1
|
González IA, Pacheco MC. What is New in Pediatric Hepatic Neoplasms. Surg Pathol Clin 2025; 18:281-300. [PMID: 40412827 DOI: 10.1016/j.path.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The goal of this review is to provide a practical update on hepatic lesions affecting the pediatric population and is not meant to be an exhaustive summary of each entity. Hepatoblastoma is purposely not discussed as recent comprehensive reviews on this topic are available; instead, a discussion on rhabdoid tumor and the evolving concept of small cell undifferentiated hepatoblastoma and blastemal hepatoblastoma is included.
Collapse
Affiliation(s)
- Iván A González
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 W 11th St., Room 4068, Indianapolis, IN 46202, USA. https://twitter.com/IvanGonzalezMD
| | - Maria C Pacheco
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Children's Hospital, 4800 Sand Point Way NE, FB 4.521 - Pathology Lab, Seattle, WA 98105, USA.
| |
Collapse
|
2
|
Zhang H, Xiang X, Ma X, Zhang B, Xu S, He X, Xu J. Case Report: SMARCB1-deficient phenotype may be a new specialized type of pleomorphic xanthoastrocytoma associated with poor prognosis. Front Oncol 2025; 15:1527909. [PMID: 40231261 PMCID: PMC11994728 DOI: 10.3389/fonc.2025.1527909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare, localized glioma characterized by frequent BRAF V600E mutations and CDKN2A/B deletions. Compared to IDH-wildtype glioblastoma, PXA has a better prognosis. Recently, rare cases of PXA with rhabdoid histological characteristics have been reported, which are titled atypical teratoid/rhabdoid tumor arising in a PXA. However, the genetic characteristics of these cases have rarely been investigated. Herein, we present a 49-year-old woman with a mass in the left frontotemporal region. Microscopically, this mass is composed of the glial and rhabdoid elements, both of which have molecular features of PXA, and the rhabdoid elements assessed using immunohistochemistry for SMARCB1 (INI1) expression demonstrated expression loss. The DNA methylation profile showed a significant calibrated score of 0.81 for methylation class PXA. The tumor was eventually diagnosed as a PXA with SMARCB1 deficiency.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Diagnostic Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| | - Xueping Xiang
- Department of Molecular Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| | - Xiaojing Ma
- Department of Molecular Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| | - Buyi Zhang
- Department of Clinical Diagnostic Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| | - Susu Xu
- Department of Clinical Diagnostic Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| | - Xiaojuan He
- Department of Clinical Diagnostic Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| | - Jinghong Xu
- Department of Clinical Diagnostic Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Li Z, Zhao J, Tang Y. Advances in the role of SWI/SNF complexes in tumours. J Cell Mol Med 2023; 27:1023-1031. [PMID: 36883311 PMCID: PMC10098296 DOI: 10.1111/jcmm.17709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.
Collapse
Affiliation(s)
- Ziwei Li
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiumei Zhao
- Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Yu Tang
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.,Department of Genetics, Zunyi Medical University, Guizhou, China
| |
Collapse
|
4
|
Rekhi B, Kembhavi P, Mishra SN, Shetty O, Bajpai J, Puri A. Clinicopathologic features of undifferentiated round cell sarcomas of bone & soft tissues: An attempt to unravel the BCOR-CCNB3- & CIC-DUX4-positive sarcomas. Indian J Med Res 2020; 150:557-574. [PMID: 32048619 PMCID: PMC7038815 DOI: 10.4103/ijmr.ijmr_2144_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background & objectives: Certain genetically defined undifferentiated round cell sarcomas, namely BCOR-CCNB3 and CIC-DUX4 positive, have been described. Here we present detailed clinicopathologic features and molecular results in such cases. Methods: Fifty one cases of undifferentiated round cell sarcomas, including 32 cases, tested for BCOR-CCNB3 and CIC-DUX4 fusions, by reverse transcription polymerase chain reaction technique and 44 tumours, for CCNB3 immunostaining, were analyzed. Results: Twenty seven (52.9%) tumours occurred in males and 24 (47%) in females; in soft tissues (38; 74.5%), commonly, trunk and extremities and bones (13; 25.4%), frequently, femur and tibia. Five of 32 (15.6%) tested cases were positive for BCOR-CCNB3 fusion and seven (21.8%) for CIC-DUX4 fusions. Histopathologically, CIC-DUX4-positive sarcomas comprised nodular aggregates of round to polygonal cells, containing hyperchromatic nuclei, prominent nucleoli and moderate cytoplasm, with focal myxoid stroma and variable necrosis, in certain cases. BCOR-CCNB3-positive sarcomas mostly comprised diffusely arranged, round to oval to short spindly cells with angulated nuclei, vesicular chromatin, inconspicuous nucleoli and interspersed vessels. Immunohistochemically, tumour cells were positive for MIC2 in 24 of 49 (48.9%) and CCNB3 in 12 of 44 (27.2%) cases. Four of five BCOR-CCNB3-positive sarcomas showed CCNB3 immunostaining and 6 of 7 CIC-DUX4-positive sarcomas displayed WT1 immunostaining. Most patients (27/37) (72.9%) underwent surgical resection and chemotherapy. Median overall survival was 12 months, and disease-free survival was seven months. Interpretation & conclusions: Undifferentiated round cell sarcomas are rare; mostly occur in soft tissues of extremities, with CIC-DUX4 positive, as these are relatively more frequent than BCOR-CCNB3 positive sarcomas. CCNB3 and WT1 are useful immunostains for triaging such cases for BCOR-CCNB3 and CIC-DUX4 fusion testing, respectively. Overall, these are relatively aggressive tumours, especially CIC-DUX4-positive sarcomas.
