1
|
Tang T, Liu N, Wang L, Zuo K, Zhu X. A Dual Bispecific Hydrolysis Peptide-Drug Conjugate Responsive to Micro-Acidic and Reduction Circumstance Promotes Antitumor Efficacy in Triple-Negative Breast Cancer. Chembiochem 2024; 25:e202400426. [PMID: 38965692 DOI: 10.1002/cbic.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Paclitaxel and its derivates are the first-line chemotherapeutic agents of breast cancer, which also showed tremendous clinical value in many other diseases including ovarian cancer, lung cancer etc. However, there are many drawbacks for almost all paclitaxel or its derivates, including extremely short half-life, poor solubility and adverse events, which significantly limits their clinical applications. In this work, we designed and constructed a bispecific hydrolysis PAP-SS-PTX (term as PDC), consisting with pro-apoptosis peptide (PAP) and paclitaxel (PTX) that were conjugated together via disulfide and ester bonds. On the one hand, PAP could improve the solubility of PTX and promote cellular uptake for drugs. On the other hand, it was able to prolong the PTX half-life. We performed series of chemo-dynamical assays and showed that PDC would release active drug molecules under micro-acidic and reduction circumstance. The further assays elucidated that PDC could interrupt DNA synthesis and arrest cell division through downregulating CDK4/6 and Histone methylation that inhibit tumor growth in vitro. What's more, it could not only inhibit 4T1 breast tumor growth, but also prolong the survival time of mice and exert antitumor efficacy in vivo. It may provide a new research idea for cancer therapies via controlled release strategy in tumor microenvironment.
Collapse
Affiliation(s)
- Tingting Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| | - Naiyu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| | - Lingjuan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| | - Kaiyue Zuo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| | - Xinjie Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| |
Collapse
|
2
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
3
|
Wang Z, Zhang YX, Shi JZ, Yan Y, Zhao LL, Kou JJ, He YY, Xie XM, Zhang SJ, Pang XB. RNA m6A methylation and regulatory proteins in pulmonary arterial hypertension. Hypertens Res 2024; 47:1273-1287. [PMID: 38438725 DOI: 10.1038/s41440-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/12/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024]
Abstract
m6A (N6‑methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.
Collapse
Affiliation(s)
- Zhe Wang
- School of Pharmacy, Henan University, Henan, China
| | - Yi-Xuan Zhang
- Department of Anesthesiology, Huaihe Hospital of Henan University, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Henan, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Henan, China
| | - Jie-Jian Kou
- Department of Pharmacy, Huaihe Hospital of Henan University, Henan, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Henan, China.
| | - Si-Jin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | | |
Collapse
|
4
|
Contreras Yametti GP, Robbins G, Chowdhury A, Narang S, Ostrow TH, Kilberg H, Greenberg J, Kramer L, Raetz E, Tsirigos A, Evensen NA, Carroll WL. SETD2 mutations do not contribute to clonal fitness in response to chemotherapy in childhood B cell acute lymphoblastic leukemia. Leuk Lymphoma 2024; 65:78-90. [PMID: 37874744 DOI: 10.1080/10428194.2023.2273752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Mutations in genes encoding epigenetic regulators are commonly observed at relapse in B cell acute lymphoblastic leukemia (B-ALL). Loss-of-function mutations in SETD2, an H3K36 methyltransferase, have been observed in B-ALL and other cancers. Previous studies on mutated SETD2 in solid tumors and acute myelogenous leukemia support a role in promoting resistance to DNA damaging agents. We did not observe chemoresistance, an impaired DNA damage response, nor increased mutation frequency in response to thiopurines using CRISPR-mediated knockout in wild-type B-ALL cell lines. Likewise, restoration of SETD2 in cell lines with hemizygous mutations did not increase sensitivity. SETD2 mutations affected the chromatin landscape and transcriptional output that was unique to each cell line. Collectively our data does not support a role for SETD2 mutations in driving clonal evolution and relapse in B-ALL, which is consistent with the lack of enrichment of SETD2 mutations at relapse in most studies.
