1
|
Jakobsen ST, Siersbæk R. Transcriptional regulation by MYC: an emerging new model. Oncogene 2024:10.1038/s41388-024-03174-2. [PMID: 39468222 DOI: 10.1038/s41388-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Asaka S, Verma N, Yen TT, Hicks JL, Nonogaki H, Shen YA, Hong J, Asaka R, DeMarzo AM, Wang TL, Shih IM, Gaillard S. Association of glutaminase expression with immune-suppressive tumor microenvironment, clinicopathologic features, and clinical outcomes in endometrial cancer. Int J Gynecol Cancer 2024:ijgc-2024-005920. [PMID: 39414312 DOI: 10.1136/ijgc-2024-005920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE Increased glutamine metabolism by cancer cells via upregulation of the drug-targetable enzyme glutaminase may contribute to an immune-suppressive tumor microenvironment. Inhibiting glutamine metabolism can not only suppress tumor growth, but also enhance tumor-specific immunity. We investigated the relationship between glutaminase expression, the immune tumor microenvironment, and clinicopathologic features in endometrial cancer. METHODS Tissue microarrays constructed from 87 primary endometrial cancer specimens were stained by immunohistochemistry for glutaminase, c-Myc, mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), mutS homolog 6 (MSH6), postmeiotic segregation increased 2 (PMS2), estrogen receptor (ER), progresterone receptor (PR), CD8, FoxP3, CD68, programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1). We compared the immune tumor microenvironment and clinicopathologic features between glutaminase-high (H-score≥median) versus glutaminase-low (H-score RESULTS In the tissue microarray analysis, glutaminase expression was positively correlated with c-Myc expression (r=0.4226, p<0.0001). Glutaminase-high endometrial cancers were associated with non-endometrioid histology (p=0.0001), high histologic grade (p=0.0004), myometrial invasion (p=0.017), advanced stage (p=0.012), increased FoxP3+ regulatory T cells (p=0.008), increased CD68+ tumor-associated macrophages (p=0.010), and higher PD-L1 combined positive scores (p=0.043). In the TCGA analysis, glutaminase-high (RNA-Seq Z-score≥median) patients showed worse overall (p=0.004) and progression-free (p=0.032) survival than glutaminase-low (RNA-Seq score CONCLUSIONS Our findings indicate that increased glutaminase expression is associated with an immune-suppressive tumor microenvironment, poor clinicopathologic features, and worse long-term outcomes in patients with endometrial cancer.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Neha Verma
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ting-Tai Yen
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jessica L Hicks
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hiro Nonogaki
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yao-An Shen
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Taipei Medical University, Taipei, Taiwan
| | - Jiaxin Hong
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryoichi Asaka
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Angelo M DeMarzo
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tian-Li Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ie-Ming Shih
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Gaillard
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Graham MK, Wang R, Chikarmane R, Abel B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Rubenstein M, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. Nat Commun 2024; 15:7414. [PMID: 39198404 PMCID: PMC11358296 DOI: 10.1038/s41467-024-51450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
How prostate cancer cells and their precursors mediate changes in the tumor microenvironment (TME) to drive prostate cancer progression is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we perform extensive single-cell RNA-sequencing (scRNA-seq) and molecular pathology of the comparative biology between human prostate cancer and key stages in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues reveal that cancer cell-intrinsic activation of MYC signaling is a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Cell communication network and pathway analyses in GEMMs show that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogram the TME during carcinogenesis, leading to a convergence of cell state alterations in neighboring epithelial, immune, and fibroblast cell types that parallel key findings in human prostate cancer.
Collapse
Affiliation(s)
- Mindy K Graham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rulin Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Roshan Chikarmane
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bulouere Abel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jessica Hicks
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xin Pan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jianyong Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer Meyers
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yan Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - Kornel Schuebel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Theodore L DeWeese
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- inHealth Precision Medicine Program, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
DeVore SB, Schuetz M, Alvey L, Lujan H, Ochayon DE, Williams L, Chang WC, Filuta A, Ruff B, Kothari A, Hahn JM, Brandt E, Satish L, Roskin K, Herr AB, Biagini JM, Martin LJ, Cagdas D, Keles S, Milner JD, Supp DM, Khurana Hershey GK. Regulation of MYC by CARD14 in human epithelium is a determinant of epidermal homeostasis and disease. Cell Rep 2024; 43:114589. [PMID: 39110589 PMCID: PMC11469028 DOI: 10.1016/j.celrep.2024.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Caspase recruitment domain family member 14 (CARD14) and its variants are associated with both atopic dermatitis (AD) and psoriasis, but their mechanistic impact on skin barrier homeostasis is largely unknown. CARD14 is known to signal via NF-κB; however, CARD14-NF-κB signaling does not fully explain the heterogeneity of CARD14-driven disease. Here, we describe a direct interaction between CARD14 and MYC and show that CARD14 signals through MYC in keratinocytes to coordinate skin barrier homeostasis. CARD14 directly binds MYC and influences barrier formation in an MYC-dependent fashion, and this mechanism is undermined by disease-associated CARD14 variants. These studies establish a paradigm that CARD14 activation regulates skin barrier function by two distinct mechanisms, including activating NF-κB to bolster the antimicrobial (chemical) barrier and stimulating MYC to bolster the physical barrier. Finally, we show that CARD14-dependent MYC signaling occurs in other epithelia, expanding the impact of our findings beyond the skin.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew Schuetz
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lauren Alvey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Henry Lujan
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David E Ochayon
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey Williams
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wan Chi Chang
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alyssa Filuta
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brandy Ruff
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Arjun Kothari
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Eric Brandt
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Latha Satish
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jocelyn M Biagini
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ihsan Dogramaci Children's Hospital, Institutes of Child Health, Ankara 06230, Turkey
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya 42090, Turkey
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Scientific Staff, Shriners Children's Ohio, Dayton, OH 45404, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Erb HHH, Polishchuk N, Stasyk O, Kahya U, Weigel MM, Dubrovska A. Glutamine Metabolism and Prostate Cancer. Cancers (Basel) 2024; 16:2871. [PMID: 39199642 PMCID: PMC11352381 DOI: 10.3390/cancers16162871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Glutamine (Gln) is a non-essential amino acid that is involved in the development and progression of several malignancies, including prostate cancer (PCa). While Gln is non-essential for non-malignant prostate epithelial cells, PCa cells become highly dependent on an exogenous source of Gln. The Gln metabolism in PCa is tightly controlled by well-described oncogenes such as MYC, AR, and mTOR. These oncogenes contribute to therapy resistance and progression to the aggressive castration-resistant PCa. Inhibition of Gln catabolism impedes PCa growth, survival, and tumor-initiating potential while sensitizing the cells to radiotherapy. Therefore, given its significant role in tumor growth, targeting Gln metabolism is a promising approach for developing new therapeutic strategies. Ongoing clinical trials evaluate the safety and efficacy of Gln catabolism inhibitors in combination with conventional and targeted therapies in patients with various solid tumors, including PCa. Further understanding of how PCa cells metabolically interact with their microenvironment will facilitate the clinical translation of Gln inhibitors and help improve therapeutic outcomes. This review focuses on the role of Gln in PCa progression and therapy resistance and provides insights into current clinical trials.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Nikita Polishchuk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Uğur Kahya
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Matthias M. Weigel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01309 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Guo X, Ping J, Yang Y, Su X, Shu XO, Wen W, Chen Z, Zhang Y, Tao R, Jia G, He J, Cai Q, Zhang Q, Giles GG, Pearlman R, Rennert G, Vodicka P, Phipps A, Gruber SB, Casey G, Peters U, Long J, Lin W, Zheng W. Large-Scale Alternative Polyadenylation-Wide Association Studies to Identify Putative Cancer Susceptibility Genes. Cancer Res 2024; 84:2707-2719. [PMID: 38759092 PMCID: PMC11326986 DOI: 10.1158/0008-5472.can-24-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Alternative polyadenylation (APA) modulates mRNA processing in the 3'-untranslated regions (3' UTR), affecting mRNA stability and translation efficiency. Research into genetically regulated APA has the potential to provide insights into cancer risk. In this study, we conducted large APA-wide association studies to investigate associations between APA levels and cancer risk. Genetic models were built to predict APA levels in multiple tissues using genotype and RNA sequencing data from 1,337 samples from the Genotype-Tissue Expression project. Associations of genetically predicted APA levels with cancer risk were assessed by applying the prediction models to data from large genome-wide association studies of six common cancers among European ancestry populations: breast, ovarian, prostate, colorectal, lung, and pancreatic cancers. A total of 58 risk genes (corresponding to 76 APA sites) were associated with at least one type of cancer, including 25 genes previously not linked to cancer susceptibility. Of the identified risk APAs, 97.4% and 26.3% were supported by 3'-UTR APA quantitative trait loci and colocalization analyses, respectively. Luciferase reporter assays for four selected putative regulatory 3'-UTR variants demonstrated that the risk alleles of 3'-UTR variants, rs324015 (STAT6), rs2280503 (DIP2B), rs1128450 (FBXO38), and rs145220637 (LDHA), significantly increased the posttranscriptional activities of their target genes compared with reference alleles. Furthermore, knockdown of the target genes confirmed their ability to promote proliferation and migration. Overall, this study provides insights into the role of APA in the genetic susceptibility to common cancers. Significance: Systematic evaluation of associations of alternative polyadenylation with cancer risk reveals 58 putative susceptibility genes, highlighting the contribution of genetically regulated alternative polyadenylation of 3'UTRs to genetic susceptibility to cancer.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yaohua Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Xinwan Su