Collapse
Affiliation(s)
- Bharat Rekhi
- Department of Surgical Pathology, Tata Memorial Hospital; Division of Molecular Pathology & Translational Medicine, Tata Memorial Hospital, Homi Bhabha National Institute (Deemed to be University), Mumbai, Maharashtra, India
| | - Priyanka Kembhavi
- Department of Surgical Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Surya Narayan Mishra
- Division of Molecular Pathology & Translational Medicine, Tata Memorial Hospital, Homi Bhabha National Institute (Deemed to be University), Mumbai, Maharashtra, India
| | - Omshree Shetty
- Division of Molecular Pathology & Translational Medicine, Tata Memorial Hospital, Homi Bhabha National Institute (Deemed to be University), Mumbai, Maharashtra, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Ajay Puri
- Department of Surgical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Inarejos Clemente EJ, Navallas M, Barber Martínez de la Torre I, Suñol M, Munuera Del Cerro J, Torner F, Garraus M, Navarro OM. MRI of Rhabdomyosarcoma and Other Soft-Tissue Sarcomas in Children. Radiographics 2020; 40:791-814. [PMID: 32243230 DOI: 10.1148/rg.2020190119] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Soft-tissue sarcomas in children comprise a heterogeneous group of entities with variable manifestation depending on the age of the patient and the location of the tumor. MRI is the modality of choice for evaluating musculoskeletal soft-tissue tumors and plays a paramount role in both initial diagnosis and assessment of tumor response during and after treatment. Conventional MRI sequences, such as T1- and T2-weighted imaging, offer morphologic information, which is important for localizing the lesion and describing anatomic relationships but not accurate for determining its malignant or benign nature and may be limited in differentiating tumor response from therapy-related changes. Advanced multiparametric MRI offers further functional information that can help with these tasks by using different imaging sequences and biomarkers. The authors present the role of MRI in rhabdomyosarcoma and other soft-tissue sarcomas in children, emphasizing a multiparametric approach with focus on the utility and potential added value of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI in characterization and staging, determination of pretreatment extent, and evaluation of tumor response and recurrence after treatment. ©RSNA, 2020.
Collapse
Affiliation(s)
- Emilio J Inarejos Clemente
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - María Navallas
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - Ignasi Barber Martínez de la Torre
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - Mariona Suñol
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - Josep Munuera Del Cerro
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - Ferran Torner
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - Moira Garraus
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| | - Oscar M Navarro
- From the Departments of Diagnostic Imaging (E.J.I.C., M.N., I.B.M.d.l.T., J.M.d.C.), Pathology (M.S.), Orthopaedics (F.T.), and Oncology and Haematology (M.G.), Hospital Sant Joan de Déu, Av Sant Joan de Déu 2, 08950 Esplugues de Llobregat (Barcelona), Spain; Department of Medical Imaging, University of Toronto, Toronto, Ont, Canada (O.M.N.); and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ont, Canada (O.M.N.)