Collapse
Affiliation(s)
- Gloria P Contreras Yametti
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gabriel Robbins
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Ashfiyah Chowdhury
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sonali Narang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Talia H Ostrow
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Harrison Kilberg
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Joshua Greenberg
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lindsay Kramer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elizabeth Raetz
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nikki A Evensen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - William L Carroll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
5
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Yin J, Qi TF, Li L, Wang Y. Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Regulated by H3K36me3. Anal Chem 2023; 95:9672-9679. [PMID: 37296074 PMCID: PMC10372775 DOI: 10.1021/acs.analchem.3c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Trimethylation of lysine 36 on histone H3 (H3K36me3), an epigenetic mark associated with actively transcribed genes, plays an important role in multiple cellular processes, including transcription elongation, DNA methylation, DNA repair, etc. Aberrant expression and mutations of the main methyltransferase for H3K36me3, i.e., SET domain-containing 2 (SETD2), were shown to be associated with various cancers. Here, we performed targeted profiling of 154 epitranscriptomic reader, writer, and eraser (RWE) proteins using a scheduled liquid chromatography-parallel-reaction monitoring (LC-PRM) method coupled with the use of stable isotope-labeled (SIL) peptides as internal standards to investigate how H3K36me3 modulates the chromatin occupancies of epitranscriptomic RWE proteins. Our results showed consistent changes in chromatin occupancies of RWE proteins upon losses of H3K36me3 and H4K16ac and a role of H3K36me3 in recruiting METTL3 to chromatin following induction of DNA double-strand breaks. In addition, protein-protein interaction network and Kaplan-Meier survival analyses revealed the importance of METTL14 and TRMT11 in kidney cancer. Taken together, our work unveiled cross-talks between histone epigenetic marks (i.e., H3K36me3 and H4K16ac) and epitranscriptomic RWE proteins and uncovered the potential roles of these RWE proteins in H3K36me3-mediated biological processes.
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Deparment of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Deparment of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
8
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
9
|
Zhang LQ, Yang H, Liu JJ, Zhang LR, Hao YD, Guo JM, Lin H. Recognition of driver genes with potential prognostic implications in lung adenocarcinoma based on H3K79me2. Comput Struct Biotechnol J 2022; 20:5535-5546. [PMID: 36249560 PMCID: PMC9556929 DOI: 10.1016/j.csbj.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
The efficacy of H3K79me2 on gene expression regulation is affirmed in LUAD. An open-source algorithm for identifying LUAD-related driver genes is presented. 12 H3K79me2-targeted driver genes with clinical values are verified by qPCR. The regions with obvious H3K79me2 signals changes on driver genes are pinpointed.
Lung adenocarcinoma is a malignancy with a low overall survival and a poor prognosis. Studies have shown that lung adenocarcinoma progression relates to locus-specific/global changes in histone modifications. To explore the relationship between histone modification and gene expression changes, we focused on 11 histone modifications and quantitatively analyzed their influences on gene expression. We found that, among the studied histone modifications, H3K79me2 displayed the greatest impact on gene expression regulation. Based on the Shannon entropy, 867 genes with differential H3K79me2 levels during tumorigenesis were identified. Enrichment analyses showed that these genes were involved in 16 common cancer pathways and 11 tumors and were target-regulated by trans-regulatory elements, such as Tp53 and WT1. Then, an open-source computational framework was presented (https://github.com/zlq-imu/Identification-of-potential-LUND-driver-genes). Twelve potential driver genes were extracted from the genes with differential H3K79me2 levels during tumorigenesis. The expression levels of these potential driver genes were significantly increased/decreased in tumor cells, as assayed by RT–qPCR. A risk score model comprising these driver genes was further constructed, and this model was strongly negatively associated with the overall survival of patients in different datasets. The proportional hazards assumption and outlier test indicated that this model could robustly distinguish patients with different survival rates. Immune analyses and responses to immunotherapeutic and chemotherapeutic agents showed that patients in the high and low-risk groups may have distinct tendencies for clinical selection. Finally, the regions with clear H3K79me2 signal changes on these driver genes were accurately identified. Our research may offer potential molecular biomarkers for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China,Corresponding authors.
| | - Hao Yang
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, China
| | - Jun-Jie Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Li-Rong Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yu-Duo Hao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Jun-Mei Guo
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China,Corresponding authors.
| |
Collapse
|
10
|
SEDT2 palmitoylation mediated by ZDHHC16 in EGFR-mutated glioblastoma promotes ionizing radiation-induced DNA damage. Int J Radiat Oncol Biol Phys 2022; 113:648-660. [DOI: 10.1016/j.ijrobp.2022.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/16/2022] [Accepted: 02/12/2022] [Indexed: 11/19/2022]
|
11
|
Pterostilbene Changes Epigenetic Marks at Enhancer Regions of Oncogenes in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10081232. [PMID: 34439480 PMCID: PMC8388921 DOI: 10.3390/antiox10081232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 μM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.
