelaar R, Smits WK, Vroegindeweij E, Graus LTM, Poort V, Nulle M, Pieters R, Meijerink JPP. STAT5 does not drive steroid resistance in T-cell acute lymphoblastic leukemia despite the activation of BCL2 and BCLXL following glucocorticoid treatment. Haematologica 2023; 108:732-746. [PMID: 35734930 PMCID: PMC9973477 DOI: 10.3324/haematol.2021.280405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/09/2022] Open
Abstract
Physiological and pathogenic interleukin-7-receptor (IL7R)-induced signaling provokes glucocorticoid resistance in a subset of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Activation of downstream STAT5 has been suggested to cause steroid resistance through upregulation of anti-apoptotic BCL2, one of its downstream target genes. Here we demonstrate that isolated STAT5 signaling in various T-ALL cell models is insufficient to raise cellular steroid resistance despite upregulation of BCL2 and BCL-XL. Upregulation of anti-apoptotic BCL2 and BCLXL in STAT5-activated T-ALL cells requires steroid-induced activation of NR3C1. For the BCLXL locus, this is facilitated by a concerted action of NR3C1 and activated STAT5 molecules at two STAT5 regulatory sites, whereas for the BCL2 locus this is facilitated by binding of NR3C1 at a STAT5 binding motif. In contrast, STAT5 occupancy at glucocorticoid response elements does not affect the expression of NR3C1 target genes. Strong upregulation of BIM, a NR3C1 pro-apoptotic target gene, upon prednisolone treatment can counterbalance NR3C1/STAT5-induced BCL2 and BCL-XL expression downstream of IL7- induced or pathogenic IL7R signaling. This explains why isolated STAT5 activation does not directly impair the steroid response. Our study suggests that STAT5 activation only contributes to steroid resistance in combination with cellular defects or alternative signaling routes that disable the pro-apoptotic and steroid-induced BIM response.
Collapse
Affiliation(s)
| | | | | | - Rico Hagelaar
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | | | | | - Vera Poort
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Marloes Nulle
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | | |
Collapse
|
19
|
Xue YJ, Wang Y, Lu AD, Jia YP, Zuo YX, Ding MM, Zeng HM, Zhang LP. Clinical analysis of pediatric T-cell acute lymphoblastic leukemia using the MRD-oriented strategy system. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2023:S2152-2650(23)00110-6. [PMID: 37080879 DOI: 10.1016/j.clml.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Pediatric T-cell acute lymphoblastic leukemia (T-ALL) has historically been associated with a poor prognosis. However, prognostic indicators and methods of treatment used for T-ALL remain controversial. A total of 136 children newly diagnosed with T-ALL between 2005 and 2018 were consecutively enrolled in this study. We assessed the effect of different prognostic factors, such as clinical characteristics, minimal residual disease (MRD), and the role of transplantation in postremission treatment, as the outcomes. Compared with B-ALL patients, patients with T-ALL are generally older, more likely to be male and have a higher white blood cell count. The complete remission (CR) rate was 95.6%, while the 5-year overall survival (OS), event-free survival (EFS), and cumulative incidence of relapse (CIR) were 74.3 ± 3.7%, 71.3 ± 3.9%, and 24.4 ± 3.8%, respectively. In the multivariate analysis, day 33 MRD ≥0.1% and hyperleukocytosis were associated with a significantly worse prognosis in the whole group. Transplantation resulted in a significant survival advantage, compared with chemotherapy, for high-risk (HR) patients (5-year CIR: 15.6 ± 10.2% vs. 55.6 ± 11.7%, P = .029). The prognosis of children with T-ALL was poor, and the MRD on day 33 was found to be an important predictive factor of clinical outcome at our center.
Collapse
Affiliation(s)
- Yu-Juan Xue
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yu Wang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ai-Dong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yue-Ping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ying-Xi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ming-Ming Ding
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Hui-Min Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
20
|
Cappelli LV, Fiore D, Phillip JM, Yoffe L, Di Giacomo F, Chiu W, Hu Y, Kayembe C, Ginsberg M, Consolino L, Barcia Duran JG, Zamponi N, Melnick AM, Boccalatte F, Tam W, Elemento O, Chiaretti S, Guarini A, Foà R, Cerchietti L, Rafii S, Inghirami G. Endothelial cell-leukemia interactions remodel drug responses, uncovering T-ALL vulnerabilities. Blood 2023; 141:503-518. [PMID: 35981563 PMCID: PMC10082359 DOI: 10.1182/blood.2022015414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute for Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Jude M. Phillip
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Oncology, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD
| | - Liron Yoffe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Filomena Di Giacomo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - William Chiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Yang Hu
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Clarisse Kayembe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | | | - Lorena Consolino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Jose Gabriel Barcia Duran
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Nahuel Zamponi
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Ari M. Melnick
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | | | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Sabina Chiaretti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Guarini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
21
|