| |
Collapse
|
6
|
Finetti MA, Grabovska Y, Bailey S, Williamson D. Translational genomics of malignant rhabdoid tumours: Current impact and future possibilities. Semin Cancer Biol 2020; 61:30-41. [PMID: 31923457 DOI: 10.1016/j.semcancer.2019.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
Malignant Rhabdoid Tumours (MRT) are the quintessential example of an epigenetic cancer. Mutation of a single gene, SMARCB1 or more rarely SMARCA4, is capable of causing one of the most aggressive and lethal cancers of early childhood and infancy. SMARCB1 encodes a core subunit of the SWI/SNF complex and its mutation evokes genome-wide downstream effects which may be counteracted therapeutically. Here we review and discuss the use of translational genomics in the study of MRT biology and the ways in which this has impacted clinical practice or may do so in the future. First, the diagnosis and definition of MRT and the transition from a histopathological to a molecular definition. Second, epigenetic and transcriptomic subgroups within MRT, their defining features and potential prognostic or therapeutic significance. Third, functional genomic studies of MRT by mouse modelling and forced re-expression of SMARCB1 in MRT cells. Fourth, studies of underlying epigenetic mechanisms (e.g. EZH2, HDACs) or deregulated kinases (e.g. PDGFR, FGFR1) and the potential therapeutic opportunities these provide. Finally, we discuss likely future directions and proffer opinion on how future translational genomics should be integrated into future biological/clinical studies to select and evaluate the best anti-MRT therapeutic agents.
Collapse
Affiliation(s)
- Martina A Finetti
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
7
|
Taher MM, Hassan AA, Saeed M, Jastania RA, Nageeti TH, Alkhalidi H, Dairi G, Abduljaleel Z, Athar M, Bouazzaoui A, El-Bjeirami WM, Al-Allaf FA. Next generation DNA sequencing of atypical choroid plexus papilloma of brain: Identification of novel mutations in a female patient by Ion Proton. Oncol Lett 2019; 18:5063-5076. [PMID: 31612017 PMCID: PMC6781611 DOI: 10.3892/ol.2019.10882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Choroid plexus papilloma (CPP) is a rare benign tumor of the central nervous system that is usually confined to the cerebral ventricles. According to the World Health Organization, CPP corresponds to a grade I atypical CPP (a-CPP); however, it can become more aggressive and reach grade II, which can rarely undergo malignant transformation into a choroid plexus carcinoma (grade III). To the best of our knowledge, identification of these tumors mutations by next generation DNA sequencing (NGS) has not been yet reported. In the present study, NGS analysis of an a-CPP case was performed. Data were analyzed using Advaita Bioinformatics i-VariantGuide and Ion Reporter 5.6 programs. The results from NGS identified 12 novel missense mutations in the following genes: NOTCH1, ATM, STK36, MAGI1, DST, RECQL4, NUMA1, THBS1, MYH11, MALT1, SMARCA4 and CDH20. The PolyPhen score of six variants viz., DST, RECQL4, NUMA1, THBS1, MYHI1 and SMARCA4 were high, which suggested these variants represents pathogenic variants. Two novel insertions that caused frameshift were also found. Furthermore, two novel nonsense mutations and 14 novel intronic variants were identified in this tumor. The novel missense mutation detected in ATM gene was situated in c.5808A>T; p. (Leu1936Phe) in exon 39, and a known ATM mutation was in c.5948A>G; p. (Asn1983Ser). These novel mutations had not been reported in previous database. Subsequently, the quality statistics of these variants, including allele coverage, allele ratio, P-value, Phred quality score, sequencing coverage, PolyPhen score and alleles frequency was performed. For all variants, P-value was highly significant and the Phred quality score was high. In addition, the results from sequencing coverage demonstrated that 97.02% reads were on target and that 97.88% amplicons had at least 500 reads. These findings may serve at determining new strategies to distinguish the types of choroid plexus tumor, and at developing novel targeted therapies. Development of NGS technologies in the Kingdom of Saudi Arabia may be used in molecular pathology laboratories.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amal Ali Hassan
- Histopathology Division, Al-Noor Specialty Hospital, Makkah 24242, Saudi Arabia.,Faculty of Medicine, Department of Pathology, Al Azhar University, Cairo 11651, Egypt
| | - Muhammad Saeed
- Department of Radiology, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Raid A Jastania
