1
|
Yang S, Zeng J, Hao W, Sun R, Tuo Y, Tan L, Zhang H, Liu R, Bai H. IL-21/IL-21R Promotes the Pro-Inflammatory Effects of Macrophages during C. muridarum Respiratory Infection. Int J Mol Sci 2023; 24:12557. [PMID: 37628738 PMCID: PMC10454239 DOI: 10.3390/ijms241612557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Interleukin-21 and its receptors (IL-21/IL-21R) aggravate chlamydial lung infection, while macrophages (Mφ) are one of the main cells infected by chlamydia and the main source of inflammatory cytokines. Therefore, it is particularly important to study whether IL-21/IL-21R aggravates chlamydia respiratory infection by regulating Mφ. Combined with bioinformatics analysis, we established an IL-21R-deficient (IL-21R-/-) mouse model of Chlamydia muridarum (C. muridarum) respiratory tract infection in vivo, studied C. muridarum-stimulated RAW264.7 by the addition of rmIL-21 in vitro, and conducted adoptive transfer experiments to clarify the association between IL-21/IL-21R and Mφ. IL-21R-/- mice showed lower infiltration of pulmonary total Mφ, alveolar macrophages, and interstitial macrophages compared with WT mice following infection. Transcriptomic analysis suggested that M1-related genes are downregulated in IL-21R-/- mice and that IL-21R deficiency affects the Mφ-mediated inflammatory response during C. muridarum infection. In vivo experiments verified that in IL-21R-/- mice, pulmonary M1-type CD80+, CD86+, MHC II+, TNFα+, and iNOS+ Mφ decreased, while there were no differences in M2-type CD206+, TGF-β+, IL-10+ and ARG1+ Mφ. In vitro, administration of rmIL-21 to C. muridarum-stimulated RAW264.7 cells promoted the levels of iNOS-NO and the expression of IL-12p40 and TNFα, but had no effect on TGFβ or IL-10. Further, adoptive transfer of M1-like bone marrow-derived macrophages derived from IL-21R-/- mice, unlike those from WT mice, effectively protected the recipients against C. muridarum infection and induced relieved pulmonary pathology. These findings help in understanding the mechanism by which IL-21/IL-21R exacerbates chlamydia respiratory infection by promoting the proinflammatory effect of Mφ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (W.H.); (R.S.); (Y.T.); (L.T.); (H.Z.); (R.L.)
| |
Collapse
|
2
|
Niu W, Xu Y, Zha X, Zeng J, Qiao S, Yang S, Zhang H, Tan L, Sun L, Pang G, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-21/IL-21R Signaling Aggravated Respiratory Inflammation Induced by Intracellular Bacteria through Regulation of CD4 + T Cell Subset Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1586-1596. [PMID: 33608454 DOI: 10.4049/jimmunol.2001107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-β in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.
