1
|
Fuhrmann B, Jiang J, Mcleod P, Huang X, Balaji S, Arp J, Diao H, Ma S, Peng T, Haig A, Gunaratnam L, Zhang ZX, Jevnikar AM. Inhibition of NK cell cytotoxicity by tubular epithelial cell expression of Clr-b and Clr-f. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100081. [PMID: 39113760 PMCID: PMC11303997 DOI: 10.1016/j.crimmu.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
NK cells participate in ischemia reperfusion injury (IRI) and transplant rejection. Endogenous regulatory systems may exist to attenuate NK cell activation and cytotoxicity in IRI associated with kidney transplantation. A greater understanding of NK regulation will provide insights in transplant outcomes and could direct new therapeutic strategies. Kidney tubular epithelial cells (TECs) may negatively regulate NK cell activation by their surface expression of a complex family of C-type lectin-related proteins (Clrs). We have found that Clr-b and Clr-f were expressed by TECs. Clr-b was upregulated by inflammatory cytokines TNFα and IFNγ in vitro. Silencing of both Clr-b and Clr-f expression using siRNA resulted in increased NK cell killing of TECs compared to silencing of either Clr-b or Clr-f alone (p < 0.01) and when compared to control TECs (p < 0.001). NK cells treated in vitro with soluble Clr-b and Clr-f proteins reduced their capacity to kill TECs (p < 0.05). Hence, NK cell cytotoxicity can be inhibited by Clr proteins on the surface of TECs. Our study suggests a synergistic effect of Clr molecules in regulating NK cell function in renal cells and this may represent an important endogenous regulatory system to limit NK cell-mediated organ injury during inflammation.
Collapse
Affiliation(s)
- Benjamin Fuhrmann
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Patrick Mcleod
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shilpa Balaji
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jaqueline Arp
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Hong Diao
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shengwu Ma
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Anthony M. Jevnikar
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol 2023; 14:1126043. [PMID: 36923398 PMCID: PMC10008955 DOI: 10.3389/fimmu.2023.1126043] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Our understanding of the C-type lectin-like receptors (CTLRs) and their functions in immunity have continued to expand from their initial roles in pathogen recognition. There are now clear examples of CTLRs acting as scavenger receptors, sensors of cell death and cell transformation, and regulators of immune responses and homeostasis. This range of function reflects an extensive diversity in the expression and signaling activity between individual CTLR members of otherwise highly conserved families. Adding to this diversity is the constant discovery of new receptor binding capabilities and receptor-ligand interactions, distinct cellular expression profiles, and receptor structures and signaling mechanisms which have expanded the defining roles of CTLRs in immunity. The natural killer cell receptors exemplify this functional diversity with growing evidence of their activity in other immune populations and tissues. Here, we broadly review select families of CTLRs encoded in the natural killer cell gene complex (NKC) highlighting key receptors that demonstrate the complex multifunctional capabilities of these proteins. We focus on recent evidence from research on the NKRP1 family of CTLRs and their interaction with the related C-type lectin (CLEC) ligands which together exhibit essential immune functions beyond their defined activity in natural killer (NK) cells. The ever-expanding evidence for the requirement of CTLR in numerous biological processes emphasizes the need to better understand the functional potential of these receptor families in immune defense and pathological conditions.
Collapse
Affiliation(s)
- Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sayanti Dey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Alveolar macrophage metabolic programming via a C-type lectin receptor protects against lipo-toxicity and cell death. Nat Commun 2022; 13:7272. [PMID: 36433992 PMCID: PMC9700784 DOI: 10.1038/s41467-022-34935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Alveolar macrophages (AM) hold lung homeostasis intact. In addition to the defense against inhaled pathogens and deleterious inflammation, AM also maintain pulmonary surfactant homeostasis, a vital lung function that prevents pulmonary alveolar proteinosis. Signals transmitted between AM and pneumocytes of the pulmonary niche coordinate these specialized functions. However, the mechanisms that guide the metabolic homeostasis of AM remain largely elusive. We show that the NK cell-associated receptor, NKR-P1B, is expressed by AM and is essential for metabolic programming. Nkrp1b-/- mice are vulnerable to pneumococcal infection due to an age-dependent collapse in the number of AM and the formation of lipid-laden AM. The AM of Nkrp1b-/- mice show increased uptake but defective metabolism of surfactant lipids. We identify a physical relay between AM and alveolar type-II pneumocytes that is dependent on pneumocyte Clr-g expression. These findings implicate the NKR-P1B:Clr-g signaling axis in AM-pneumocyte communication as being important for maintaining metabolism in AM.