Thomas X. T-cell acute lymphoblastic leukemia: promising experimental drugs in clinical development. Expert Opin Investig Drugs 2023; 32:37-52. [PMID: 36541671 DOI: 10.1080/13543784.2023.2161361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Despite advances in treatment approaches in acute lymphoblastic leukemia (ALL), the prognosis of adults with newly diagnosed T-ALL remains poor, as well as that of adults and children with relapsed disease. Novel targeted therapies are therefore needed. AREAS COVERED This review summarizes promising emerging strategies for the treatment of T-ALL. EXPERT OPINION The recent molecular characterization of T-ALL has led to the identification of new therapeutic targets. Small-molecules inhibitors and other targeted therapies have therefore been recently developed and are currently under clinical investigations. Similarly, first studies involving monoclonal antibodies and chimeric antigen receptor (CAR) T cells have shown encouraging results. Improvement of outcome with these novel approaches, eventually combined with current standard chemotherapy, is therefore expected in a near future in T-ALL.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Department of Clinical Hematology, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
22
|
Wadhwa A, Chen Y, Hageman L, Hoppmann AL, Angiolillo A, Dickens DS, Lew G, Neglia JP, Ravindranath Y, Ritchey AK, Termuhlen A, Wong FL, Landier W, Bhatia S. Body mass index during maintenance therapy and relapse risk in children with acute lymphoblastic leukemia: A Children's Oncology Group report. Cancer 2023; 129:151-160. [PMID: 36369905 PMCID: PMC10173700 DOI: 10.1002/cncr.34529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity at diagnosis of childhood acute lymphoblastic leukemia (ALL) is associated with greater risk of relapse; whether this association extends to obesity during maintenance is unstudied. METHODS This study used data from AALL03N1 to calculate median body mass index (BMI) for 676 children over 6 consecutive months during maintenance therapy; BMI percentile (BMI%ile) were operationalized as normal/underweight (<85%ile), overweight/obese (85%-98%ile), and extreme obesity (≥99%ile). Hazard of relapse was estimated using multivariable proportional subdistributional hazards regression after adjusting for all relevant demographic and clinical predictors. RESULTS Median age at study enrollment was 6 years and median length of follow-up was 7.9 years. Overall, 43.3% of the cohort was underweight/normal weight, 44.8% was overweight/obese, and 11.8% had extreme obesity. Cumulative incidence of relapse at 4 years from study enrollment was higher among those with extreme obesity (13.6% ± 4.5%) compared to those with underweight/normal weight (9.0% ± 2.1%). Multivariable analysis revealed that children with extreme obesity had a 2.4-fold (95% confidence interval [CI], 1.1-5.0; p = .01) greater hazard of relapse compared to those who were underweight/normal weight. Overweight/obese patients were at comparable risk to those who were underweight/normal weight (hazard ratio, 0.8; 95% CI, 0.4-1.6). Erythrocyte thioguanine nucleotide (TGN) levels were significantly lower among children with extreme obesity compared to those with underweight/normal weight (141.6 vs. 168.8 pmol/8 × 108 erythrocytes; p = .0002), however, the difference in TGN levels did not explain the greater hazard of relapse among those with extreme obesity. CONCLUSIONS Extreme obesity during maintenance therapy is associated with greater hazard of relapse in children with ALL. Underlying mechanisms of this association needs further investigation. LAY SUMMARY Findings from this study demonstrate that extreme obesity during maintenance therapy is associated with a greater hazard of relapse among children with acute lymphoblastic leukemia. We show that children with obesity have lower levels of erythrocyte thioguanine nucleotides even after adjusting for adherence to oral chemotherapy. However, these lower levels do not explain the greater hazard of relapse, paving the way for future studies to explore this association.
Collapse
Affiliation(s)
- Aman Wadhwa
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anna L. Hoppmann
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anne Angiolillo
- Division of Pediatric Hematology/Oncology, Children’s National Medical Center, Washington, District of Columbia, USA
| | - David S. Dickens
- Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Glen Lew
- Division of Pediatric Hematology/Oncology, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Joseph P. Neglia
- Division of Pediatric Hematology/Oncology, University of Minnesota Masonic Children’s Hospital, Minnesota, Minnesota, USA
| | | | - A. Kim Ritchey
- Division of Hematology/Oncology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amanda Termuhlen
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - F. Lennie Wong
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Fernandes MB, Barata JT. IL-7 and IL-7R in health and disease: An update through COVID times. Adv Biol Regul 2023; 87:100940. [PMID: 36503870 DOI: 10.1016/j.jbior.2022.100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.
Collapse
Affiliation(s)
- Marta B Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
24
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
25
|
Samad MA, Mahboob E, Shafiq A, Ur Rehman MH, Sheikh A, Tharwani ZH. Types of T-cell lymphoma-a cytogenetic perspective. Ann Med Surg (Lond) 2022; 84:104844. [PMID: 36536747 PMCID: PMC9758356 DOI: 10.1016/j.amsu.2022.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
T cell lymphoma, a type of non-Hodgkin lymphomas is a rare form of malignancy with poor outcomes. TCLS are a heterogeneous group of lymphoid malignancies that occur in nodal and extranodal sites. There are two main types of TCLs namely T-lymphoblastic lymphoma/leukemia and Peripheral T-cell lymphomas classified based on clinical manifestations and cytogenetic mutations. The use of advance technology like karyotyping, fluorescent in situ hybridization (FISH), comparative genomic hybridization (CGH) has allowed us to study TCLs in detail and to observe a different biochemical change that occurs in different TCLs allowing us to classify and treat them differently. This review focuses on the different mutations occurring in different TCLs and how they help us distinguish one type from another.