Collapse
|
12
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
13
|
Zhang LQ, Fan GL, Liu JJ, Liu L, Li QZ, Lin H. Identification of Key Histone Modifications and Their Regulatory Regions on Gene Expression Level Changes in Chronic Myelogenous Leukemia. Front Cell Dev Biol 2021; 8:621578. [PMID: 33511133 PMCID: PMC7835480 DOI: 10.3389/fcell.2020.621578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a type of cancer with a series of characteristics that make it particularly suitable for observations on leukemogenesis. Research have exhibited that the occurrence and progression of CML are associated with the dynamic alterations of histone modification (HM) patterns. In this study, we analyze the distribution patterns of 11 HM signals and calculate the signal changes of these HMs in CML cell lines as compared with that in normal cell lines. Meanwhile, the impacts of HM signal changes on expression level changes of CML-related genes are investigated. Based on the alterations of HM signals between CML and normal cell lines, the up- and down-regulated genes are predicted by the random forest algorithm to identify the key HMs and their regulatory regions. Research show that H3K79me2, H3K36me3, and H3K27ac are key HMs to expression level changes of CML-related genes in leukemogenesis. Especially H3K79me2 and H3K36me3 perform their important functions in all 100 bins studied. Our research reveals that H3K79me2 and H3K36me3 may be the core HMs for the clinical treatment of CML.
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Guo-Liang Fan
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Jun-Jie Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Li Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China.,The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Bourdareau S, Tirichine L, Lombard B, Loew D, Scornet D, Wu Y, Coelho SM, Cock JM. Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biol 2021; 22:12. [PMID: 33397407 PMCID: PMC7784034 DOI: 10.1186/s13059-020-02216-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. RESULTS A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. CONCLUSIONS The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.
Collapse
Affiliation(s)
- Simon Bourdareau
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Leila Tirichine
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Delphine Scornet
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Yue Wu
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France
| | - Susana M Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
- Current address: Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
15
|
Recurrent SETD2 mutation in NPM1-mutated acute myeloid leukemia. Biomark Res 2020; 8:62. [PMID: 33292784 PMCID: PMC7659109 DOI: 10.1186/s40364-020-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
SETD2 is the only methyltransferase for H3K36me3, and our previous study has firstly demonstrated that it functioned as one tumor suppressor in hematopoiesis. Consistent with it, SETD2 mutation, which led to its loss of function, was identified in AML. However, the distribution and function of SETD2 mutation in AML remained largely unknown. Herein, we integrated SETD2-mutated AML cases from our center and literature reports, and found that NPM1 mutation was the most common concomitant genetic alteration with SETD2 mutation in AML, with its frequency even higher than MLL rearrangement and AML1-ETO. Though this result indicated the cooperation of SETD2 and NPM1 mutations in leukemogenesis, our functional study showed that SETD2 was required for the proliferation of NPM1-mutated AML cell line OCI-AML3, but not MLL-rearranged AML cell line THP-1, via maintaining its direct target NPM1 expression, which was just opposite to its role of tumor suppressor. Therefore, we speculated that SETD2 possibly had two different faces in distinct subtypes and stages of AML.
Collapse
|
16
|
Slany RK. MLL fusion proteins and transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194503. [PMID: 32061883 DOI: 10.1016/j.bbagrm.2020.194503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
The highly leukemogenic MLL fusion proteins have a unique mechanism of action. This review summarizes the current knowledge of how MLL fusions interact with the transcriptional machinery and it proposes a hypothesis how these proteins modify transcriptional control to act as transcriptional amplifiers causing runaway production of certain RNAs that transform hematopoietic cells.