Collapse
|
4
|
Lei X, Ketelut-Carneiro N, Shmuel-Galia L, Xu W, Wilson R, Vierbuchen T, Chen Y, Reboldi A, Kang J, Edelblum KL, Ward D, Fitzgerald KA. Epithelial HNF4A shapes the intraepithelial lymphocyte compartment via direct regulation of immune signaling molecules. J Exp Med 2022; 219:e20212563. [PMID: 35792863 PMCID: PMC9263552 DOI: 10.1084/jem.20212563] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4 α (HNF4A) is a highly conserved nuclear receptor that has been associated with ulcerative colitis. In mice, HNF4A is indispensable for the maintenance of intestinal homeostasis, yet the underlying mechanisms are poorly characterized. Here, we demonstrate that the expression of HNF4A in intestinal epithelial cells (IECs) is required for the proper development and composition of the intraepithelial lymphocyte (IEL) compartment. HNF4A directly regulates expression of immune signaling molecules including butyrophilin-like (Btnl) 1, Btnl6, H2-T3, and Clec2e that control IEC-IEL crosstalk. HNF4A selectively enhances the expansion of natural IELs that are TCRγδ+ or TCRαβ+CD8αα+ to shape the composition of IEL compartment. In the small intestine, HNF4A cooperates with its paralog HNF4G, to drive expression of immune signaling molecules. Moreover, the HNF4A-BTNL regulatory axis is conserved in human IECs. Collectively, these findings underscore the importance of HNF4A as a conserved transcription factor controlling IEC-IEL crosstalk and suggest that HNF4A maintains intestinal homeostasis through regulation of the IEL compartment.
Collapse
Affiliation(s)
- Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Natalia Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Liraz Shmuel-Galia
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Weili Xu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Ruth Wilson
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Tim Vierbuchen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen L. Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
5
|
Elucidating Mechanisms of Tolerance to Salmonella Typhimurium across Long-Term Infections Using the Collaborative Cross. mBio 2022; 13:e0112022. [PMID: 35880881 PMCID: PMC9426527 DOI: 10.1128/mbio.01120-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular mechanisms underlying resistance and tolerance to pathogen infection may present the opportunity to develop novel interventions. Resistance is the absence of clinical disease with a low pathogen burden, while tolerance is minimal clinical disease with a high pathogen burden. Salmonella is a worldwide health concern. We studied 18 strains of collaborative cross mice that survive acute Salmonella Typhimurium (STm) infections. We infected these strains orally and monitored them for 3 weeks. Five strains cleared STm (resistant), six strains maintained a bacterial load and survived (tolerant), while seven strains survived >7 days but succumbed to infection within the study period and were called “delayed susceptible.” Tolerant strains were colonized in the Peyer’s patches, mesenteric lymph node, spleen, and liver, while resistant strains had significantly reduced bacterial colonization. Tolerant strains had lower preinfection core body temperatures and had disrupted circadian patterns of body temperature postinfection sooner than other strains. Tolerant strains had higher circulating total white blood cells than resistant strains, driven by increased numbers of neutrophils. Tolerant strains had more severe tissue damage and higher circulating levels of monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ), but lower levels of epithelial neutrophil-activating protein 78 (ENA-78) than resistant strains. Quantitative trait locus (QTL) analysis revealed one significant association and six suggestive associations. Gene expression analysis identified 22 genes that are differentially regulated in tolerant versus resistant animals that overlapped these QTLs. Fibrinogen genes (Fga, Fgb, and Fgg) were found across the QTL, RNA, and top canonical pathways, making them the best candidate genes for differentiating tolerance and resistance.