Collapse
Affiliation(s)
- Muhammad Ammar Samad
- Faculty of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Eman Mahboob
- Faculty of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Aimen Shafiq
- Faculty of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Ayesha Sheikh
- Faculty of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Zoaib Habib Tharwani
- Faculty of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
26
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
27
|
Leoncin M, La Starza R, Roti G, Pagliaro L, Bassan R, Mecucci C. Modern treatment approaches to adult acute T-lymphoblastic and myeloid/T-lymphoblastic leukemia: from current standards to precision medicine. Curr Opin Oncol 2022; 34:738-747. [PMID: 36017547 DOI: 10.1097/cco.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most recent advancements in the management of adult T-cell acute lymphoblastic leukemia (T-ALL), we summarize insights into molecular diagnostics, immunotherapy, targeted therapy and new techniques of drug sensitivity profiling that may support further therapeutic progress in T-ALL subsets. RECENT FINDINGS With current induction/consolidation chemotherapy and/or risk-oriented allogeneic stem cell transplantation programs up to 95% adult T-ALL patients achieve a remission and >50% (up to 80% in adolescents and young adults) are cured. The group of patients who fail upfront therapy, between 25% and 40%, is enriched in high-risk characteristics (unfavorable genetics, persistent minimal residual disease) and represents the ideal setting for the study of molecular mechanisms of disease resistance, and consequently explore novel ways of restoration of drug sensitivity and assess patient/subset-specific patterns of drug vulnerability to targeting agents, immunotherapy and cell therapy. SUMMARY The emerging evidence supports the contention that precision medicine may soon allow valuable therapeutic chances to adult patients with high-risk T-ALL. The ongoing challenge is to identify the best way to integrate all these new data into the therapeutic path of newly diagnosed patients, with a view to optimize the individual treatment plan and increase the cure rate.
Collapse
Affiliation(s)
- Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | - Cristina Mecucci
- Department of Medicine and Surgery, University of Perugia, Perugia
| |
Collapse
|
28
|
Wang C, Kong L, Kim S, Lee S, Oh S, Jo S, Jang I, Kim TD. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23:ijms231810412. [PMID: 36142322 PMCID: PMC9499417 DOI: 10.3390/ijms231810412] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-7 (IL-7) is a multipotent cytokine that maintains the homeostasis of the immune system. IL-7 plays a vital role in T-cell development, proliferation, and differentiation, as well as in B cell maturation through the activation of the IL-7 receptor (IL-7R). IL-7 is closely associated with tumor development and has been used in cancer clinical research and therapy. In this review, we first summarize the roles of IL-7 and IL-7Rα and their downstream signaling pathways in immunity and cancer. Furthermore, we summarize and discuss the recent advances in the use of IL-7 and IL-7Rα as cancer immunotherapy tools and highlight their potential for therapeutic applications. This review will help in the development of cancer immunotherapy regimens based on IL-7 and IL-7Rα, and will also advance their exploitation as more effective and safe immunotherapy tools.
Collapse
Affiliation(s)
- Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Lingzu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Seokmin Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Sechan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Inhwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
29
|
Bontoux C, Simonin M, Garnier N, Lhermitte L, Touzart A, Andrieu G, Bruneau J, Lengliné E, Plesa A, Boissel N, Baruchel A, Bertrand Y, Molina TJ, Macintyre E, Asnafi V. Oncogenetic landscape of T-cell lymphoblastic lymphomas compared to T-cell acute lymphoblastic leukemia. Mod Pathol 2022; 35:1227-1235. [PMID: 35562412 DOI: 10.1038/s41379-022-01085-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
In the latest 2016 World Health Organization classification of hematological malignancies, T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) are grouped together into one entity called T-cell lymphoblastic leukemia/lymphoma (T-LBLL). However, the question of whether these entities represent one or two diseases remains. Multiple studies on driver alterations in T-ALL have led to a better understanding of the disease while, so far, little data on genetic profiles in T-LBL is available. We sought to define recurrent genetic alterations in T-LBL and provide a comprehensive comparison with T-ALL. Targeted whole-exome next-generation sequencing of 105 genes, multiplex ligation-dependent probe amplification, and quantitative PCR allowed comprehensive genotype assessment in 818, consecutive, unselected, newly diagnosed patients (342 T-LBL vs. 476 T-ALL). The median age at diagnosis was similar in T-LBL and T-ALL (17 vs. 15 years old, respectively; p = 0.2). Although we found commonly altered signaling pathways and co-occurring mutations, we identified recurrent dissimilarities in actionable gene alterations in T-LBL as compared to T-ALL. HOX abnormalities (TLX1 and TLX3 overexpression) were more frequent in T-ALL (5% of T-LBL vs 13% of T-ALL had TLX1 overexpression; p = 0.04 and 6% of T-LBL vs 17% of T-ALL had TLX3 overexpression; p = 0.006). The PI3K signaling pathway was significantly more frequently altered in T-LBL as compared to T-ALL (33% vs 19%; p < 0.001), especially through PIK3CA alterations (9% vs 2%; p < 0.001) with PIK3CAH1047 as the most common hotspot. Similarly, T-LBL genotypes were significantly enriched in alterations in genes coding for the EZH2 epigenetic regulator and in TP53 mutations (respectively, 13% vs 8%; p = 0.016 and 7% vs 2%; p < 0.001). This genetic landscape of T-LBLL identifies differential involvement of recurrent alterations in T-LBL as compared to T-ALL, thus contributing to better understanding and management of this rare disease.