Collapse
Affiliation(s)
- Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany.
| |
Collapse
|
17
|
Zeng Y, Wang S, Feng M, Shao Z, Yuan J, Shen Z, Jie W. [Quantitative proteomics and differential signal enrichment in nasopharyngeal carcinoma cells with or without SETD2 gene knockout]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1191-1199. [PMID: 31801714 DOI: 10.12122/j.issn.1673-4254.2019.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the effects of alterations in the expressions of methyltransferase SETD2 on protein expression profiles in human nasopharyngeal carcinoma (NPC) cells and enrich the differential signaling pathways. METHODS The total protein was extracted from SETD2-knockout cell line CNE1SETD2-KO and the wild-type cell line CNE1WT, and the differentially expressed proteins were screened by tandem mass tag (TMT) labeled protein quantification technique and tandem mass spectrometry. GO analysis was used to annotate and enrich the differentially expressed proteins, and the KEGG database was used to enrich and analyze the pathways of the differential proteins. RESULTS With a fold change (FC)≥1.2 and P < 0.05 as the screening standard, 2049 differentially expressed proteins were identified in CNE1SETD2-KO cells, among which 904 were up-regulated and 1145 were down-regulated. GO functional annotation results indicated that SETD2 knockout caused characteristic changes in multiple biological processes (cell processes and regulation, cell movement, metabolic processes, and biosynthesis of cellular components), molecular functions (catalytic activity and molecular binding, transcription factor activity), and cellular components (cell membrane, organelle, macromolecular complex). KEGG analysis showed that the differentially expressed proteins were involved in an array of signaling pathways closely related to tumors, including MAPK, PI3K-Akt, Ras, Rap1, mTOR, Hippo, HIF-1, Wnt, AMPK, FoxO, ErbB, P53 and JAK-STAT. CONCLUSIONS SETD2 knockout significantly changes the protein expression characteristics of NPC cells and affects a number of signal pathways closely related to tumors. The results provide evidence for investigation of the pathogenesis and therapeutic target screening of NPC.
Collapse
Affiliation(s)
- Yumei Zeng
- Department of Pathology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Sisi Wang
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Muyin Feng
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhongming Shao
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Jianling Yuan
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Wei Jie
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
18
|
Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol 2019; 7:207. [PMID: 31681756 PMCID: PMC6797914 DOI: 10.3389/fcell.2019.00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, our molecular understanding of acute myeloid leukemia (AML) pathogenesis dramatically increased, thanks also to the advent of next-generation sequencing (NGS) technologies. Many of these findings, however, have not yet translated into new prognostic markers or rationales for treatments. We now know that AML is a highly heterogeneous disease characterized by a very low mutational burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators, which shape and define leukemic cell identity. In the light of these discoveries and given the increasing number of drugs targeting epigenetic regulators in clinical development and testing, great interest is emerging for the use of small molecules targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic properties, such as proliferation and survival, epigenetic drugs may affect the way leukemic cells communicate with the surrounding components of the tumor and immune microenvironment. Here, we review current knowledge on alterations in the AML epigenetic landscape and discuss the promises of epigenetic therapies for AML treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic rewiring in cancer cells may as well exert immune-modulatory functions, boost the immune system, and potentially contribute to better patient outcomes.
Collapse
Affiliation(s)
- Valentina Gambacorta
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Milan, Italy
| | - Daniela Gnani
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Jin H, Kasper LH, Larson JD, Wu G, Baker SJ, Zhang J, Fan Y. ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in. Bioinformatics 2019; 36:1270-1272. [PMID: 31566663 PMCID: PMC7523640 DOI: 10.1093/bioinformatics/btz720] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION The traditional reads per million normalization method is inappropriate for the evaluation of ChIP-seq data when treatments or mutations have global effects. Changes in global levels of histone modifications can be detected with exogenous reference spike-in controls. However, most ChIP-seq studies overlook the normalization that must be corrected with spike-in. A method that retrospectively renormalizes datasets without spike-in is lacking. RESULTS ChIPseqSpikeInFree is a novel ChIP-seq normalization method to effectively determine scaling factors for samples across various conditions and treatments, which does not rely on exogenous spike-in chromatin or peak detection to reveal global changes in histone modification occupancy. Application of ChIPseqSpikeInFree on five datasets demonstrates that this in silico approach reveals a similar magnitude of global changes as the spike-in method does. AVAILABILITY AND IMPLEMENTATION St. Jude Cloud (https://pecan.stjude.cloud/permalink/spikefree) and St. Jude Github ( https://github.com/stjude/ChIPseqSpikeInFree). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongjian Jin
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lawryn H Kasper
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jon D Larson
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- To whom correspondence should be addressed.