- Department of Pathology, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Tahani H Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Hisham Alkhalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ghida Dairi
- Medicine and Medical Sciences Research Center, Deanship of Scientific Research, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Wafa M El-Bjeirami
- Laboratory Medicine and Molecular Diagnostics Unit, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
8
|
Agaimy A. SWI/SNF Complex-Deficient Soft Tissue Neoplasms: A Pattern-Based Approach to Diagnosis and Differential Diagnosis. Surg Pathol Clin 2019; 12:149-163. [PMID: 30709441 DOI: 10.1016/j.path.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Loss of different components of the Switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex has been increasingly recognized as a central molecular event driving the initiation and/or dedifferentiation of mostly lethal but histogenetically diverse neoplasms in different body organs. This review summarizes and discusses the morphologic and phenotypic diversity of primary soft tissue neoplasms characterized by SWI/SNF complex deficiency with an emphasis on convergent and divergent cytoarchitectural patterns.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Duncan VE, Wicker JA, Kelly DR, Li R. TLE1 Expression in Malignant Rhabdoid Tumor and Atypical Teratoid/Rhabdoid Tumor. Pediatr Dev Pathol 2018; 21:522-527. [PMID: 29490565 DOI: 10.1177/1093526618761720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malignant rhabdoid tumors (MRT; atypical teratoid/rhabdoid tumor [ATRT] in the central nervous system) are aggressive tumors in infants and children which can overlap with other sarcomas, such as synovial sarcoma (SS). The gold standard for SS diagnosis is characterization of the t(X;18) chromosomal translocation. However, stratification of cases for molecular analysis is not always straightforward or feasible. Recent literature suggests transducer-like enhancer of split 1 (TLE1) protein expression may distinguish SS from certain histologic mimics; however, this has not been investigated in MRT and ATRT. We stained whole-tissue sections of 18 archived cases of MRT and ATRT with TLE1. Nuclear expression was scored using a 4-tiered (0, 1+, 2+, and 3+) scale describing staining intensity, extent, or combination of both. The majority of MRT and ATRT cases showed some TLE1 immunoreactivity (n = 16; 89% for ≥1 + staining); 14 (78%) of total cases showed ≥2 + positivity using any of the 3 scoring systems. Over half (n = 10; 56%) of cases showed ≥2 + staining; 4 (22%) cases showed 3 + strong and diffuse TLE1 staining measured by all scoring systems in agreement. Although still of potential use, we urge caution in the interpretation of TLE1 when the differential diagnosis includes both SS and MRT or ATRT.
Collapse
Affiliation(s)
- Virginia E Duncan
- 1 Department of Pathology, Seattle Children's Hospital, Seattle, Washington
| | - Jason A Wicker
- 2 Department of Pathology, Children's of Alabama, Birmingham, Alabama
- 3 Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David R Kelly
- 2 Department of Pathology, Children's of Alabama, Birmingham, Alabama
- 3 Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rong Li
- 2 Department of Pathology, Children's of Alabama, Birmingham, Alabama
| |
Collapse
|
10
|
Machado I, Yoshida A, Morales MGN, Abrahão-Machado LF, Navarro S, Cruz J, Lavernia J, Parafioriti A, Picci P, Llombart-Bosch A. Review with novel markers facilitates precise categorization of 41 cases of diagnostically challenging, "undifferentiated small round cell tumors". A clinicopathologic, immunophenotypic and molecular analysis. Ann Diagn Pathol 2018; 34:1-12. [PMID: 29661713 DOI: 10.1016/j.anndiagpath.2017.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite extensive immunohistochemical (IHC) and molecular studies combined with morphologic findings, a group of round/ovoid cell tumors histologically similar to Ewing sarcomas (ES) but lacking EWSR1-rearrangements may remain unclassifiable. DESIGN We retrospectively analyzed 41 Ewing-like tumors (formalin-fixed, paraffin-embedded) previously determined as negative or non-informative for EWSR1-rearrangements by FISH and/or RT-PCR. A new histopathology revision and additional IHC and molecular analyses were carried out in order to investigate whether additional IHC and/or molecular testing in combination with the morphological findings may help in reaching a definitive diagnosis. RESULTS Almost all the tumors (n=40) involved soft tissue and/or bone and half the patients died of disease. In the archival cases all diagnoses