Collapse
Affiliation(s)
- Wenhao Niu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yueyue Xu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xiaoyu Zha
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jiajia Zeng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sai Qiao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shuaini Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lu Tan
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lida Sun
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Gaoju Pang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Tengli Liu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Huili Zhao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ningbo Zheng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yongci Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
3
|
Gassen RB, Fazolo T, Nascimento de Freitas D, Borges TJ, Lima K, Antunes GL, Maito F, Bueno Mendes DA, Báfica A, Rodrigues LC, Stein R, Duarte de Souza AP, Bonorino C. IL-21 treatment recovers follicular helper T cells and neutralizing antibody production in respiratory syncytial virus infection. Immunol Cell Biol 2020; 99:309-322. [PMID: 33068449 DOI: 10.1111/imcb.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children under 1 year. RSV vaccines are currently unavailable, and children suffering from multiple reinfections by the same viral strain fail to develop protective responses. Although RSV-specific antibodies can be detected upon infection, these have limited neutralizing capacity. Follicular helper T (Tfh) cells are specialized in providing signals to B cells and help the production and affinity maturation of antibodies, mainly via interleukin (IL) 21 secretion. In this study, we evaluated whether RSV could inhibit Tfh responses. We observed that Tfh cells fail to upregulate IL-21 production upon RSV infection. In the lungs, RSV infection downregulated the expression of IL-21/interleukin-21 receptor (IL-21R) in Tfh cells and upregulated programmed death-ligand 1 (PD-L1) expression in dendritic cells (DCs) and B cells. PD-L1 blockade during infection recovered IL-21R expression in Tfh cells and increased the secretion of IL-21 in a DC-dependent manner. IL-21 treatment decreased RSV viral load and lung inflammation, inducing the formation of tertiary lymphoid organs in the lung. It also decreased regulatory follicular T cells, and increased Tfh cells, B cells, antibody avidity and neutralization capacity, leading to an overall improved anti-RSV humoral response in infected mice. Passive immunization with purified immunoglobulin G from IL-21-treated RSV-infected mice protected against RSV infection. Our results unveil a pathway by which RSV affects Tfh cells by increasing PD-L1 expression on antigen-presenting cells, highlighting the importance of an IL-21-PD-L1 axis for the generation of protective responses to RSV infection.
Collapse
Affiliation(s)
- Rodrigo Benedetti Gassen
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Fazolo
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deise Nascimento de Freitas
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago J Borges
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karina Lima
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Géssica L Antunes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Maito
- Laboratório de Histologia, Faculdade de Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Ag Bueno Mendes
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Renato Stein
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Waghmare A, Krantz EM, Baral S, Vasquez E, Loeffelholz T, Chung EL, Pandey U, Kuypers J, Duke ER, Jerome KR, Greninger AL, Reeves DB, Hladik F, Cardozo-Ojeda EF, Boeckh M, Schiffer JT. Reliability of self-sampling for accurate assessment of respiratory virus viral and immunologic kinetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.03.20051706. [PMID: 32511581 PMCID: PMC7276008 DOI: 10.1101/2020.04.03.20051706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The SARS-CoV-2 pandemic demonstrates the need for accurate and convenient approaches to diagnose and therapeutically monitor respiratory viral infections. We demonstrated that self-sampling with foam swabs at home is well-tolerated and provides quantitative viral output concordant with flocked swabs. Nasal cytokine levels correlate and cluster according to immune cell of origin. Periods of stable viral loads are followed by rapid elimination, which could be coupled with cytokine expansion and contraction using mathematical models. Nasal foam swab self-sampling at home provides a precise, mechanistic readout of respiratory virus shedding and local immune responses.
Collapse
Affiliation(s)
- Alpana Waghmare
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Pediatrics, University of Washington
- Center for Clinical and Translational Research, Seattle Children’s Research Institute
| | - Elizabeth M. Krantz
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
| | - Subhasish Baral
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
| | - Emma Vasquez
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
| | - Tillie Loeffelholz
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
| | - E. Lisa Chung
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
| | - Urvashi Pandey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Obstetrics and Gynecology, University of Washington
| | - Jane Kuypers
- Department of Laboratory Medicine, University of Washington
| | - Elizabeth R Duke
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Medicine, University of Washington
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Laboratory Medicine, University of Washington
| | | | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
| | - Florian Hladik
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Obstetrics and Gynecology, University of Washington
- Department of Medicine, University of Washington
| | | | - Michael Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Medicine, University of Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center
- Department of Medicine, University of Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| |
Collapse
|
5
|