Collapse
Affiliation(s)
- Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, 06000, Nice, France.,Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Mathieu Simonin
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France.,Department of Pediatric Hematology and Oncology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Nathalie Garnier
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Ludovic Lhermitte
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Guillaume Andrieu
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Julie Bruneau
- Department of Pathology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Etienne Lengliné
- Hematology Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Adriana Plesa
- Laboratory of Hematology and Flow Cytometry, CHU Lyon-Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Boissel
- Adolescent and Young Adult Hematology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - André Baruchel
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yves Bertrand
- Institute of Pediatric Haematology and Oncology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Jo Molina
- Department of Pathology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France.
| |
Collapse
|
30
|
Jinna N, Rida P, Smart M, LaBarge M, Jovanovic-Talisman T, Natarajan R, Seewaldt V. Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168844. [PMID: 36012111 PMCID: PMC9408190 DOI: 10.3390/ijms23168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Max Smart
- Rowland Hall, Salt Lake City, UT 84102, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
31
|
Dou L, Peng B, Li X, Wang L, Jia M, Xu L, Li F, Liu D. Ruxolitinib-corticosteroid as first-line therapy for newly diagnosed high-risk acute graft versus host disease: study protocol for a multicenter, randomized, phase II controlled trial. Trials 2022; 23:470. [PMID: 35668528 PMCID: PMC9169300 DOI: 10.1186/s13063-022-06426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The response rate of the first-line therapy with corticosteroid for acute graft versus host disease (aGVHD) is about 50%, and steroid-refractory disease is associated with high mortality. The improved response rate to the first-line therapy of newly diagnosed aGVHD patients would result in therapeutic benefits. Ruxolitinib, a selective Janus kinase (JAK) 1/2 inhibitor, has been approved for the treatment of steroid-refractory acute GVHD. The addition of ruxolitinib to the first-line therapy may improve the efficacy of corticosteroids. METHODS This investigator-initiated, open-label, multicenter, prospective randomized, and controlled two-arm phase II study compares the efficacy and safety of ruxolitinib combined with 1 mg/kg methylprednisolone versus 2 mg/kg methylprednisolone alone in newly diagnosed aGVHD patients. Patients with intermediate or high-risk aGVHD, as defined by the Minnesota aGVHD high-risk score and biomarker algorithm, are eligible for this study. A total of 198 patients will be randomized at a 1:1 ratio and assigned a GVHD risk (intermediate versus high risk) and disease status before transplantation (complete remission versus no complete remission). The primary endpoint is the overall response rate on day 28, which is defined as an improvement of at least one stage in the severity of aGVHD in one organ without deterioration in any other organ or disappearance of any GVHD signs from all organs without requiring new systemic immunosuppressive treatment. The secondary objectives consist of response time, response duration, overall survival, disease-free survival, non-relapse mortality, failure-free survival, and changes in serum levels of proinflammatory cytokines and GVHD-related biomarkers. DISCUSSION This open-label, multicenter, two-arm randomized trial will evaluate whether the addition of ruxolitinib combined with corticosteroid is superior to corticosteroid alone in newly diagnosed high-risk aGVHD. TRIAL REGISTRATION ClinicalTrials.gov NCT04061876 (version number: 2019.5.18). Registered on July 16, 2019.
Collapse
Affiliation(s)
- Liping Dou
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Medical School of Chinese PLA, Beijing, 100853, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bo Peng
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Xin Li
- Department of Quality Control, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Wang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mingyu Jia
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lingmin Xu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fei Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Daihong Liu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
32
|
Bodaar K, Yamagata N, Barthe A, Landrigan J, Chonghaile TN, Burns M, Stevenson KE, Devidas M, Loh ML, Hunger SP, Wood B, Silverman LB, Teachey DT, Meijerink JP, Letai A, Gutierrez A. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia 2022; 36:1499-1507. [PMID: 35411095 PMCID: PMC9177679 DOI: 10.1038/s41375-022-01558-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3. Mutant JAK3 directly repressed apoptosis in leukemia cells, because its inhibition with mechanistically distinct pharmacologic inhibitors resulted in reversal of mitochondrial apoptotic blockade. Inhibition of JAK3 led to loss of MEK, ERK and BCL2 phosphorylation, and BH3 profiling revealed that JAK3-mutant primary T-ALL patient samples were characterized by a dependence on BCL2. Treatment of JAK3-mutant T-ALL cells with the JAK3 inhibitor tofacitinib in combination with a spectrum of conventional chemotherapeutics revealed synergy with glucocorticoids, in vitro and in vivo. These findings thus provide key insights into the molecular genetics of mitochondrial apoptosis resistance in childhood T-ALL, and a compelling rationale for a clinical trial of JAK3 inhibitors in combination with glucocorticoids for patients with JAK3-mutant T-ALL.
Collapse
Affiliation(s)
- Kimberly Bodaar
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Natsuko Yamagata
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anais Barthe
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jack Landrigan
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Deparment of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melissa Burns
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kristen E. Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, and the Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Stephen P. Hunger
- Division of Oncology and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brent Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Lewis B. Silverman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David T. Teachey
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
33
|
Canté-Barrett K, Meijer MT, Cordo' V, Hagelaar R, Yang W, Yu J, Smits WK, Nulle ME, Jansen JP, Pieters R, Yang JJ, Haigh JJ, Goossens S, Meijerink JP. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 2022; 7:150363. [PMID: 35536646 PMCID: PMC9310523 DOI: 10.1172/jci.insight.150363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.