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yunjing Zhang
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, China
| | - Ran Tao
- Department of Biostatistics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jingni He
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Qingrun Zhang
- Department of Mathematics and Statistics, Alberta Children's Hospital Research Institute, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Amanda Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Stephen B Gruber
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Weiqiang Lin
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
8
|
Pornour M, Jeon HY, Ryu H, Khadka S, Xu R, Chen H, Hussain A, Lam HM, Zhuang Z, Oo HZ, Gleave M, Dong X, Wang Q, Barbieri C, Qi J. USP11 promotes prostate cancer progression by up-regulating AR and c-Myc activity. Proc Natl Acad Sci U S A 2024; 121:e2403331121. [PMID: 39052835 PMCID: PMC11295044 DOI: 10.1073/pnas.2403331121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Androgen receptor (AR) is a main driver for castration-resistant prostate cancer (CRPC). c-Myc is an oncogene underlying prostate tumorigenesis. Here, we find that the deubiquitinase USP11 targets both AR and c-Myc in prostate cancer (PCa). USP11 expression was up-regulated in metastatic PCa and CRPC. USP11 knockdown (KD) significantly inhibited PCa cell growth. Our RNA-seq studies revealed AR and c-Myc as the top transcription factors altered after USP11 KD. ChIP-seq analysis showed that either USP11 KD or replacement of endogenous USP11 with a catalytic-inactive USP11 mutant significantly decreased chromatin binding by AR and c-Myc. We find that USP11 employs two mechanisms to up-regulate AR and c-Myc levels: namely, deubiquitination of AR and c-Myc proteins to increase their stability and deubiquitination of H2A-K119Ub, a repressive histone mark, on promoters of AR and c-Myc genes to increase their transcription. AR and c-Myc reexpression in USP11-KD PCa cells partly rescued cell growth defects. Thus, our studies reveal a tumor-promoting role for USP11 in aggressive PCa through upregulation of AR and c-Myc activities and support USP11 as a potential target against PCa.
Collapse
Affiliation(s)
- Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Hee-Young Jeon
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Hyunju Ryu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Sudeep Khadka
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD21202
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD21201
| | - Arif Hussain
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
- Baltimore Veterans Affairs Medical Center, Baltimore, MD21201
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA98195
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC27710
| | - Christopher Barbieri
- Department of Urology, Weill Cornell Medical College, Cornell University, New York, NY10065
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| |
Collapse
|
9
|
Boufaied N, Chetta P, Hallal T, Cacciatore S, Lalli D, Luthold C, Homsy K, Imada EL, Syamala S, Photopoulos C, Di Matteo A, de Polo A, Storaci AM, Huang Y, Giunchi F, Sheridan PA, Michelotti G, Nguyen QD, Zhao X, Liu Y, Davicioni E, Spratt DE, Sabbioneda S, Maga G, Mucci LA, Ghigna C, Marchionni L, Butler LM, Ellis L, Bordeleau F, Loda M, Vaira V, Labbé DP, Zadra G. Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer. Cancer Res 2024; 84:1834-1855. [PMID: 38831751 PMCID: PMC11148549 DOI: 10.1158/0008-5472.can-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.
Collapse
Affiliation(s)
- Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Paolo Chetta
- University of Milan, Residency Program in Pathology, Milan, Italy
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Stefano Cacciatore
- Bionformatics Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Daniela Lalli
- Department of Science and Technological Innovation, University of Piemonte Orientale “A. Avogadro,” Alessandria, Italy
| | - Carole Luthold
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
| | - Eddie L. Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Sudeepa Syamala
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cornelia Photopoulos
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anna Di Matteo
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Anna de Polo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Quang-De Nguyen
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xin Zhao
- Veracyte, South San Francisco, California
| | - Yang Liu
- Veracyte, South San Francisco, California
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Claudia Ghigna
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Leigh Ellis
- Department of Surgery, Center for Prostate Disease Research, Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
- Department of Molecular Biology, Clinical Biochemistry, and Pathology, Laval University, Québec, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, Québec, Canada
| | - Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Martin-Caraballo M. Regulation of Molecular Biomarkers Associated with the Progression of Prostate Cancer. Int J Mol Sci 2024; 25:4171. [PMID: 38673756 PMCID: PMC11050209 DOI: 10.3390/ijms25084171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Androgen receptor signaling regulates the normal and pathological growth of the prostate. In particular, the growth and survival of prostate cancer cells is initially dependent on androgen receptor signaling. Exposure to androgen deprivation therapy leads to the development of castration-resistant prostate cancer. There is a multitude of molecular and cellular changes that occur in prostate tumor cells, including the expression of neuroendocrine features and various biomarkers, which promotes the switch of cancer cells to androgen-independent growth. These biomarkers include transcription factors (TP53, REST, BRN2, INSM1, c-Myc), signaling molecules (PTEN, Aurora kinases, retinoblastoma tumor suppressor, calcium-binding proteins), and receptors (glucocorticoid, androgen receptor-variant 7), among others. It is believed that genetic modifications, therapeutic treatments, and changes in the tumor microenvironment are contributing factors to the progression of prostate cancers with significant heterogeneity in their phenotypic characteristics. However, it is not well understood how these phenotypic characteristics and molecular modifications arise under specific treatment conditions. In this work, we summarize some of the most important molecular changes associated with the progression of prostate cancers and we describe some of the factors involved in these cellular processes.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
11
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
12
|
Zhou C, Ma H, Yu W, Zhou Y, Zhang X, Meng Y, Chen C, Zhang J, Shi G. ANP32B inhibition suppresses the growth of prostate cancer cells by regulating c-Myc signaling. Biochem Biophys Res Commun 2024; 698:149543. [PMID: 38266312 DOI: 10.1016/j.bbrc.2024.149543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
ANP32B is a histone chaperone that interacts with various transcription factors that regulate cancer cell proliferation, immigration, and apoptosis. c-Myc, a well-known oncogenic protein, is a principal player in the initiation and progression of prostate cancer (PC). The means by which ANP32B and c-Myc act remain unknown. We downloaded clinical data from the GEO, TCGA, and other databases to explore ANP32B expression and its effects on the survival of PC and normal tissues. ANP32B-knockdown cell lines were used to evaluate how ANP32B affected cell proliferation in vitro and in vivo. Gene set enrichment analysis and RNAseq were employed to define how ANP32B regulated PC pathways. Immunohistochemical measures were used to detect the expression levels of relevant proteins in xenografts and PC tissues. ANP32B expression increased in PC tissues; ANP32B knockdown inhibited cell growth but this was rescued by c-Myc signaling. ANP32B is thus a PC oncogene and may serve as a valuable therapeutic target when seeking to treat PC.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Hangbin Ma
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Wandong Yu
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Yinghao Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Xuehu Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Yibo Meng
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Chenchen Chen
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Guowei Shi
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
13
|
Singh S, Parthasarathi KTS, Bhat MY, Gopal C, Sharma J, Pandey A. Profiling Kinase Activities for Precision Oncology in Diffuse Gastric Cancer. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:76-89. [PMID: 38271566 DOI: 10.1089/omi.2023.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality globally. This is due to the fact that majority of the cases of GC are diagnosed at an advanced stage when the treatment options are limited and prognosis is poor. The diffuse subtype of gastric cancer (DGC) under Lauren's classification is more aggressive and usually occurs in younger patients than the intestinal subtype. The concept of personalized medicine is leading to the identification of multiple biomarkers in a large variety of cancers using different combinations of omics technologies. Proteomic changes including post-translational modifications are crucial in oncogenesis. We analyzed the phosphoproteome of DGC by using paired fresh frozen tumor and adjacent normal tissue from five patients diagnosed with DGC. We found proteins involved in the epithelial-to-mesenchymal transition (EMT), c-MYC pathway, and semaphorin pathways to be differentially phosphorylated in DGC tissues. We identified three kinases, namely, bromodomain adjacent to the zinc finger domain 1B (BAZ1B), WNK lysine-deficient protein kinase 1 (WNK1), and myosin light-chain kinase (MLCK) to be hyperphosphorylated, and one kinase, AP2-associated protein kinase 1 (AAK1), to be hypophosphorylated. LMNA hyperphosphorylation at serine 392 (S392) was demonstrated in DGC using immunohistochemistry. Importantly, we have detected heparin-binding growth factor (HDGF), heat shock protein 90 (HSP90), and FTH1 as potential therapeutic targets in DGC, as drugs targeting these proteins are currently under investigation in clinical trials. Although these new findings need to be replicated in larger study samples, they advance our understanding of signaling alterations in DGC, which could lead to potentially novel actionable targets in GC.