Collapse
|
6
|
Clr-f expression regulates kidney immune and metabolic homeostasis. Sci Rep 2022; 12:4834. [PMID: 35318366 PMCID: PMC8940912 DOI: 10.1038/s41598-022-08547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-related protein, Clr-f, encoded by Clec2h in the mouse NK gene complex (NKC), is a member of a family of immune regulatory lectins that guide immune responses at distinct tissues of the body. Clr-f is highly expressed in the kidney; however, its activity in this organ is unknown. To assess the requirement for Clr-f in kidney health and function, we generated a Clr-f-deficient mouse (Clr-f−/−) by targeted deletions in the Clec2h gene. Mice lacking Clr-f exhibited glomerular and tubular lesions, immunoglobulin and C3 complement protein renal deposits, and significant abdominal and ectopic lipid accumulation. Whole kidney transcriptional profile analysis of Clr-f−/− mice at 7, 13, and 24 weeks of age revealed a dynamic dysregulation in lipid metabolic processes, stress responses, and inflammatory mediators. Examination of the immune contribution to the pathologies of Clr-f−/− mouse kidneys identified elevated IL-12 and IFNγ in cells of the tubulointerstitium, and an infiltrating population of neutrophils and T and B lymphocytes. The presence of these insults in a Rag1−/−Clr-f−/− background reveals that Clr-f−/− mice are susceptible to a T and B lymphocyte-independent renal pathogenesis. Our data reveal a role for Clr-f in the maintenance of kidney immune and metabolic homeostasis.
Collapse
|
7
|
Woo V, Eshleman EM, Rice T, Whitt J, Vallance BA, Alenghat T. Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression. Front Immunol 2019; 10:928. [PMID: 31134059 PMCID: PMC6514056 DOI: 10.3389/fimmu.2019.00928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous bacterial pathogens infect the mammalian host by initially associating with epithelial cells that line the intestinal lumen. Recent work has revealed that commensal bacteria that reside in the intestine promote defense against pathogenic infection, however whether the microbiota direct host pathways that alter pathogen adherence is not well-understood. Here, by comparing germ-free mice, we identify that the microbiota decrease bacterial pathogen adherence and dampen epithelial expression of the cell surface glycoprotein C-type lectin 2e (Clec2e). Functional studies revealed that overexpression of this lectin promotes adherence of intestinal bacterial pathogens to mammalian cells. Interestingly, microbiota-sensitive downregulation of Clec2e corresponds with decreased histone acetylation of the Clec2e gene in intestinal epithelial cells. Histone deacetylation and transcriptional regulation of Clec2e depends on expression and recruitment of the histone deacetylase HDAC3. Thus, commensal bacteria epigenetically instruct epithelial cells to decrease expression of a C-type lectin that promotes pathogen adherence, revealing a novel mechanism for how the microbiota promote innate defense against infection.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Taylor Rice
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Abou-Samra E, Hickey Z, Aguilar OA, Scur M, Mahmoud AB, Pyatibrat S, Tu MM, Francispillai J, Mortha A, Carlyle JR, Rahim MMA, Makrigiannis AP. NKR-P1B expression in gut-associated innate lymphoid cells is required for the control of gastrointestinal tract infections. Cell Mol Immunol 2018; 16:868-877. [PMID: 30275537 DOI: 10.1038/s41423-018-0169-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
Helper-type innate lymphoid cells (ILC) play an important role in intestinal homeostasis. Members of the NKR-P1 gene family are expressed in various innate immune cells, including natural killer (NK) cells, and their cognate Clr ligand family members are expressed in various specialized tissues, including the intestinal epithelium, where they may play an important role in mucosal-associated innate immune responses. In this study, we show that the inhibitory NKR-P1B receptor, but not the Ly49 receptor, is expressed in gut-resident NK cells, ILC, and a subset of γδT cells in a tissue-specific manner. ILC3 cells constitute the predominant cell subset expressing NKR-P1B in the gut lamina propria. The known NKR-P1B ligand Clr-b is broadly expressed in gut-associated cells of hematopoietic origin. The genetic deletion of NKR-P1B results in a higher frequency and number of ILC3 and γδT cells in the gut lamina propria. However, the function of gut-resident ILC3, NK, and γδT cells in NKR-P1B-deficient mice is impaired during gastrointestinal tract infection by Citrobacter rodentium or Salmonella typhimurium, resulting in increased systemic bacterial dissemination in NKR-P1B-deficient mice. Our findings highlight the role of the NKR-P1B:Clr-b recognition system in the modulation of intestinal innate immune cell functions.