| |
Collapse
|
20
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Molecular mechanisms for stemness maintenance of acute myeloid leukemia stem cells. BLOOD SCIENCE 2019; 1:77-83. [PMID: 35402786 PMCID: PMC8975089 DOI: 10.1097/bs9.0000000000000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022] Open
Abstract
Human acute myeloid leukemia (AML) is a fatal hematologic malignancy characterized with accumulation of myeloid blasts and differentiation arrest. The development of AML is associated with a serial of genetic and epigenetic alterations mainly occurred in hematopoietic stem and progenitor cells (HSPCs), which change HSPC state at the molecular and cellular levels and transform them into leukemia stem cells (LSCs). LSCs play critical roles in leukemia initiation, progression, and relapse, and need to be eradicated to achieve a cure in clinic. Key to successfully targeting LSCs is to fully understand the unique cellular and molecular mechanisms for maintaining their stemness. Here, we discuss LSCs in AML with a focus on identification of unique biological features of these stem cells to decipher the molecular mechanisms of LSC maintenance.
Collapse
|
22
|
Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76:2899-2916. [PMID: 31147750 PMCID: PMC11105573 DOI: 10.1007/s00018-019-03144-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Sheng Y, Ji Z, Zhao H, Wang J, Cheng C, Xu W, Wang X, He Y, Liu K, Li L, Voeltzel T, Maguer-Satta V, Gao WQ, Zhu HH. Downregulation of the histone methyltransferase SETD2 promotes imatinib resistance in chronic myeloid leukaemia cells. Cell Prolif 2019; 52:e12611. [PMID: 31054182 PMCID: PMC6668982 DOI: 10.1111/cpr.12611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives Epigenetic modifiers were important players in the development of haematological malignancies and sensitivity to therapy. Mutations of SET domain‐containing 2 (SETD2), a methyltransferase that catalyses the trimethylation of histone 3 on lysine 36 (H3K36me3), were found in various myeloid malignancies. However, the detailed mechanisms through which SETD2 confers chronic myeloid leukaemia progression and resistance to therapy targeting on BCR‐ABL remain unclear. Materials and methods The level of SETD2 in imatinib‐sensitive and imatinib‐resistant chronic myeloid leukaemia (CML) cells was examined by immunoblotting and quantitative real‐time PCR. We analysed CD34+CD38− leukaemic stem cells by flow cytometry and colony formation assays upon SETD2 knockdown or overexpression. The impact of SETD2 expression alterations or small‐molecule inhibitor JIB‐04 targeting H3K36me3 loss on imatinib sensitivity was assessed by IC50, cell apoptosis and proliferation assays. Finally, RNA sequencing and ChIP‐quantitative PCR were performed to verify putative downstream targets. Results SETD2 was found to act as a tumour suppressor in CML. The novel oncogenic targets MYCN and ERG were shown to be the direct downstream targets of SETD2, where their overexpression induced by SETD2 knockdown caused imatinib insensitivity and leukaemic stem cell enrichment in CML cell lines. Treatment with JIB‐04, an inhibitor that restores H3K36me3 levels through blockade of its demethylation, successfully improved the cell imatinib sensitivity and enhanced the chemotherapeutic effect. Conclusions Our study not only emphasizes the regulatory mechanism of SETD2 in CML, but also provides promising therapeutic strategies for overcoming the imatinib resistance in patients with CML.