Collapse
Affiliation(s)
- Smrita Singh
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
| | - K T Shreya Parthasarathi
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwapeetham University, Kollam, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Jyoti Sharma
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Izadmehr S, Fernandez-Hernandez H, Wiredja D, Kirschenbaum A, Lee-Poturalski C, Tavassoli P, Yao S, Schlatzer D, Hoon D, Difeo A, Levine AC, Mosquera JM, Galsky MD, Cordon-Cardo C, Narla G. Cooperativity of c-MYC with Krüppel-Like Factor 6 Splice Variant 1 induces phenotypic plasticity and promotes prostate cancer progression and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577982. [PMID: 38352401 PMCID: PMC10862900 DOI: 10.1101/2024.01.30.577982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metastasis remains a major cause of morbidity and mortality in men with prostate cancer, and the functional impact of the genetic alterations, alone or in combination, driving metastatic disease remains incompletely understood. The proto-oncogene c-MYC, commonly deregulated in prostate cancer. Transgenic expression of c-MYC is sufficient to drive the progression to prostatic intraepithelial neoplasia and ultimately to moderately differentiated localized primary tumors, however, c-MYC-driven tumors are unable to progress through the metastatic cascade, suggesting that a "second-hit" is necessary in the milieu of aberrant c-MYC-driven signaling. Here, we identified cooperativity between c-MYC and KLF6-SV1, an oncogenic splice variant of the KLF6 gene. Transgenic mice that co-expressed KLF6-SV1 and c-MYC developed progressive and metastatic prostate cancer with a histological and molecular phenotype like human prostate cancer. Silencing c-MYC expression significantly reduced tumor burden in these mice supporting the necessity for c-MYC in tumor maintenance. Unbiased global proteomic analysis of tumors from these mice revealed significantly enriched vimentin, a dedifferentiation and pro-metastatic marker, induced by KLF6-SV1. c-MYC-positive tumors were also significantly enriched for KLF6-SV1 in human prostate cancer specimens. Our findings provide evidence that KLF6-SV1 is an enhancer of c-MYC-driven prostate cancer progression and metastasis, and a correlated genetic event in human prostate cancer with potential translational significance.
Collapse
Affiliation(s)
- Sudeh Izadmehr
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Danica Wiredja
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH
| | | | - Christine Lee-Poturalski
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peyman Tavassoli
- Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY
| | - Shen Yao
- The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH
| | - Divya Hoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Analisa Difeo
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Alice C. Levine
- The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan-Miguel Mosquera
- Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Panja S, Truica MI, Yu CY, Saggurthi V, Craige MW, Whitehead K, Tuiche MV, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott JS, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir SA, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nat Commun 2024; 15:352. [PMID: 38191557 PMCID: PMC10774320 DOI: 10.1038/s41467-024-44686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.
Collapse
Affiliation(s)
- Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mihai Ioan Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christina Y Yu
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Vamshi Saggurthi
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Michael W Craige
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Katie Whitehead
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mayra V Tuiche
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Aymen Al-Saadi
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Riddhi Vyas
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Frederick Coffman
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - James S Parrott
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shantenu Jha
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Isaac Kim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Urology, Yale School of Medicine, New Heaven, CT, 06510, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vishal Kothari
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
17
|
Zhang E, Chen Z, Liu W, Lin L, Wu L, Guan J, Wang J, Kong C, Bi J, Zhang M. NCAPG2 promotes prostate cancer malignancy and stemness via STAT3/c-MYC signaling. J Transl Med 2024; 22:12. [PMID: 38166947 PMCID: PMC10763290 DOI: 10.1186/s12967-023-04834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men worldwide, and its incidence has risen substantially in recent years. Therefore, there is an urgent need to identify novel biomarkers and precise therapeutic targets for managing PCa progression and recurrence. METHODS We investigated the clinical significance of NCAPG2 in PCa by exploring public datasets and our tissue microarray. Receiver operating characteristic (ROC) curve and survival analyses were performed to evaluate the correlation between NCAPG2 and PCa progression. Cell proliferation, wound healing, transwell, flow cytometry, cell cycle, tumor sphere formation, immunofluorescence (IF), co-immunoprecipitation (co-IP), and chromatin immunoprecipitation (ChIP) assays were conducted to further elucidate the molecular mechanism of NCAPG2 in PCa. Subcutaneous and orthotopic xenograft models were applied to investigate the effects of NCAPG2 on PCa proliferation in vivo. Tandem mass tag (TMT) quantitative proteomics was utilized to detect proteomic changes under NCAPG2 overexpression. RESULTS NCAPG2 was significantly upregulated in PCa, and its overexpression was associated with PCa progression and unfavorable prognosis. Knockdown of NCAPG2 inhibited the malignant behavior of PCa cells, whereas its overexpression promoted PCa aggressiveness. NCAPG2 depletion attenuated the development and growth of PCa in vivo. TMT quantitative proteomics analyses indicated that c-MYC activity was strongly correlated with NCAPG2 expression. The malignancy-promoting effect of NCAPG2 in PCa was mediated via c-MYC. NCAPG2 could directly bind to STAT3 and induce STAT3 occupancy on the MYC promoter, thus to transcriptionally activate c-MYC expression. Finally, we identified that NCAPG2 was positively correlated with cancer stem cell (CSC) markers and enhanced self-renewal capacity of PCa cells. CONCLUSIONS NCAPG2 is highly expressed in PCa, and its level is significantly associated with PCa prognosis. NCAPG2 promotes PCa malignancy and drives cancer stemness via the STAT3/c-MYC signaling axis, highlighting its potential as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shenjing Hospital of China Medical University, Shenyang, China
| | - Zhengjie Chen
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Wangmin Liu
- Department of Urology, Shenjing Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Johnny Guan
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jianfeng Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
- Institute of Urology, China Medical University, Shenyang, China.