Collapse
Affiliation(s)
| | - Mariska T Meijer
- Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Jiyang Yu
- Computational Biology Department, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marloes E Nulle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Joris P Jansen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rob Pieters
- Pieters Group, Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, United States of America
| | - Jody J Haigh
- Research Institute of Oncology and Hematology, University of Manitoba, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jules Pp Meijerink
- Meijerink Group, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
34
|
Optimized outcome prediction of oncogenetic mutations in non-early T-cell precursor acute lymphoblastic leukemia. Immunobiology 2022; 227:152205. [DOI: 10.1016/j.imbio.2022.152205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
|
35
|
Meyer LK, Delgado‐Martin C, Sharp PP, Huang BJ, McMinn D, Vincent TL, Ryan T, Horton TM, Wood B, Teachey DT, Taunton J, Kirk CJ, Hermiston M. Inhibition of the Sec61 translocon overcomes cytokine‐induced glucocorticoid resistance in T‐cell acute lymphoblastic leukaemia. Br J Haematol 2022; 198:137-141. [PMID: 35434798 PMCID: PMC9322670 DOI: 10.1111/bjh.18181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Lauren K. Meyer
- Department of Pediatrics University of California San Francisco California USA
| | | | - Phillip P. Sharp
- Department of Cellular and Molecular Pharmacology University of California San Francisco California USA
| | - Benjamin J. Huang
- Department of Pediatrics University of California San Francisco California USA
| | - Dustin McMinn
- Kezar Life Sciences South San Francisco California USA
| | | | - Theresa Ryan
- Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | | | - Brent L. Wood
- Children's Hospital Los Angeles Los Angeles California USA
| | - David T. Teachey
- Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology University of California San Francisco California USA
- Kezar Life Sciences South San Francisco California USA
| | | | | |
Collapse
|
36
|
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23073795. [PMID: 35409154 PMCID: PMC8999045 DOI: 10.3390/ijms23073795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
Collapse
Affiliation(s)
- Kamil Kośmider
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Katarzyna Karska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Agata Kozakiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
37
|
Zhou Y, Guan L, Li W, Jia R, Jia L, Zhang Y, Wen X, Meng S, Ma D, Zhang N, Ji M, Liu Y, Ji C. DT7 peptide-modified lecithin nanoparticles co-loaded with γ-secretase inhibitor and dexamethasone efficiently inhibit T-cell acute lymphoblastic leukemia and reduce gastrointestinal toxicity. Cancer Lett 2022; 533:215608. [PMID: 35240234 DOI: 10.1016/j.canlet.2022.215608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematologic malignancy and glucocorticoid resistance is the main recurrent cause for a high relapsed and death rate. Here, we proposed an effective therapeutic regimen of combining gamma-secretase inhibitors (GSIs) with dexamethasone (DEX) to overcome glucocorticoid resistance. Moreover, the bone marrow targeting DT7 peptide-modified lecithin nanoparticles co-loaded with DEX and GSI (TLnp/D&G) were developed to enhance T-ALL cells recognition and endocytosis. In vitro cytotoxicity studies showed that TLnp/D&G significantly inhibited cell survival and promoted apoptosis of T-ALL cells. Mechanically, we found that GSIs promoted DEX-induced cell apoptosis by two main synergetic mechanisms: 1) GSIs significantly upregulated glucocorticoid receptor (GR) expression in T-ALL and restored the glucocorticoid-induced pro-apoptotic response. 2) Both DEX and GSI synergistically inhibited BCL2 and suppressed the survival of T-ALL cells. Furthermore, in vivo studies demonstrated that TLnp/D&G showed high bone marrow accumulation and better antileukemic efficacy both in leukemia bearing models and in systemic Notch1-induced T-ALL models, with excellent biosafety and reduced gastrointestinal toxicity. Overall, our study provides new strategies for the treatment of T-ALL and promising bone marrow targeting systems with high transformation potential.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lejiao Jia
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanyuan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sibo Meng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
38
|
Zou C, Beard JA, Yang G, Evans WE, Bonten EJ. CASPorter: A Novel Inducible Human CASP1/NALP3/ASC Inflammasome Biosensor. J Inflamm Res 2022; 15:1183-1194. [PMID: 35221708 PMCID: PMC8865862 DOI: 10.2147/jir.s333725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Following our 2015 elucidation of the CASP1/NALP3 inflammasome mechanism of glucocorticoid (GC)-resistance in pediatric acute lymphoblastic leukemia (ALL) patients, we engineered a cell-based CASP1/NALP3 reporter system suitable for high-throughput screening (HTS) of small molecule libraries, with the purpose of identifying compounds capable of inhibiting the CASP1/NALP3 inflammasome and synergizing with GC drugs for the treatment of GC-resistant ALL patients and various autoinflammatory diseases. Methods A Dox-controlled system was utilized to induce the expression of the ASC transgene in HEK293 cells while simultaneously overexpressing NLRP3 and CASP1. ASC/CASP1/NALP3 inflammasome complex formation was confirmed by co-immunoprecipitation (co-IP) experiments. Next, a LV fluorescence-based biosensor (CASPorter) was transduced in the HEK293-iASC-NLRP3/CASP1 cell line to monitor the real-time activation of CASP1/NALP3 inflammasome in live cells. The applicability and effectiveness of the CASPorter cell line were tested by co-treatment with Dox and four known CASP1/NLRP3 inhibitors (MCC950, Glyburide, VX-765 and VRT-043198). Inflammasome activation and inhibitions were assessed by Western blotting, fluorescence microscopy and flow cytometry (FC) methods. Results Dox treatment significantly induced ASC expression and increased levels of cleaved and catalytically active CASP1, co-IPs further demonstrated that CASP1 was pulled-down with NLRP3 in HEK293-iASC-NLRP3/CASP1 cells after induction of ASC by Dox treatment. In HEK293-iASC-NLRP3/CASP1-CASPorter cell system, cleavage of the CASP1 consensus site (YVAD) in the CASPorter protein after Dox treatment causing excitation/emission of green fluorescence and the 71% GFP+ cell population increase quantified by FC (78.1% vs 6.90%). Dox-induced activation of the NLRP3 inflammasome was dose-dependently inhibited by Dox co-treatment with four known CASP1/NLRP3 inhibitors. Conclusion We have established a cell-based CASP1/NLRP3 inflammasome model, utilizing a fluorescence biosensor as readout for qualitatively observing and quantitatively determining the activation of caspase 1 and NLRP3 inflammasomes in living cells and easily define the inhibitory effect of inhibitors with high efficacy.