Antunes KH, Becker A, Franceschina C, de Freitas DDN, Lape I, da Cunha MD, Leitão L, Rigo MM, Pinto LA, Stein RT, de Souza APD. Respiratory syncytial virus reduces STAT3 phosphorylation in human memory CD8 T cells stimulated with IL-21. Sci Rep 2019; 9:17766. [PMID: 31780735 PMCID: PMC6882881 DOI: 10.1038/s41598-019-54240-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of childhood lower respiratory tract infections. The recent failure of a vaccine candidate based on recombinant F protein underlines the urgent need to better understand the protective human memory immune response against RSV. Signal transducer and activator of transcription 3 (STAT3) protein is a transcription factor that promotes the maturation of the memory CD8 T cell response in cooperation with IL-10 and IL-21. However, the role of STAT3 in the memory CD8 T cell response during RSV infection remains to be elucidated. We found that in infants with bronchiolitis infected with RSV, the expression of STAT3 detected in nasal washes is reduced when compared to that in infants infected by other viruses. In vitro, RSV impairs STAT3 phosphorylation induced by IL-21 in purified human memory CD8 T cells. In addition, RSV decreases granzyme B production by memory CD8 T cells, reducing its cytotoxic activity against RSV-infected epithelial pulmonary cell lines. Together, these data indicate that RSV modulates the IL-21/STAT3 pathway in human memory CD8 T cells, and this could be a mechanism to be further explored to improve the memory response against the infection.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - André Becker
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Caroline Franceschina
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Deise do Nascimento de Freitas
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Isadora Lape
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana D'Ávila da Cunha
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lidiane Leitão
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Mauricio M Rigo
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Araújo Pinto
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Renato T Stein
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,School of Health and Life Sciences, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. Front Immunol 2017; 8:784. [PMID: 28769922 PMCID: PMC5512344 DOI: 10.3389/fimmu.2017.00784] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
The number of people over the age of 60 is expected to double by 2050 according to the WHO. This emphasizes the need to ensure optimized resilience to health stressors in late life. In older adults, influenza is one of the leading causes of catastrophic disability (defined as the loss of independence in daily living and self-care activities). Influenza vaccination is generally perceived to be less protective in older adults, with some studies suggesting that the humoral immune response to the vaccine is further impaired in cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that is generally asymptomatic in healthy individuals. The majority of older adults possess serum antibodies against the virus indicating latent infection. Age-related changes in T-cell-mediated immunity are augmented by CMV infection and may be associated with more serious complications of influenza infection. This review focuses on the impact of aging and CMV on immune cell function, the response to influenza infection and vaccination, and how the current understanding of aging and CMV can be used to design a more effective influenza vaccine for older adults. It is anticipated that efforts in this field will address the public health need for improved protection against influenza in older adults, particularly with regard to the serious complications leading to loss of independence.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Second Department of Internal Medicine, University of Tübingen Medical Center, Tübingen, Germany
| | - George A Kuchel
- UConn Center on Aging, UConn Health, Farmington, CT, United States
| | | |
Collapse
|
7
|
Garg R, Theaker M, Martinez EC, van Drunen Littel-van den Hurk S. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus. Virology 2016; 499:288-297. [DOI: 10.1016/j.virol.2016.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
8
|
Vivanco-Cid H, Maldonado-Rentería MJ, Sánchez-Vargas LA, Izaguirre-Hernández IY, Hernández-Flores KG, Remes-Ruiz R. Dynamics of interleukin-21 production during the clinical course of primary and secondary dengue virus infections. Immunol Lett 2014; 161:89-95. [PMID: 24858204 DOI: 10.1016/j.imlet.2014.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 04/22/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Previous studies have revealed the clinical relevance of pro-inflammatory cytokine production during dengue virus (DENV) infections. In this study, we evaluated the production of interleukin-21 (IL-21), a key soluble mediator mainly produced by CD4+ T cells. The aim of this study was to investigate the role of IL-21 production during the clinical course of primary and secondary DENV infections and the potential association of IL-21 serum levels with the disease pathogenesis. Blood samples from DENV-infected patients were collected on different days after the onset of symptoms. Patients were classified according to their phase of disease (acute vs. convalescent phases), the type of infection (primary vs. secondary), and the clinical severity of their disease (dengue fever (DF) vs. dengue hemorrhagic fever (DHF)). IL-21 levels were measured using a quantitative capture ELISA assay. The levels of IL-21 were significantly elevated in the disease group compared with the control group. IL-21 was detected in primary and secondary DENV infections, with a significantly higher concentration in the convalescent phase of primary infections. IL-21 levels were significantly higher in patients with secondary acute DHF infections when compared with those with secondary acute DF infection. There was a relationship between the elevated serum levels of IL-21 and the production of DENV-specific IgM and IgG antibodies. Taking together, our results show for the first time the involvement of IL-21 during the clinical course of DENV infections. We speculate that IL-21 may play a protective role in the context of the convalescent phase of primary infections and the acute phase of secondary infections.