| | - Mo Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
- Institute of Urology, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Khorzhevskii VA, Alymova EV, Kirichenko AK, Gappoev SV, Anzhiganova YV. [Amplifiation of the c-MYC gene in acinar prostate adenocarcinoma. Morphogenic comparisons]. Arkh Patol 2024; 86:30-37. [PMID: 38881003 DOI: 10.17116/patol20248603130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
OBJECTIVE The purpose of this work was to evaluate c-MYC gene amplification in the substrate of prostate acinar adenocarcinoma at various Gleason scores and various stages of the disease, taking into account the morphological characteristics of the tumor. MATERIAL AND METHODS The number of cases in the study was 82, including the control group - 12 cases. Morphological assessment included: determination of the total Gleason score, grading group, assessment of lymphovascular/perineural invasion, and architectural characteristics of the tumor. Gene amplification was assessed by FISH using the c-MYC (8q24)/SE8 probe. RESULTS In all cases of the study group, amplification of the c-MYC gene was detected in the tumor, with a significant difference from the control group (p<0.05). When assessing cases with 4-6 fold copies of the gene, significant differences were established between patients with stages II and III of the disease and stage IV (10.0 and 13.5 versus 30.0) (p<0.05). Cluster amplification of the c-MYC gene was detected with equal frequency in groups of patients with stages III and IV of the disease, while in stage II of the disease, the event almost did not occur (p<0.05). A significant increase in the level of c-MYC gene amplification was found in groups with advanced stages of the disease (p<0.02). Non-cluster amplification significantly distinguishes T4M0 and T4M1 stage patients from the rest with a significant increase in the score (p<0.05). In the metastatic stage of the disease, there was an increase c-MYC gene amplification compared to the non-metastatic stage (p<0.02). The copy number of the c-MYC gene was significantly higher in cases with perineural and lymphovascular invasion, as well as in cases of cribriform tumor organization (p<0.05). CONCLUSION Amplification of the c-MYC gene in prostate tumor cells is associated with advanced stages of the disease (T4M0 and T4M1) with an increase in the copy number of the gene during the metastatic stage of the process. It was found that increased amplification of the c-MYC gene distinguishes groups of patients whose tumors exhibit perineural and lymphovascular invasion, as well as a cribriform pattern of tumor organization.
Collapse
Affiliation(s)
- V A Khorzhevskii
- Krasnoyarsk State Regional Bureau of Pathology, Krasnoyarsk, Russia
| | - E V Alymova
- Krasnoyarsk State Regional Bureau of Pathology, Krasnoyarsk, Russia
| | - A K Kirichenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Private healthcare institution «Clinical hospital «RZD-Medicine» city Krasnoyarsk», Krasnoyarsk, Russia
| | - S V Gappoev
- Krasnoyarsk State Regional Bureau of Pathology, Krasnoyarsk, Russia
| | - Yu V Anzhiganova
- Krasnoyarsk Regional Clinical Cancer Center Named after A.I. Kryzhanovsky, Krasnoyarsk, Russia
| |
Collapse
|
19
|
Borges Dos Reis R, Aguilar-Ponce JL, Cayol F, Jansen AM, K RM, Merino TR, Sanku G, Vaca LB, Isaacsson Velho P, Korbenfeld EP. Latin American Challenges and Recommendations for Poly Adenosine Diphosphate Ribose Polymerase Inhibitor Treatment in Metastatic Castration Resistant Prostate Cancer: An Expert Overview. Cancer Control 2024; 31:10732748241280446. [PMID: 39387315 DOI: 10.1177/10732748241280446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
In Latin America, prostate cancer is the third most common cancer overall and the most common in men, with the highest mortality rate of all cancers. In 2022, there were approximately 22,985 new prostate cancer cases and 61,056 deaths from prostate cancer in the region. Patients with metastatic disease that is resistant to cure by castration now have multiple therapeutic options, including poly-ADP ribose polymerase inhibitors. These treatment advances present new challenges, such as developing monitoring protocols for early detection of disease progression to castration resistance. The Americas Health Foundation organized a 3-day meeting with 8 regional oncologists and pathologists to create a paper on metastatic castration-resistant prostate cancer diagnosis and therapy, including the new poly-ADP ribose polymerase inhibitors. The panel examined metastatic castration-resistant prostate cancer in Latin America and recommended ways to improve patient care using published literature and their expertise. Gene mutations play an important role in prostate cancer development. Precision medicine innovations highlight the importance of genotyping DNA variants and tumor biomarkers for targeted treatment. Access to appropriate genetic testing is difficult, medications are available but expensive, and there is a lack of infrastructure and regulatory frameworks that prevent patients from benefiting from innovative therapies. The panel recommends developing a population database and biobank and creating tumor tissue collection, processing, and storage facilities. Multi-stakeholder collaboration is needed to integrate the information gathered, train staff, select target populations, improve patient accessibility, and reduce the cost burden of drugs, genetic counselors, and cancer geneticists in Latin America. Collaboration is essential among healthcare professionals, policymakers, patient advocacy groups, pharmaceutical companies, and international organizations to address these challenges and needs in Latin America.
Collapse
Affiliation(s)
| | - José L Aguilar-Ponce
- Department of Medica Oncology, Instituto Nacional de CancerologiaMéxico, Mexico City, Mexico
| | - Federico Cayol
- Sección de Oncología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Ray Manneh K
- Medical Oncology Research Institute, Sociedad de Oncología y Hematología del Cesar, Valledupar, Cesar, Colombia
| | - Tomas R Merino
- Departamento de Hemato Oncología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Laura B Vaca
- Clinical Oncology, Clínica Universitaria Colombia, Clínica de Marly Bogotá, Colombia
| | - Pedro Isaacsson Velho
- Oncology, Hospital Moinhos de Vento, Porto Alegre, Brazil
- Johns Hopkins Hospital, Baltimore, MD, USA
| | | |
Collapse
|
20
|
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia AM, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight 2023; 8:e169868. [PMID: 37971875 PMCID: PMC10807718 DOI: 10.1172/jci.insight.169868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type-specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by 2 orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tatianna C. Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sam R. Denmeade
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J. Pienta
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chi V. Dang
- Department of Oncology and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Andregic N, Weaver C, Basu S. The binding of a c-MYC promoter G-quadruplex to neurotransmitters: An analysis of G-quadruplex stabilization using DNA melting, fluorescence spectroscopy, surface-enhanced Raman scattering and molecular docking. Biochim Biophys Acta Gen Subj 2023; 1867:130473. [PMID: 37778448 DOI: 10.1016/j.bbagen.2023.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The interactions of several neurotransmitter and neural hormone molecules with the c-MYC G-quadruplex DNA sequence were analyzed using a combination of spectroscopic and computational techniques. The interactions between indole, catecholamine, and amino acid neurotransmitters and DNA sequences could potentially add to the understanding of the role of G-quadruplex structures play in various diseases. Also, the interaction of the DNA sequence derived from the nuclear hypersensitivity element (NHE) III1 region of c-MYC oncogene (Pu22), 5'-TGAGGGTGGGTAGGGTGGGTAA-3', has added significance in that these molecules may promote or inhibit the formation of G-quadruplex DNA which could lead to the development of promising drugs for anticancer therapy. The results showed that these molecules did not disrupt G-quadruplex formation even in the absence of quadruplex-stabilizing cations. There was also evidence of concentration-dependent binding and high binding affinities based on the Stern-Volmer model, and thermodynamically favorable interactions in the form of hydrogen-bonding and interactions involving the π system of the aromatic neurotransmitters.
Collapse
Affiliation(s)
- Nicole Andregic
- Department of Biology, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Caitlin Weaver
- Department of Biology, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
22
|
GHORBANI ROGHAYEH, GHARBAVI MAHMOUD, SHARAFI ALI, RISMANI ELHAM, REZAEEJAM HAMED, MORTAZAVI YOUSEF, JOHARI BEHROOZ. Targeted anti-tumor synergistic effects of Myc decoy oligodeoxynucleotides-loaded selenium nanostructure combined with chemoradiotherapy on LNCaP prostate cancer cells. Oncol Res 2023; 32:101-125. [PMID: 38188680 PMCID: PMC10767241 DOI: 10.32604/or.2023.044741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 01/09/2024] Open
Abstract
In the present study, we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNCaP prostate cancer cells. Myc decoy ODNs were designed based on the promoter of Bcl-2 gene and analyzed by molecular docking and molecular dynamics assays. ODNs were loaded on the synthesized Se@BSA@Chi-MTX nanostructure. The physicochemical characteristics of nanostructures were determined by FTIR, DLS, UV-vis, TEM, EDX, in vitro release, and hemolysis tests. Subsequently, the cytotoxicity properties of them with and without X-irradiation were investigated by uptake, MTT, cell cycle, apoptosis, and scratch assays on the LNCaP cell line. The results of DLS and TEM showed negative charge (-9 mV) and nanometer size (40 nm) for Se@BSA@Chi-DEC-MTX NPs, respectively. The results of FTIR, UV-vis, and EDX showed the proper interaction of different parts and the correct synthesis of nanoparticles. The results of hemolysis showed the hemocompatibility of this nanoparticle in concentrations less than 6 mg/mL. The ODNs release from the nanostructures showed a pH-dependent manner, and the release rate was 15% higher in acidic pH. The targeted Se@BSA@Chi-labeled ODN-MTX NPs were efficiently taken up by LNCaP cells by targeting the prostate-specific membrane antigen (PSMA). The significant synergistic effects of nanostructure (containing MTX drug) treatment along with X-irradiation showed cell growth inhibition, apoptosis induction (~57%), cell cycle arrest (G2/M phase), and migration inhibition (up to 90%) compared to the control. The results suggested that the Se@BSA@Chi-DEC-MTX NPs can potentially suppress the cell growth of LNCaP cells. This nanostructure system can be a promising approach for targeted drug delivery and chemoradiotherapy in prostate cancer treatment.