Collapse
Affiliation(s)
- Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Xu
- Department of Colorectal Surgery, Xin-Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
SETD2 mutations confer chemoresistance in acute myeloid leukemia partly through altered cell cycle checkpoints. Leukemia 2019; 33:2585-2598. [PMID: 30967619 DOI: 10.1038/s41375-019-0456-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
SETD2, an epigenetic tumor suppressor, is frequently mutated in MLL-rearranged (MLLr) leukemia and relapsed acute leukemia (AL). To clarify the impact of SETD2 mutations on chemotherapy sensitivity in MLLr leukemia, two loss-of-function (LOF) Setd2-mutant alleles (Setd2F2478L/WT or Setd2Ex6-KO/WT) were generated and introduced, respectively, to the Mll-Af9 knock-in leukemia mouse model. Both alleles cooperated with Mll-Af9 to accelerate leukemia development that resulted in resistance to standard Cytarabine-based chemotherapy. Mechanistically, Setd2-mutant leukemic cells showed downregulated signaling related to cell cycle progression, S, and G2/M checkpoint regulation. Thus, after Cytarabine treatment, Setd2-mutant leukemic cells exit from the S phase and progress to the G2/M phase. Importantly, S and G2/M cell cycle checkpoint inhibition could resensitize the Mll-Af9/Setd2 double-mutant cells to standard chemotherapy by causing DNA replication collapse, mitotic catastrophe, and increased cell death. These findings demonstrate that LOF SETD2 mutations confer chemoresistance on AL to DNA-damaging treatment by S and G2/M checkpoint defects. The combination of S and G2/M checkpoint inhibition with chemotherapy can be explored as a promising therapeutic strategy by exploiting their unique vulnerability and resensitizing chemoresistant AL with SETD2 or SETD2-like epigenetic mutations.
Collapse
|
25
|
Skucha A, Ebner J, Grebien F. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci 2019; 20:ijms20051029. [PMID: 30818762 PMCID: PMC6429614 DOI: 10.3390/ijms20051029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
The non-redundant histone methyltransferase SETD2 (SET domain containing 2; KMT3A) is responsible for tri-methylation of lysine 36 on histone H3 (H3K36me3). Presence of the H3K36me3 histone mark across the genome has been correlated with transcriptional activation and elongation, but also with the regulation of DNA mismatch repair, homologous recombination and alternative splicing. The role of SETD2 and the H3K36me3 histone mark in cancer is controversial. SETD2 is lost or mutated in various cancers, supporting a tumor suppressive role of the protein. Alterations in the SETD2 gene are also present in leukemia patients, where they are associated with aggressive disease and relapse. In line, heterozygous SETD2 loss caused chemotherapy resistance in leukemia cell lines and mouse models. In contrast, other studies indicate that SETD2 is critically required for the proliferation of leukemia cells. Thus, although studies of SETD2-dependent processes in cancer have contributed to a better understanding of the SETD2⁻H3K36me3 axis, many open questions remain regarding its specific role in leukemia. Here, we review the current literature about critical functions of SETD2 in the context of hematopoietic malignancies.
Collapse
Affiliation(s)
- Anna Skucha
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| | - Jessica Ebner
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria.
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria.
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
26
|
Zhou Y, Yan X, Feng X, Bu J, Dong Y, Lin P, Hayashi Y, Huang R, Olsson A, Andreassen PR, Grimes HL, Wang QF, Cheng T, Xiao Z, Jin J, Huang G. Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation. Haematologica 2018; 103:1110-1123. [PMID: 29650642 PMCID: PMC6029524 DOI: 10.3324/haematol.2018.187708] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/06/2018] [Indexed: 12/27/2022] Open
Abstract
SET domain containing 2 (Setd2), encoding a histone methyltransferase, is associated with many hematopoietic diseases when mutated. By generating a novel exon 6 conditional knockout mouse model, we describe an essential role of Setd2 in maintaining the adult hematopoietic stem cells. Loss of Setd2 results in leukopenia, anemia, and increased platelets accompanied by hypocellularity, erythroid dysplasia, and mild fibrosis in bone marrow. Setd2 knockout mice show significantly decreased hematopoietic stem and progenitor cells except for erythroid progenitors. Setd2 knockout hematopoietic stem cells fail to establish long-term bone marrow reconstitution after transplantation because of the loss of quiescence, increased apoptosis, and reduced multiple-lineage terminal differentiation potential. Bioinformatic analysis revealed that the hematopoietic stem cells exit from quiescence and commit to differentiation, which lead to hematopoietic stem cell exhaustion. Mechanistically, we attribute an important Setd2 function in murine adult hematopoietic stem cells to the inhibition of the Nsd1/2/3 transcriptional complex, which recruits super elongation complex and controls RNA polymerase II elongation on a subset of target genes, including Myc. Our results reveal a critical role of Setd2 in regulating quiescence and differentiation of hematopoietic stem cells through restricting the NSDs/SEC mediated RNA polymerase II elongation.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomei Yan
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomin Feng
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Jiachen Bu
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Yunzhu Dong
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Peipei Lin
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Yoshihiro Hayashi
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Rui Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Paul R Andreassen
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Qian-Fei Wang
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|