Collapse
Affiliation(s)
- H Vivanco-Cid
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México; Universidad del Valle de México, campus Villa Rica, Facultad de Medicina "Dr. Porfirio Sosa Zárate", México.
| | - M J Maldonado-Rentería
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - L A Sánchez-Vargas
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | | | - K G Hernández-Flores
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - R Remes-Ruiz
- Hospital Regional de Alta Especialidad de Veracruz, Servicios de Salud de Veracruz, México
| |
Collapse
|
9
|
Neonatal antibody responses are attenuated by interferon-γ produced by NK and T cells during RSV infection. Proc Natl Acad Sci U S A 2013; 110:5576-81. [PMID: 23509276 DOI: 10.1073/pnas.1214247110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects most children in the first year of life and is a major single cause of hospitalization in infants and young children. There is no effective vaccine, and antibody generated by primary neonatal infection is poorly protective against reinfection even with antigenically homologous viral strains. Studying the immunological basis of these observations in neonatal mice, we found that antibody responses to infection were low and unaffected by CD4 depletion, in contrast with adult mice, which had stronger CD4-dependent antibody responses. Natural killer cell depletion or codepletion of CD4(+) and CD8(+) cells during neonatal RSV infection caused a striking increase in anti-RSV antibody titer. These cells are major sources of the cytokine IFN-γ, and blocking IFN-γ also enhanced RSV-specific antibody responses in neonates. In addition, infection with a recombinant RSV engineered to produce IFN-γ reduced antibody titer, confirming that IFN-γ plays a pivotal role in inhibition of antibody responses after neonatal infection. These unexpected findings show that the induction of a strong cellular immune response may limit antibody responses in early life and that vaccines that induce IFN-γ-secreting cells might, in some situations, be less protective than those that do not.
Collapse
|
10
|
Th17 lymphocytes in respiratory syncytial virus infection. Viruses 2013; 5:777-91. [PMID: 23462708 PMCID: PMC3705295 DOI: 10.3390/v5030777] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/01/2023] Open
Abstract
Infection by respiratory syncytial virus (RSV) affects approximately 33 million infants annually worldwide and is a major cause of hospitalizations. Helper T lymphocytes (Th) play a central role in the immune response during such infections. However, Th lymphocytes that produce interleukin 17 (IL-17), known as Th17 lymphocytes, in addition to been protective can also cause pathology that accompany this type of infection. The protective effects of Th17 is associated with better prognosis in most infected individuals but heightened Th17 responses causes inflammation and pathology in others. Studies employing animal models haves shown that activated Th17 lymphocytes recruit neutrophils and facilitate tertiary lymphoid structure development in infected lungs. However, IL-17 also inhibits the ability of CD8+ lymphocytes to clear viral particles and acts synergistically with the innate immune system to exacerbate inflammation. Furthermore, IL-17 enhances IL-13 production which, in turn, promotes the activation of Th2 lymphocytes and excessive mucus production. Studies of these animal models have also shown that a lack of, or inadequate, responses by the Th1 subset of T lymphocytes enhances Th17-mediated responses and that this is detrimental during RSV co-infection in experimental asthma. The available evidence, therefore, indicates that Th17 can play contradictory roles during RSV infections. The factors that determine the shift in the balance between beneficial and adverse Th17 mediated effects during RSV infection remains to be determined.
Collapse
|