Collapse
Affiliation(s)
- Elias Abou-Samra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Zachary Hickey
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Oscar A Aguilar
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,College of Applied Medical Sciences, Taibah University, Madinah Munawwarah, Saudi Arabia
| | - Sergey Pyatibrat
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jeffrey Francispillai
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - James R Carlyle
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Mir Munir A Rahim
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada.
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Friede ME, Leibelt S, Dudziak D, Steinle A. Select Clr-g Expression on Activated Dendritic Cells Facilitates Cognate Interaction with a Minor Subset of Splenic NK Cells Expressing the Inhibitory Nkrp1g Receptor. THE JOURNAL OF IMMUNOLOGY 2017; 200:983-996. [DOI: 10.4049/jimmunol.1701180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
10
|
Statovci D, Aguilera M, MacSharry J, Melgar S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front Immunol 2017; 8:838. [PMID: 28804483 PMCID: PMC5532387 DOI: 10.3389/fimmu.2017.00838] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Recent findings point toward diet having a major impact on human health. Diets can either affect the gut microbiota resulting in alterations in the host’s physiological responses or by directly targeting the host response. The microbial community in the mammalian gut is a complex and dynamic system crucial for the development and maturation of both systemic and mucosal immune responses. Therefore, the complex interaction between available nutrients, the microbiota, and the immune system are central regulators in maintaining homeostasis and fighting against invading pathogens at mucosal sites. Westernized diet, defined as high dietary intake of saturated fats and sucrose and low intake of fiber, represent a growing health risk contributing to the increased occurrence of metabolic diseases, e.g., diabetes and obesity in countries adapting a westernized lifestyle. Inflammatory bowel diseases (IBD) and asthma are chronic mucosal inflammatory conditions of unknown etiology with increasing prevalence worldwide. These conditions have a multifactorial etiology including genetic factors, environmental factors, and dysregulated immune responses. Their increased prevalence cannot solely be attributed to genetic considerations implying that other factors such as diet can be a major contributor. Recent reports indicate that the gut microbiota and modifications thereof, due to a consumption of a diet high in saturated fats and low in fibers, can trigger factors regulating the development and/or progression of both conditions. While asthma is a disease of the airways, increasing evidence indicates a link between the gut and airways in disease development. Herein, we provide a comprehensive review on the impact of westernized diet and associated nutrients on immune cell responses and the microbiota and how these can influence the pathology of IBD and asthma.