Collapse
Affiliation(s)
- ROGHAYEH GHORBANI
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - MAHMOUD GHARBAVI
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - ALI SHARAFI
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - ELHAM RISMANI
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran
| | - HAMED REZAEEJAM
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - YOUSEF MORTAZAVI
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - BEHROOZ JOHARI
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
23
|
Guo X, Ping J, Yang Y, Su X, Shu XO, Wen W, Chen Z, Zhang Y, Tao R, Jia G, He J, Cai Q, Zhang Q, Giles GG, Pearlman R, Rennert G, Vodicka P, Phipps A, Gruber SB, Casey G, Peters U, Long J, Lin W, Zheng W. Large-scale alternative polyadenylation (APA)-wide association studies to identify putative susceptibility genes in human common cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.05.23298125. [PMID: 37986797 PMCID: PMC10659493 DOI: 10.1101/2023.11.05.23298125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Alternative polyadenylation (APA) modulates mRNA processing in the 3' untranslated regions (3'UTR), which affect mRNA stability and translation efficiency. Here, we build genetic models to predict APA levels in multiple tissues using sequencing data of 1,337 samples from the Genotype-Tissue Expression, and apply these models to assess associations between genetically predicted APA levels and cancer risk with data from large genome-wide association studies of six common cancers, including breast, ovary, prostate, colorectum, lung, and pancreas among European-ancestry populations. At a Bonferroni-corrected P □<□0.05, we identify 58 risk genes, including seven in newly identified loci. Using luciferase reporter assays, we demonstrate that risk alleles of 3'UTR variants, rs324015 ( STAT6 ), rs2280503 ( DIP2B ), rs1128450 ( FBXO38 ) and rs145220637 ( LDAH ), could significantly increase post-transcriptional activities of their target genes compared to reference alleles. Further gene knockdown experiments confirm their oncogenic roles. Our study provides additional insight into the genetic susceptibility of these common cancers.
Collapse
|
24
|
Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.553268. [PMID: 37905029 PMCID: PMC10614732 DOI: 10.1101/2023.09.07.553268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The tissue microenvironment in prostate cancer is profoundly altered. While such alterations have been implicated in driving prostate cancer initiation and progression to aggressive disease, how prostate cancer cells and their precursors mediate those changes is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we performed extensive single-cell RNA-sequencing (scRNA-seq) and rigorous molecular pathology of the comparative biology between human prostate cancer and key time points in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues, with validation in a large external data set, revealed that cancer cell-intrinsic activation of MYC signaling was the top up-regulated pathway in human cancers, representing a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Likewise, numerous non-malignant cell states in the tumor microenvironment (TME), including non-cancerous epithelial, immune, and fibroblast cell compartments, were conserved across individuals, raising the possibility that these cell types may be a sequelae of the convergent MYC activation in the cancer cells. To test this hypothesis, we employed a GEMM of prostate epithelial cell-specific MYC activation in two mouse strains. Cell communication network and pathway analyses suggested that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogrammed the TME during carcinogenesis, leading to the emergence of cascading cell state alterations in neighboring epithelial, immune, and fibroblast cell types that paralleled key findings in human prostate cancer. Importantly, among these changes, the progression from a precursor-enriched to invasive-cancer-enriched state was accompanied by a cell-intrinsic switch from pro-immunogenic to immunosuppressive transcriptional programs with coinciding enrichment of immunosuppressive myeloid and Treg cells in the immune microenvironment. These findings implicate activation of MYC signaling in reshaping convergent aspects of the TME of prostate cancer as a common denominator across the otherwise well-documented molecular heterogeneity of human prostate cancer.
Collapse
|
25
|
Yang J, Xin C, Yin G, Li J. Taraxasterol suppresses the proliferation and tumor growth of androgen-independent prostate cancer cells through the FGFR2-PI3K/AKT signaling pathway. Sci Rep 2023; 13:13072. [PMID: 37567936 PMCID: PMC10421874 DOI: 10.1038/s41598-023-40344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is prevalent among older men and difficult to survive after metastasis. It is urgent to find new drugs and treatments. Several studies show that taraxasterol (TAX) has important anti-inflammatory, anti-oxidative and anti-tumor effects. However, the function and mechanisms of TAX in PCa remain unclear. Here, we found that TAX could significantly suppress the viability and growth of androgen-independent PCa cells and down-regulate the expression of c-Myc and cyclin D1 in vitro. Mechanistically, PI3K/AKT signaling pathway was weakened and the expression of FGFR2 was reduced after TAX treatment in androgen-independent PCa cells. Moreover, TAX evidently inhibited the tumor growth in nude mice and the expression of c-Myc, cyclin D1, p-AKT and FGFR2 were down-regulated in xenograft tumor. These results indicate that TAX suppresses the proliferation of androgen-independent PCa cells via inhibiting the activation of PI3K/AKT signaling pathway and the expression of FGFR2, which means TAX may be a novel anti-tumor agent for later PCa treatment.
Collapse
Affiliation(s)
- Jinqiu Yang
- School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Chulin Xin
- School of Basic Medical Sciences, Dali University, 22 Wanhua Road, Dali, 671013, Yunnan, China
| | - Guangfen Yin
- The First Affiliated Hospital of Dali University, Dali, 671013, Yunnan, China
| | - Juan Li
- School of Basic Medical Sciences, Dali University, 22 Wanhua Road, Dali, 671013, Yunnan, China.