Collapse
Affiliation(s)
- Chan Zou
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jordan A Beard
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Guoping Yang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center for Drug Clinical Evaluation of Central South University, Changsha, Hunan, People’s Republic of China
- Guoping Yang, Center for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China, Tel/Fax +86 731 88618933, Email
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Erik J Bonten
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Correspondence: Erik J Bonten, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA, Tel +1 901 595-3980, Fax +1 901 5955715, Email
| |
Collapse
|
39
|
Zhang J, Zeng L, Wang Y, Pan J, Li X, Feng B, Yang Q. Gene Mutations Related to Glucocorticoid Resistance in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2022; 10:831229. [PMID: 35733807 PMCID: PMC9207762 DOI: 10.3389/fped.2022.831229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the correlation between gene mutations and glucocorticoid resistance in pediatric acute lymphoblastic leukemia (ALL). METHODS A total of 71 children with ALL admitted to our center between September 2019 and September 2021 were enrolled. DNA obtained from bone marrow or peripheral blood samples at initial diagnosis was used for genetic testing via whole exome sequencing. Meanwhile, patient clinical information was collected. Subsequently, the correlations of gene mutations with clinical features and glucocorticoid resistance were analyzed. RESULTS Of the 71 children enrolled, 61 (85.9%) had B-cell ALL (B-ALL) and 10 (14.1%) had T-cell ALL (T-ALL). The five genes with the highest mutation frequency in B-ALL were TTN (24.4%), FLT3 (14.6%), TP53 (14.6%), MUC16 (9.8%), and EPPK1 (9.8%). In contrast, those with the highest frequency in T-ALL were NOTCH1 (54.5%), FBXW7 (27.3%), TTN (27.3%), MUC16 (27.3%), and PHF6 (18.2%). Upon statistical analysis, TTN and NOTCH1 mutations were found to be associated with prednisone resistance. Further, TTN and MUC16 mutations were associated with a lower age at diagnosis, and NOTCH1 mutations were associated with T-ALL in female patients. Leukocyte counts and LDH levels did not differ based on the presence of any common gene mutation, and no association between these gene mutations and overall survival was observed. CONCLUSIONS Our study is the first to demonstrate the association between TTN mutation and glucocorticoid resistance in ALL. Our findings could guide strategies for overcoming drug resistance and aid in the development of drug targets.
Collapse
Affiliation(s)
- JinFang Zhang
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - LingJi Zeng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - YuLian Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - JianWei Pan
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - XingDong Li
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bei Feng
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Quan Yang
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
40
|
van der Zwet JCG, Buijs-Gladdines JGCAM, Cordo' V, Debets DO, Smits WK, Chen Z, Dylus J, Zaman GJR, Altelaar M, Oshima K, Bornhauser B, Bourquin JP, Cools J, Ferrando AA, Vormoor J, Pieters R, Vormoor B, Meijerink JPP. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia 2021; 35:3394-3405. [PMID: 34007050 DOI: 10.1038/s41375-021-01291-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023]
Abstract
(Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens.
Collapse
Affiliation(s)
| | | | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center of Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Zhongli Chen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jelle Dylus
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center of Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Koichi Oshima
- Institute of Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Beat Bornhauser
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jan Cools
- KU Leuven Center for Human Genetics & VIB Center for Cancer Biology, Leuven, Belgium
| | - Adolfo A Ferrando
- Institute of Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Josef Vormoor
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Newcastle University, Newcastle upon Tyne, UK
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Britta Vormoor
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | |
Collapse
|
41
|
Sin CF, Man PHM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol 2021; 11:750789. [PMID: 34912707 PMCID: PMC8666570 DOI: 10.3389/fonc.2021.750789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T lymphoblastic leukemia (T-ALL) identified in 2009, due to its unique immunophenotypic and genomic profile. The outcome of patients was poor in earlier studies, and they were prone to have induction failure, with more frequent relapse/refractory disease. Recent advances had been made in discoveries of genetic aberrations and molecular pathogenesis of ETP-ALL. However, the diagnosis and management of ETP-ALL is still challenging. There are limited choices of novel therapies so far. In this review article, it highlighted the diagnostic issue of ETP-ALL, pitfall in diagnosis, and strategy of accurate diagnosis. The review also summarized current understanding of molecular mechanism of leukemogenesis. The emerging role of risk-adapted therapy and allogenic stem cell transplant in optimizing the outcome of patients with ETP-ALL was discussed. Finally, some potential novel therapies were proposed based on the current understanding of molecular pathogenesis.