Collapse
Affiliation(s)
- Donjete Statovci
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Mònica Aguilera
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Rutkowski E, Leibelt S, Born C, Friede ME, Bauer S, Weil S, Koch J, Steinle A. Clr-a: A Novel Immune-Related C-Type Lectin-like Molecule Exclusively Expressed by Mouse Gut Epithelium. THE JOURNAL OF IMMUNOLOGY 2016; 198:916-926. [PMID: 27956531 DOI: 10.4049/jimmunol.1600666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
Abstract
The mouse gut epithelium represents a constitutively challenged environment keeping intestinal commensal microbiota at bay and defending against invading enteric pathogens. The complex immunoregulatory network of the epithelial barrier surveillance also involves NK gene complex (NKC)-encoded C-type lectin-like molecules such as NKG2D and Nkrp1 receptors. To our knowledge, in this study, we report the first characterization of the orphan C-type lectin-like molecule Clr-a encoded by the Clec2e gene in the mouse NKC. Screening of a panel of mouse tissues revealed that Clec2e transcripts are restricted to the gastrointestinal tract. Using Clr-a-specific mAb, we characterize Clr-a as a disulfide-linked homodimeric cell surface glycoprotein. Of note, a substantial fraction of Clr-a molecules are retained intracellularly, and analyses of Clr-a/Clr-f hybrids attribute intracellular retention to both the stalk region and parts of the cytoplasmic domain. Combining quantitative PCR analyses with immunofluorescence studies revealed exclusive expression of Clr-a by intestinal epithelial cells and crypt cells throughout the gut. Challenge with polyinosinic-polycytidylic acid results in a rapid and strong downregulation of intestinal Clr-a expression in contrast to the upregulation of Clr-f, a close relative of Clr-a, that also is specifically expressed by the intestinal epithelium and acts as a ligand of the inhibitory Nkrp1g receptor. Collectively, we characterize expression of the mouse NKC-encoded glycoprotein Clr-a as strictly associated with mouse intestinal epithelium. Downregulation upon polyinosinic-polycytidylic acid challenge and expression by crypt cells clearly distinguish Clr-a from the likewise intestinal epithelium-restricted Clr-f, pointing to a nonredundant function of these highly related C-type lectin-like molecules in the context of intestinal immunosurveillance.
Collapse
Affiliation(s)
- Emilia Rutkowski
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Stefan Leibelt
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Miriam E Friede
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps University Marburg, 35043 Marburg, Germany
| | - Sandra Weil
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; and.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Joachim Koch
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; and.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
12
|
Multi-functional lectin-like transcript-1: A new player in human immune regulation. Immunol Lett 2016; 177:62-9. [DOI: 10.1016/j.imlet.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
|
13
|
Rahim MMA, Wight A, Mahmoud AB, Aguilar OA, Lee SH, Vidal SM, Carlyle JR, Makrigiannis AP. Expansion and Protection by a Virus-Specific NK Cell Subset Lacking Expression of the Inhibitory NKR-P1B Receptor during Murine Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:2325-37. [PMID: 27511735 DOI: 10.4049/jimmunol.1600776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
Abstract
NK cells play a major role in immune defense against human and murine CMV (MCMV) infection. Although the MCMV genome encodes for MHC class I-homologous decoy ligands for inhibitory NK cell receptors to evade detection, some mouse strains have evolved activating receptors, such as Ly49H, to recognize these ligands and initiate an immune response. In this study, we demonstrate that approximately half of the Ly49H-expressing (Ly49H(+)) NK cells in the spleen and liver of C57BL/6 mice also express the inhibitory NKR-P1B receptor. During MCMV infection, the NKR-P1B(-)Ly49H(+) NK cell subset proliferates to constitute the bulk of the NK cell population. This NK cell subset also confers better protection against MCMV infection compared with the NKR-P1B(+)Ly49H(+) subset. The two populations are composed of cells that differ in their surface expression of receptors such as Ly49C/I and NKG2A/C/E, as well as developmental markers, CD27 and CD11b, and the high-affinity IL-2R (CD25) following infection. Although the NKR-P1B(+) NK cells can produce effector molecules such as IFNs and granzymes, their proliferation is inhibited during infection. A similar phenotype in MCMV-infected Clr-b-deficient mice, which lack the ligand for NKR-P1B, suggests the involvement of ligands other than the host Clr-b. Most interestingly, genetic deficiency of the NKR-P1B, but not Clr-b, results in accelerated virus clearance and recovery from MCMV infection. This study is particularly significant because the mouse NKR-P1B:Clr-b receptor:ligand system represents the closest homolog of the human NKR-P1A:LLT1 system and may have a direct relevance to human CMV infection.