| |
Collapse
|
26
|
Boldrini L, Bardi M. WSB1 Involvement in Prostate Cancer Progression. Genes (Basel) 2023; 14:1558. [PMID: 37628609 PMCID: PMC10454498 DOI: 10.3390/genes14081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PC) is polygenic disease involving many genes, and more importantly a host of gene-gene interactions, including transcriptional factors. The WSB1 gene is a transcriptional target of numerous oncoproteins, and its dysregulation can contribute to tumor progression by abnormal activation of targeted oncogenes. Using data from the Cancer Genome Atlas, we tested the possible involvement of WSB1 in PC progression. A multi-dimensional scaling (MDS) model was applied to clarify the association of WSB1 expression with other key genes, such as c-myc, ERG, Enhancer of Zeste 1 and 2 (EHZ1 and EZH2), WNT10a, and WNT 10b. An increased WSB1 expression was associated with higher PC grades and with a worse prognosis. It was also positively related to EZH1, EZH2, WNT10a, and WNT10b. Moreover, MDS showed the central role of WSB1 in influencing the other target genes by its central location on the map. Our study is the first to show a link between WSB1 expression and other genes involved in PC progression, suggesting a novel role for WSB1 in PC progression. This network between WSB1 and EZH2 through WNT/β-catenin may have an important role in PC progression, as suggested by the association between high WSB1 expression and unfavorable prognosis in our analysis.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Massimo Bardi
- Department of Psychology & Behavioral Neuroscience, Randolph-Macon College, Ashland, VA 23005, USA
| |
Collapse
|
27
|
Erzurumlu Y, Catakli D, Dogan HK. Potent carotenoid astaxanthin expands the anti-cancer activity of cisplatin in human prostate cancer cells. J Nat Med 2023; 77:572-583. [PMID: 37130999 DOI: 10.1007/s11418-023-01701-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Prostate cancer (PCa) is the second most common type of cancer and the sixth cause of death in men worldwide. Radiotherapy and immunotherapy are commonly used in treating PCa, but understanding the crosstalk mechanisms of carcinogenesis and new therapeutic approaches is essential for supporting poor diagnosis and existing therapies. Astaxanthin (ASX) is a member of the xanthophyll family that is an oxygenated derivative of carotenoids whose synthesis is in plant extracts from lycopene. ASX has protective effects on various diseases, such as Parkinson's disease and cancer by showing potent antioxidant and anti-inflammatory properties. However, there is an ongoing need for a detailed investigation of the molecular mechanism of action to expand its therapeutic use. In the present study, we showed the new regulatory role of ASX in PCa cells by affecting the unfolded protein response (UPR) signaling, autophagic activity, epithelial-mesenchymal transition (EMT) and regulating the expression level of angiogenesis-related protein vascular endothelial growth factor A (VEGF-A), proto-oncogene c-Myc and prostate-specific antigen (PSA). Additionally, we determined that it exhibited synergistic action with cisplatin and significantly enhanced apoptotic cell death in PCa cells. Present findings suggest that ASX may be a potent adjuvant therapeutic option in PCa treatment when used alone or combined with chemotherapeutics. Schematic illustration of the biochemical activity of astaxanthin and its combination with cisplatin.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| |
Collapse
|
28
|
MYC amplification in angiosarcoma depends on etiological/clinical subgroups - Diagnostic and prognostic value. Ann Diagn Pathol 2023; 63:152096. [PMID: 36610315 DOI: 10.1016/j.anndiagpath.2022.152096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
|
29
|
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia A, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529259. [PMID: 36865273 PMCID: PMC9979994 DOI: 10.1101/2023.02.20.529259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tatianna C. Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rulin Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark C. Markowski
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sam R. Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J. Pienta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chi V Dang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Trabzonlu L, Pienta KJ, Trock BJ, De Marzo AM, Amend SR. Presence of cells in the polyaneuploid cancer cell (PACC) state predicts the risk of recurrence in prostate cancer. Prostate 2023; 83:277-285. [PMID: 36372998 PMCID: PMC9839595 DOI: 10.1002/pros.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nonproliferating polyaneuploid cancer cell (PACC) state is associated with therapeutic resistance in cancer. A subset of cancer cells enters the PACC state by polyploidization and acts as cancer stem cells by undergoing depolyploidization and repopulating the tumor cell population after the therapeutic stress is relieved. Our aim was to systematically assess the presence and importance of this entity in men who underwent radical prostatectomy with curative intent to treat their presumed localized prostate cancer (PCa). MATERIALS AND METHODS Men with National Comprehensive Cancer Network intermediate- or high-risk PCa who underwent radical prostatectomy l from 2007 to 2015 and who did not receive neoadjuvant treatment were included. From the cohort of 2159 patients, the analysis focused on a subcohort of 209 patients and 38 cases. Prostate tissue microarrays (TMAs) were prepared from formalin-fixed, paraffin-embedded blocks of the radical prostatectomy specimens. A total of 2807 tissue samples of matched normal/benign and cancer were arrayed in nine TMA blocks. The presence of PACCs and the number of PACCs on each core were noted. RESULTS The total number of cells in the PACC state and the total number of cores with PACCs were significantly correlated with increasing Gleason score (p = 0.0004) and increasing Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) (p = 0.004), but no other variables. In univariate proportional hazards models of metastasis-free survival, year of surgery, Gleason score (9-10 vs. 7-8), pathology stage, CAPRA-S, total PACCs, and cores positive for PACCs were all statistically significant. The multivariable models with PACCs that gave the best fit included CAPRA-S. Adding either total PACCs or cores positive for PACCs to CAPRA-S both significantly improved model fit compared to CAPRA-S alone. CONCLUSION Our findings show that the number of PACCs and the number of cores positive for PACCs are statistically significant prognostic factors for metastasis-free survival, after adjusting for CAPRA-S, in a case-cohort of intermediate- or high-risk men who underwent radical prostatectomy. In addition, despite the small number of men with complete data to evaluate time to metastatic castration-resistant PCa (mCRPC), the total number of PACCs was a statistically significant predictor of mCRPC in univariate analysis and suggested a prognostic effect even after adjusting for CAPRA-S.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology and Laboratory MedicineLoyola University Medical CenterMaywoodIllinoisUSA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bruce J. Trock
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Angelo M. De Marzo
- Departments of Pathology, Urology and Oncology, The Johns Hopkins University School of MedicineThe Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
31
|
Zhang Y, Li J, Huang Y, Chen Y, Luo Z, Huang H, West RE, Nolin TD, Wang Z, Li S. Improved antitumor activity against prostate cancer via synergistic targeting of Myc and GFAT-1. Theranostics 2023; 13:578-595. [PMID: 36632215 PMCID: PMC9830436 DOI: 10.7150/thno.76614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/03/2022] [Indexed: 01/04/2023] Open
Abstract
Inhibition of Myc promotes the regression of many types of tumors, including prostate cancer. However, the success of anti-Myc therapy is hampered by the lack of a strategy to effectively deliver the inhibitors to the tumor site and by the feedback mechanisms that cancer cells use to adapt to metabolic reprogramming. Methods: The effects of Myc inhibitors (10074-G5 or 10058-F4), alone or in combination with 6-diazo-5-oxo-L-norleucine (DON), were evaluated in cultured human or murine prostate cancer cells by cell viability assay, qRT-PCR and Western blot. To facilitate the in vivo therapeutic evaluation, a prodrug conjugate of 10074-G4 and DON (10074-DON) was developed, which could be effectively loaded into a polysaccharide-based nanocarrier (PS). Results: The treatment with Myc inhibitors led to significant induction of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) and enhanced protein glycosylation. Mechanistically, Myc inhibition triggered GFAT1 induction through the IREα-Xbp1s pathway. The combination use of Myc inhibitors and GFAT1 inhibitor DON led to a synergistic effect in inhibiting the proliferation and migration of prostate cancer cells. Enhanced in vivo delivery of 10074-DON via the PS nanocarrier led to a significant inhibition of tumor growth along with an improvement in tumor immune microenvironment in several PCa animal models. Conclusion: Simultaneous targeting of Myc and GFAT-1 may represent a novel strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Raymond E. West
- Small Molecule Biomarker Core (SMBC), Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Thomas D. Nolin
- Small Molecule Biomarker Core (SMBC), Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| |
Collapse
|
32
|
Liu S, Qin Z, Mao Y, Zhang W, Wang Y, Jia L, Peng X. Therapeutic Targeting of MYC in Head and Neck Squamous Cell Carcinoma. Oncoimmunology 2022; 11:2130583. [PMID: 36211811 PMCID: PMC9543056 DOI: 10.1080/2162402x.2022.2130583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
MYC plays critical roles in tumorigenesis and is considered an attractive cancer therapeutic target. Small molecules that directly target MYC and are well tolerated in vivo represent invaluable anti-cancer therapeutic agents. Here, we aimed to investigate the therapeutic effect of MYC inhibitors in head and neck squamous cell carcinoma (HNSCC). The results showed that pharmacological and genetic inhibition of MYC inhibited HNSCC proliferation and migration. MYC inhibitor 975 (MYCi975), inhibited HNSCC growth in both cell line-derived xenograft and syngeneic murine models. MYC inhibition also induced tumor cell-intrinsic immune responses, and promoted CD8+ T cell infiltration. Mechanistically, MYC inhibition increased CD8+ T cell-recruiting chemokines by inducing the DNA damage related cGAS-STING pathway. High expression of MYC combined with a low level of infiltrated CD8+ T cell in HNSCC correlated with poor prognosis. These results suggested the potential of small-molecule MYC inhibitors as anti-cancer therapeutic agents in HNSCC.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Zhen Qin
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yaqing Mao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Wenbo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yujia Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
33
|
Krolewski JJ, Singh S, Sha K, Jaiswal N, Turowski SG, Pan C, Rich LJ, Seshadri M, Nastiuk KL. TNF Signaling Is Required for Castration-Induced Vascular Damage Preceding Prostate Cancer Regression. Cancers (Basel) 2022; 14:cancers14246020. [PMID: 36551505 PMCID: PMC9775958 DOI: 10.3390/cancers14246020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mainstay treatment for locally advanced, recurrent, or metastatic prostate cancer (PrCa) is androgen deprivation therapy (ADT). ADT causes prostate cancers to shrink in volume, or regress, by inducing epithelial tumor cell apoptosis. In normal, non-neoplastic murine prostate, androgen deprivation via castration induces prostate gland regression that is dependent on TNF signaling. In addition to this direct mechanism of action, castration has also been implicated in an indirect mechanism of prostate epithelial cell death, which has been described as vascular regression. The initiating event is endothelial cell apoptosis and/or increased vascular permeability. This subsequently leads to reduced blood flow and perfusion, and then hypoxia, which may enhance epithelial cell apoptosis. Castration-induced vascular regression has been observed in both normal and neoplastic prostates. We used photoacoustic, power Doppler, and contrast-enhanced ultrasound imaging, and CD31 immunohistochemical staining of the microvasculature to assess vascular integrity in the period immediately following castration, enabling us to test the role of TNF signaling in vascular regression. In two mouse models of androgen-responsive prostate cancer, TNF signaling blockade using a soluble TNFR2 ligand trap reversed the functional aspects of vascular regression as well as structural changes in the microvasculature, including reduced vessel wall thickness, cross-sectional area, and vessel perimeter length. These results demonstrate that TNF signaling is required for vascular regression, most likely by inducing endothelial cell apoptosis and increasing vessel permeability. Since TNF is also the critical death receptor ligand for prostate epithelial cells, we propose that TNF is a multi-purpose, comprehensive signal within the prostate cancer microenvironment that mediates prostate cancer regression following androgen deprivation.