Collapse
Affiliation(s)
- Chun-fung Sin
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
42
|
Elevated REG3α predicts refractory aGVHD in patients who received steroids-ruxolitinib as first-line therapy. Ann Hematol 2021; 101:621-630. [PMID: 34816294 PMCID: PMC8610441 DOI: 10.1007/s00277-021-04727-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023]
Abstract
We started a single-arm, phase II, open-label, prospective clinical trial using steroids-ruxolitinib as the first-line therapy for intermediate- to high-risk aGVHD (NCT04397367). Here, we report the association of a biomarker panel (sST2, REG3α, sTNFR1, IL-6 and IL-8) with responses to GVHD therapy. The novel first-line therapy for 39 patients with newly diagnosed aGVHD consisted of 1 mg/kg methylprednisolone and 5 mg/day ruxolitinib. The serum concentrations of the biomarkers were prospectively detected at planned time points. Of the 39 patients, the complete response rate at day 28 was 82.05%. In patients who achieved CR, the concentrations of REG3α (P14 = 0.01; P28 = 0.10) and sTNFR1 (P14 = 0.42; P28 = 0.04) declined at day 14 and day 28 compared with the pre-enrolment levels. In refractory patients, the levels of REG3α at day 14 were higher than those pre-enrolment (P = 0.04). REG3α (P = 0.02) was elevated in the refractory patients compared with the patients achieving CR at day 14 after enrolment, while there was no significant difference in the levels of sST2, sTNFR1 or IL-6. Elevated REG3α levels may predict refractory aGVHD after novel first-line therapy with steroids-ruxolitinib.
Collapse
|
43
|
Li G, Lei X, Zhang Y, Liu Z, Zhu K. LncRNA PPM1A-AS Regulate Tumor Development Through Multiple Signal Pathways in T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:761205. [PMID: 34746000 PMCID: PMC8567141 DOI: 10.3389/fonc.2021.761205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
ALL (Acute lymphoblastic leukemia) is the most common pediatric malignancy and T-ALL (T-cell acute lymphoblastic leukemia) comprises about 15% cases. Compared with B-ALL (B-cell acute lymphoblastic leukemia), the prognosis of T-ALL is poorer, the chemotherapy is easier to fail and the relapse rate is higher. Previous studies mainly focused in Notch1-related long non-coding RNAs (lncRNAs) in T-ALL. Here, we intend to investigate lncRNAs involved in T-ALL covering different subtypes. The lncRNA PPM1A-AS was screened out for its significant up-regulation in 10 T-ALL samples of different subtypes than healthy human thymus extracts. Besides, the PPM1A-AS expression levels in 3 T-ALL cell lines are markedly higher than that in CD45+ T cells of healthy human. We further demonstrate that PPM1A-AS can promote cell proliferation and inhibit cell apoptosis in vitro and can influence T-ALL growth in vivo. Finally, we verified that PPM1A-AS can regulate core proteins, Notch4, STAT3 and Akt, of 3 important signaling pathways related to T-ALL. These results confirm that lncRNA PPM1A-AS can act as an oncogene in T-ALL and maybe a potential clinical target of patients resistant to current chemotherapy or relapsed cases.
Collapse
Affiliation(s)
- Guoli Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xinyue Lei
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Tianjin, China
| | - Kegan Zhu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Li Y, Wei Y, Gu L. Effect of hypoxia on proliferation and glucocorticoid resistance of T-cell acute lymphoblastic leukaemia. ACTA ACUST UNITED AC 2021; 26:775-784. [PMID: 34565306 DOI: 10.1080/16078454.2021.1980689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Hypoxia is emerging as a key factor in the biology of leukaemia. Here, we want to clarify the impact of hypoxia on the proliferation of T-cell acute lymphoblastic leukaemia (T-ALL) cells and the response to chemotherapy. METHODS T-ALL cells were cultured under normoxic and hypoxic conditions. MTT assay and trypan blue staining technique was used to detect cell viability and proliferation. In vitro sensitivity to glucocorticoid was assessed by IC50. CDI was used to analyze the combined effects of glucocorticoid and hypoxia. Flow cytometry was performed to detect apoptosis and cell cycle. Western blotting was performed to detect the protein expression associated with hypoxia. RESULTS Hypoxia of 1% O2 resulted different impact on cell viability and proliferation to different T-ALL cell lines, reduced, unaffected or induced, according to their different metabolic phenotype. All the cell lines showed an induction of key enzymes in glycolysis pathway following hypoxia exposure, although different effector proteins were induced in different cell lines. In GC-sensitive cells, acute hypoxia made no effect on the IC50 of dexamethasone, but chronic hypoxia may improve cell survival and induce GC resistance. However, acute hypoxia induced a higher GC resistance in GC-resistant T-ALL cells and showed an antagonistic effect while combined with high-dose dexamethasone. CONCLUSION T-ALL cells adapt well to hypoxic environment. Hypoxia may influence leukaemic cell proliferation. More importantly, hypoxia contributes to GC resistance in T-ALL blasts, especially in refractory/relapsed T-ALL.