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| | - Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; College of Applied Medical Sciences, Taibah University, 30001 Madinah Munawwarah, Saudi Arabia
| | - Oscar A Aguilar
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada; and
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - James R Carlyle
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada; and
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
14
|
Aguilar OA, Mesci A, Ma J, Chen P, Kirkham CL, Hundrieser J, Voigt S, Allan DSJ, Carlyle JR. Modulation of Clr Ligand Expression and NKR-P1 Receptor Function during Murine Cytomegalovirus Infection. J Innate Immun 2015; 7:584-600. [PMID: 26044139 DOI: 10.1159/000382032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
Viruses are known to induce pathological cellular states that render infected cells susceptible or resistant to immune recognition. Here, we characterize an MHC-I-independent natural killer (NK) cell recognition mechanism that involves modulation of inhibitory NKR-P1B:Clr-b receptor-ligand interactions in response to mouse cytomegalovirus (MCMV) infection. We demonstrate that mouse Clr-b expression on healthy cells is rapidly lost at the cell surface and transcript levels in a time- and dose-dependent manner upon MCMV infection. In addition, cross-species infections using rat cytomegalovirus (RCMV) infection of mouse fibroblasts and MCMV infection of rat fibroblasts suggest that this response is conserved during host-pathogen interactions. Active viral infection appears to be necessary for Clr-b loss, as cellular stimulation using UV-inactivated whole virus or agonists of many innate pattern recognition receptors failed to elicit efficient Clr-b downregulation. Notably, Clr-b loss could be partially blocked by titrated cycloheximide treatment, suggesting that early viral or nascent host proteins are required for Clr-b downregulation. Interestingly, reporter cell assays suggest that MCMV may encode a novel Clr-b-independent immunoevasin that functionally engages the NKR-P1B receptor. Together, these data suggest that Clr-b modulation is a conserved innate host cell response to virus infection that is subverted by multiple CMV immune evasion strategies.
Collapse
Affiliation(s)
- Oscar A Aguilar
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ont., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The mouse NKR-P1B:Clr-b recognition system is a negative regulator of innate immune responses. Blood 2015; 125:2217-27. [PMID: 25612621 DOI: 10.1182/blood-2014-02-556142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
NKR-P1B is a homodimeric type II transmembrane C-type lectinlike receptor that inhibits natural killer (NK) cell function upon interaction with its cognate C-type lectin-related ligand, Clr-b. The NKR-P1B:Clr-b interaction represents a major histocompatibility complex class I (MHC-I)-independent missing-self recognition system that monitors cellular Clr-b levels. We have generated NKR-P1B(B6)-deficient (Nkrp1b(-/-)) mice to study the role of NKR-P1B in NK cell development and function in vivo. NK cell inhibition by Clr-b is abolished in Nkrp1b(-/-) mice, confirming the inhibitory nature of NKR-P1B(B6). Inhibitory receptors also promote NK cell tolerance and responsiveness to stimulation; hence, NK cells expressing NKR-P1B(B6) and Ly49C/I display augmented responsiveness to activating signals vs NK cells expressing either or none of the receptors. In addition, Nkrp1b(-/-) mice are defective in rejecting cells lacking Clr-b, supporting a role for NKR-P1B(B6) in MHC-I-independent missing-self recognition of Clr-b in vivo. In contrast, MHC-I-dependent missing-self recognition is preserved in Nkrp1b(-/-) mice. Interestingly, spontaneous myc-induced B lymphoma cells may selectively use NKR-P1B:Clr-b interactions to escape immune surveillance by wild-type, but not Nkrp1b(-/-), NK cells. These data provide direct genetic evidence of a role for NKR-P1B in NK cell tolerance and MHC-I-independent missing-self recognition.
Collapse
|