Collapse
Affiliation(s)
- John J. Krolewski
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shalini Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kai Sha
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Neha Jaiswal
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chunliu Pan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Laurie J. Rich
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: ; Tel.: +1-716-845-5771
| |
Collapse
|
34
|
Sena LA, Kumar R, Sanin DE, Thompson EA, Rosen DM, Dalrymple SL, Antony L, Yang Y, Gomes-Alexandre C, Hicks JL, Jones T, Bowers KA, Eskra JN, Meyers J, Gupta A, Skaist A, Yegnasubramanian S, Luo J, Brennen WN, Kachhap SK, Antonarakis ES, De Marzo AM, Isaacs JT, Markowski MC, Denmeade SR. Androgen receptor activity in prostate cancer dictates efficacy of bipolar androgen therapy through MYC. J Clin Invest 2022; 132:e162396. [PMID: 36194476 PMCID: PMC9711876 DOI: 10.1172/jci162396] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Testosterone is the canonical growth factor of prostate cancer but can paradoxically suppress its growth when present at supraphysiological levels. We have previously demonstrated that the cyclical administration of supraphysiological androgen (SPA), termed bipolar androgen therapy (BAT), can result in tumor regression and clinical benefit for patients with castration-resistant prostate cancer. However, predictors and mechanisms of response and resistance have been ill defined. Here, we show that growth inhibition of prostate cancer models by SPA required high androgen receptor (AR) activity and were driven in part by downregulation of MYC. Using matched sequential patient biopsies, we show that high pretreatment AR activity predicted downregulation of MYC, improved clinical response, and prolonged progression-free and overall survival for patients on BAT. BAT induced strong downregulation of AR in all patients, which is shown to be a primary mechanism of acquired resistance to SPA. Acquired resistance was overcome by alternating SPA with the AR inhibitor enzalutamide, which induced adaptive upregulation of AR and resensitized prostate cancer to SPA. This work identifies high AR activity as a predictive biomarker of response to BAT and supports a treatment paradigm for prostate cancer involving alternating between AR inhibition and activation.
Collapse
|
35
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
36
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
37
|
Whitlock NC, White ME, Capaldo BJ, Ku AT, Agarwal S, Fang L, Wilkinson S, Trostel SY, Shi ZD, Basuli F, Wong K, Jagoda EM, Kelly K, Choyke PL, Sowalsky AG. Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discov Oncol 2022; 13:97. [PMID: 36181613 PMCID: PMC9526773 DOI: 10.1007/s12672-022-00565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Sun J, Yang M, Zhao W, Wang F, Yang L, Tan C, Hu T, Zhu H, Zhao G. Research progress on the relationship between the TOR signaling pathway regulator, epigenetics, and tumor development. Front Genet 2022; 13:1006936. [PMID: 36212146 PMCID: PMC9539685 DOI: 10.3389/fgene.2022.1006936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Almost all cellular activities depend on protein folding, signaling complex assembly/disassembly, and epigenetic regulation. One of the most important regulatory mechanisms responsible for controlling these cellular processes is dynamic protein phosphorylation/dephosphorylation. Alterations in phosphorylation networks have major consequences in the form of disorders, including cancer. Many signaling cascades, including the target of rapamycin (TOR) signaling, are important participants in the cell cycle, and dysregulation in their phosphorylation/dephosphorylation status has been linked to malignancies. As a TOR signaling regulator, protein phosphatase 2A (PP2A) is responsible for most of the phosphatase activities inside the cells. On the other hand, TOR signaling pathway regulator (TIPRL) is an essential PP2A inhibitory protein. Many other physiological roles have also been suggested for TIPRL, such as modulation of TOR pathways, apoptosis, and cell proliferation. It is also reported that TIPRL was increased in various carcinomas, including non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). Considering the function of PP2A as a tumor suppressor and also the effect of the TIPRL/PP2A axis on apoptosis and proliferation of cancer cells, this review aims to provide a complete view of the role of TIPRL in cancer development in addition to describing TIPRL/PP2A axis and its epigenetic regulation.
Collapse
Affiliation(s)
- Jiaen Sun
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Minglei Yang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Weidi Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Fajiu Wang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Liangwei Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuntao Tan
- Department of Cardiac and Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Tianjun Hu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Huangkai Zhu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- *Correspondence: Huangkai Zhu, ; Guofang Zhao,
| | - Guofang Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- *Correspondence: Huangkai Zhu, ; Guofang Zhao,
| |
Collapse
|
39
|
Marx OM, Mankarious MM, Eshelman MA, Ding W, Koltun WA, Yochum GS. Transcriptome Analyses Identify Deregulated MYC in Early Onset Colorectal Cancer. Biomolecules 2022; 12:1223. [PMID: 36139061 PMCID: PMC9496520 DOI: 10.3390/biom12091223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Despite a global decrease in colorectal cancer (CRC) incidence, the prevalence of early-onset colorectal cancer (EOCRC), or those occurring in individuals before the age of 50, has steadily increased over the past several decades. When compared to later onset colorectal cancer (LOCRC) in individuals over 50, our understanding of the genetic and molecular underpinnings of EOCRCs is limited. Here, we conducted transcriptomic analyses of patient-matched normal colonic segments and tumors to identify gene expression programs involved in carcinogenesis. Amongst differentially expressed genes, we found increased expression of the c-MYC proto-oncogene (MYC) and its downstream targets in tumor samples. We identified tumors with high and low differential MYC expression and found patients with high-MYC tumors were older and overweight or obese. We also detected elevated expression of the PVT1 long-non-coding RNA (lncRNA) in most tumors and found gains in copy number for both MYC and PVT1 gene loci in 35% of tumors evaluated. Our transcriptome analyses indicate that EOCRC can be sub-classified into groups based on differential MYC expression and suggest that deregulated MYC contributes to CRCs that develop in younger patients.