Collapse
Affiliation(s)
- Yuanyuan Li
- Laboratory of Hematology/Oncology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.,Joint laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, People's Republic of China.,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
| | - Yi Wei
- West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ling Gu
- Laboratory of Hematology/Oncology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.,Joint laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, People's Republic of China.,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
45
|
Silva A, Almeida ARM, Cachucho A, Neto JL, Demeyer S, de Matos M, Hogan T, Li Y, Meijerink J, Cools J, Grosso AR, Seddon B, Barata JT. Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood 2021; 138:1040-1052. [PMID: 33970999 PMCID: PMC8462360 DOI: 10.1182/blood.2019000553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tight regulation of IL-7Rα expression is essential for normal T-cell development. IL-7Rα gain-of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL). Although a subset of patients with T-ALL display high IL7R messenger RNA levels and cases with IL7R gains have been reported, the impact of IL-7Rα overexpression, rather than mutational activation, during leukemogenesis remains unclear. In this study, overexpressed IL-7Rα in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ultimately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, including heterogeneity in immunophenotype and genetic subtype between cases, frequent hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT, PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7, but remain sensitive to inhibitors of IL-7R-mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR), palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resembling that of IL-7-stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that high expression of IL-7Rα can promote T-cell tumorigenesis, even in the absence of IL-7Rα mutational activation.
Collapse
Affiliation(s)
- Ana Silva
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Cachucho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João L Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofie Demeyer
- Vlaams Instituut voor Biotechnologie (VIB) Center for Cancer Biology
- Katholieke Universiteit (KU) Leuven Center for Human Genetics, Katholieke Universiteit (VIB-KU) Leuven, Leuven, Belgium
| | - Mafalda de Matos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Yunlei Li
- Department of Pathology Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.; and
| | - Jan Cools
- Vlaams Instituut voor Biotechnologie (VIB) Center for Cancer Biology
| | - Ana Rita Grosso
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Universidade NOVA de Lisboa, Caparica, Portugal
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
47
|
Fan WJ, Xu TT, Guo JJ, Li YF, Jiang ZX. [Prognostic analysis of patients with mutations in the JAK/STAT signaling pathway in adult acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:594-597. [PMID: 34455748 PMCID: PMC8408485 DOI: 10.3760/cma.j.issn.0253-2727.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- W J Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - T T Xu
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - J J Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Y F Li
- Department of Hematology Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Z X Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
48
|
Pocock R, Farah N, Richardson SE, Mansour MR. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 194:28-43. [PMID: 33942287 DOI: 10.1111/bjh.17310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell ALL (T-ALL) is an aggressive malignancy of T-cell progenitors. Although survival outcomes in T-ALL have greatly improved over the past 50 years, relapsed and refractory cases remain extremely challenging to treat and those who cannot tolerate intensive treatment continue to have poor outcomes. Furthermore, T-ALL has proven a more challenging immunotherapeutic target than B-ALL. In this review we explore our expanding knowledge of the basic biology of T-ALL and how this is paving the way for repurposing established treatments and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rachael Pocock
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Simon E Richardson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
49
|
Selective drug combination vulnerabilities in STAT3- and TP53-mutant malignant NK cells. Blood Adv 2021; 5:1862-1875. [PMID: 33792631 DOI: 10.1182/bloodadvances.2020003300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mature natural killer (NK) cell neoplasms are rare but very aggressive types of cancers. With currently available treatments, they have a very poor prognosis and, as such, are an example of group of cancers in which the development of effective precision therapies is needed. Using both short- and long-term drug sensitivity testing, we explored novel ways to target NK-cell neoplasms by combining the clinically approved JAK inhibitor ruxolitinib with other targeted agents. We profiled 7 malignant NK-cell lines in drug sensitivity screens and identified that these exhibit differential drug sensitivities based on their genetic background. In short-term assays, various classes of drugs combined with ruxolitinib seemed highly potent. Strikingly, resistance to most of these combinations emerged rapidly when explored in long-term assays. However, 4 combinations were identified that selectively eradicated the cancer cells and did not allow for development of resistance: ruxolitinib combined with the mouse double-minute 2 homolog (MDM2) inhibitor idasanutlin in STAT3-mutant, TP53 wild-type cell lines; ruxolitinib combined with the farnesyltransferase inhibitor tipifarnib in TP53-mutant cell lines; and ruxolitinib combined with either the glucocorticoid dexamethasone or the myeloid cell leukemia-1 (MCL-1) inhibitor S63845 but both without a clear link to underlying genetic features. In conclusion, using a new drug sensitivity screening approach, we identified drug combinations that selectively target mature NK-cell neoplasms and do not allow for development of resistance, some of which can be applied in a genetically stratified manner.
Collapse
|
50
|
T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor? Blood Adv 2021; 4:3466-3473. [PMID: 32722786 DOI: 10.1182/bloodadvances.2020001822] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) represent malignancies that arise from the transformation of immature precursor T cells. Similarities in T-LBL and T-ALL have raised the question whether these entities represent 1 disease or reflect 2 different diseases. The genetic profiles of T-ALL have been thoroughly investigated over the last 2 decades, whereas fairly little is known about genetic driver mutations in T-LBL. Nevertheless, the comparison of clinical, immunophenotypic, and molecular observations from independent T-LBL and T-ALL studies lent strength to the theory that T-LBL and T-ALL reflect different presentations of the same disease. Alternatively, T-LBL and T-ALL may simultaneously evolve from a common malignant precursor cell, each having their own specific pathogenic requirements or cellular dependencies that differ among stroma-embedded blasts in lymphoid tissues compared with solitary leukemia cells. This review aims to cluster recent findings with regard to clinical presentation, genetic predisposition, and the acquisition of additional mutations that may give rise to differences in gene expression signatures among T-LBL and T-ALL patients. Improved insight in T-LBL in relation to T-ALL may further help to apply confirmed T-ALL therapies to T-LBL patients.
Collapse
|