Collapse
Affiliation(s)
- Olivia M. Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Marc M. Mankarious
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Melanie A. Eshelman
- Department of Pediatrics, Division of Hematology & Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter A. Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
40
|
Peng Y, Liu J, Wang Z, Cui C, Zhang T, Zhang S, Gao P, Hou Z, Liu H, Guo J, Zhang J, Wen Y, Wei W, Zhang L, Liu J, Long J. Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death Differ 2022; 29:1730-1743. [PMID: 35217790 PMCID: PMC9433443 DOI: 10.1038/s41418-022-00960-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/29/2023] Open
Abstract
MYC drives the tumorigenesis of human cancers, including prostate cancer (PrCa), thus deubiquitinase (DUB) that maintains high level of c-Myc oncoprotein is a rational therapeutic target. Several ubiquitin-specific protease (USP) family members of DUB have been reported to deubiquitinate c-Myc, but none of them is the physiological DUB for c-Myc in PrCa. By screening all the DUBs, here we reveal that OTUD6A is exclusively amplified and overexpressed in PrCa but not in other cancers, eliciting a prostatic-specific oncogenic role through deubiquitinating and stabilizing c-Myc oncoprotein. Moreover, genetic ablation of OTUD6A efficiently represses prostatic tumorigenesis of both human PrCa cells and the Hi-Myc transgenic PrCa mice, via reversing the metabolic remodeling caused by c-Myc overexpression in PrCa. These results indicate that OTUD6A is a physiological DUB for c-Myc in PrCa setting and specifically promotes prostatic tumorigenesis through stabilizing c-Myc oncoprotein, suggesting that OTUD6A could be a unique therapeutic target for Myc-driven PrCa.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfang Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yurong Wen
- Department of Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
41
|
Mou Z, Spencer J, Knight B, John J, McCullagh P, McGrath JS, Harries LW. Gene expression analysis reveals a 5-gene signature for progression-free survival in prostate cancer. Front Oncol 2022; 12:914078. [PMID: 36033512 PMCID: PMC9413154 DOI: 10.3389/fonc.2022.914078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer worldwide, but effective biomarkers for the presence or progression risk of disease are currently elusive. In a series of nine matched histologically confirmed PCa and benign samples, we carried out an integrated transcriptome-wide gene expression analysis, including differential gene expression analysis and weighted gene co-expression network analysis (WGCNA), which identified a set of potential gene markers highly associated with tumour status (malignant vs. benign). We then used these genes to establish a minimal progression-free survival (PFS)-associated gene signature (GS) (PCBP1, PABPN1, PTPRF, DANCR, and MYC) using least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analyses from The Cancer Genome Atlas prostate adenocarcinoma (TCGA-PRAD) dataset. Our signature was able to predict PFS over 1, 3, and 5 years in TCGA-PRAD dataset, with area under the curve (AUC) of 0.64–0.78, and our signature remained as a prognostic factor independent of age, Gleason score, and pathological T and N stages. A nomogram combining the signature and Gleason score demonstrated improved predictive capability for PFS (AUC: 0.71–0.85) and was superior to the Cambridge Prognostic Group (CPG) model alone and some conventionally used clinicopathological factors in predicting PFS. In conclusion, we have identified and validated a novel five-gene signature and established a nomogram that effectively predicted PFS in patients with PCa. Findings may improve current prognosis tools for PFS and contribute to clinical decision-making in PCa treatment.
Collapse
Affiliation(s)
- Zhuofan Mou
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
| | - Jack Spencer
- Translational Research Exchange at Exeter, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Bridget Knight
- National Institute for Health and Care Research (NIHR) Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Joseph John
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - John S. McGrath
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- *Correspondence: Lorna W. Harries,
| |
Collapse
|
42
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
43
|
Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma AM, Alahmadi W, Larocque J, Zadra G, Xie Y, Gu S, Tang Q, Zhang Y, Syamala S, Seo JH, Bell C, O'Connor E, Liu Y, Schaeffer EM, Jeffrey Karnes R, Weinmann S, Davicioni E, Morrissey C, Cejas P, Ellis L, Loda M, Wucherpfennig KW, Pomerantz MM, Spratt DE, Corey E, Freedman ML, Shirley Liu X, Brown M, Long HW, Labbé DP. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nat Commun 2022; 13:2559. [PMID: 35562350 PMCID: PMC9106722 DOI: 10.1038/s41467-022-30257-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.
Collapse
Affiliation(s)
- Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Avery Feit
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anna de Polo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Walaa Alahmadi
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Janie Larocque
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Giorgia Zadra
- Departments of Oncologic Pathology and Pathology, Dana-Farber Cancer Institute and Brigham's Women Hospital, Boston, MA, USA
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shengqing Gu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qin Tang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Zhang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Connor Bell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Edward O'Connor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yang Liu
- Decipher Biosciences, San Diego, CA, USA
| | | | | | - Sheila Weinmann
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | | | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Leigh Ellis
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
44
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
45
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
46
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
47
|
Limberger T, Schlederer M, Trachtová K, Garces de Los Fayos Alonso I, Yang J, Högler S, Sternberg C, Bystry V, Oppelt J, Tichý B, Schmeidl M, Kodajova P, Jäger A, Neubauer HA, Oberhuber M, Schmalzbauer BS, Pospisilova S, Dolznig H, Wadsak W, Culig Z, Turner SD, Egger G, Lagger S, Kenner L. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Mol Cancer 2022; 21:89. [PMID: 35354467 PMCID: PMC8966196 DOI: 10.1186/s12943-022-01542-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.
Collapse
Affiliation(s)
- Tanja Limberger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.,CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
| | - Michaela Schlederer
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karolina Trachtová
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic.,Christian Doppler Laboratory for Applied Metabolomics, 1090, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Ines Garces de Los Fayos Alonso
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Jiaye Yang
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Christina Sternberg
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.,Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Margit Schmeidl
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Anton Jäger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Monika Oberhuber
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
| | - Belinda S Schmalzbauer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Zoran Culig
- Department of Urology, Innsbruck Medical University, 6020, Innsbruck, Austria
| | - Suzanne D Turner
- Department of Pathology, University Cambridge, Cambridge, UK.,CEITEC, Masaryk University, Brno, Czech Republic
| | - Gerda Egger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lukas Kenner
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria. .,CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria. .,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria. .,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
48
|
Diehl JN, Hibshman PS, Ozkan-Dagliyan I, Goodwin CM, Howard SV, Cox AD, Der CJ. Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Adv Cancer Res 2022; 153:101-130. [PMID: 35101228 DOI: 10.1016/bs.acr.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Priya S Hibshman
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adrienne D Cox
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
49
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|
50
|
Use of RNA-Seq and a Transgenic Mouse Model to Identify Genes Which May Contribute to Mutant p53-Driven Prostate Cancer Initiation. BIOLOGY 2022; 11:biology11020218. [PMID: 35205085 PMCID: PMC8869245 DOI: 10.3390/biology11020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We use RNA-seq analysis to identify genes that may contribute to mutant p53-mediated prostate cancer initiation in a genetically engineered mouse model (B6.129S4-Trp53tm3.1Tyj/J). A total of 1378 differentially expressed genes, including wildtype p53 target genes (e.g. Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function-related genes (Mgmt, Id4), and prostate cancer-related genes (Cav-1, Raf1, Kras), were identified. Mice that were homozygous or heterozygous for the Trp53 R270H mutation developed grade one PIN lesions at 3 months and 5 months, respectively, whereas wildtype mice did not develop PIN. Immunohistochemical analysis revealed decreased levels of irradiation-mediated apoptosis in homozygous and heterozygous mice when compared to wildtype counterparts, and this aligned with observed differences in apoptosis-related gene expression. Abstract We previously demonstrated that the Trp53-R270H mutation can drive prostate cancer (CaP) initiation using the FVB.129S4 (Trp53tm3Tyj/wt); FVB.129S (Nkx3-1tm3(cre)Mmswt) genetically engineered mouse model (GEM). We now validate this finding in a different model (B6.129S4-Trp53tm3.1Tyj/J mice) and use RNA-sequencing (RNA-Seq) to identify genes which may contribute to Trp53 R270H-mediated prostate carcinogenesis. Wildtype (Trp53WT/WT), heterozygous (Trp53R270H/WT), and homozygous mice (Trp53R270H/R270H) were exposed to 5 Gy irradiation to activate and stabilize p53, and thereby enhance our ability to identify differences in transcriptional activity between the three groups of mice. Mouse prostates were harvested 6 h post-irradiation and processed for histological/immunohistochemistry (IHC) analysis or were snap-frozen for RNA extraction and transcriptome profiling. IHC analyses determined that presence of the Trp53-R270H mutation impacts apoptosis (lower caspase 3 activity) but not cell proliferation (Ki67). RNA-Seq analysis identified 1378 differentially expressed genes, including wildtype p53 target genes (E.g., Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function (GOF)-related genes (Mgmt, Id4), and CaP-related genes (Cav-1, Raf1, Kras). Further understanding the mechanisms which contribute to prostate carcinogenesis could allow for the development of improved preventive methods, diagnostics, and treatments for CaP.
Collapse
|