were Ewing sarcoma (ES), Ewing-like sarcoma (ELS), myoepithelial tumor and undifferentiated sarcoma (US). In the new review all the tumors were re-classified as, ES (n=16), Ewing-like tumor with EWSR1 rearrangement and amplification and possible EWSR1-NFATC2 gene fusion (n=1), CIC-rearranged sarcomas or undifferentiated sarcoma, most consistent with CIC-rearranged sarcoma (n=7), sarcoma with BCOR-alteration or undifferentiated sarcoma, consistent with BCOR-associated sarcoma (n=3), neuroblastoma (n=2), unclassifiable neoplasm with neuroblastic differentiation (n=1), malignant rhabdoid tumor (n=2), lymphoblastic lymphoma (n=1), clear cell sarcoma of the gastrointestinal tract (n=1), small cell carcinoma (n=1), sclerosing rhabdomyosarcoma (n=1), desmoplastic small round cell tumor (n=1), malignant peripheral sheath nerve tumor (n=1), poorly-differentiated synovial sarcoma (n=1), Possible gastrointestinal stromal tumor/GIST with predominant round cells (n=1) and possible SMARCA4-deficient-sarcoma (n=1). NKX2.2, ETV4 and BCOR immunoreactivity was observed in all ES, CIC-rearranged sarcomas and sarcomas with BCOR alteration, respectively. CIC-rearrangement by FISH was observed in many of the CIC-rearranged sarcomas. CONCLUSION Our analysis of 41 Ewing-like tumors confirms that there may be a significant pathological and IHC overlap among Ewing-like tumors, with prognostic and therapeutic impacts. Additional IHC (NKX2.2, ETV4 and BCOR) and molecular studies including FUS, CIC or BCOR analysis may support the final diagnosis when FISH or RT-PCR fail to detect EWSR1-rearrangements. Any molecular findings should always be interpreted in relation to the specific clinical and pathological context.
Collapse
Affiliation(s)
- Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain.
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | | | - Lucas Faria Abrahão-Machado
- Departamento de Patología & Diagnóstico Molecular, Hospital de Cáncer de Barretos, Barretos, Sao Paulo, Brazil
| | - Samuel Navarro
- Pathology Department, University of Valencia, Valencia, Spain
| | - Julia Cruz
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Javier Lavernia
- Medical Oncology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Antonina Parafioriti
- Department of Pathology, ASST - Centro Specialistico Ortopedico Traumatologico Gaetano PINI - CTO, Milano, Italy
| | - Piero Picci
- Laboratory of Experimental Pathology, Rizzoli Orthopedic Institute, Bologna, Italy
| | | |
Collapse
|
11
|
Proximal-Type Epithelioid Sarcoma in Skull Base: a Pathological Diagnosis Challenge with Other Intracranial Tumors. Pathol Oncol Res 2017; 25:201-208. [DOI: 10.1007/s12253-017-0318-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
|
12
|
Guilmette J, Laverdière C, Soulières D, Patey N, Soucy G, Trudel D, Bouron-Dal Soglio D. Malignant Rhabdoid Tumor of Soft Tissue. Pediatr Dev Pathol 2017; 20:262-266. [PMID: 28429647 DOI: 10.1177/1093526617706814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction Malignant rhabdoid tumor (MRT) is defined as a high-grade sarcoma derived from an uncertain cell of origin. Its diagnosis is associated with poor prognosis and patient's life expectancy is greatly reduced. Material and method Here, we describe a unique case of 9-month-old boy who presented with a large MRT arising from the soft tissue of the neck. Following intensive multimodal treatment, the patient benefited from a 25 years' remission until the discovery of multiple liver metastases. Conclusion MRT of soft tissue needs to be distinguished from other soft tissue neoplasms, as MRT is highly aggressive and is usually associated with a poor outcome. In addition, this is the longest remission time reported in a patient with soft tissue MRT and this might be related to the use of early intensive multimodal treatments.
Collapse
Affiliation(s)
- Julie Guilmette
- 1 Department of Anatomo-Pathology, University of Montreal Heath Care Center, Montreal, Quebec, Canada
| | - Caroline Laverdière
- 2 Hematology-Oncology Division, Department of Pediatrics, Ste-Justine Hospital, Montreal, Quebec, Canada
| | - Denis Soulières
- 3 Department of Hematoly-Oncology, Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Natasha Patey
- 4 Department of Pathology, Ste-Justine Hospital, Montreal, Quebec, Canada
| | - Geneviève Soucy
- 1 Department of Anatomo-Pathology, University of Montreal Heath Care Center, Montreal, Quebec, Canada
| | - Dominique Trudel
- 1 Department of Anatomo-Pathology, University of Montreal Heath Care Center, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Abstract
In the past few years, it has become clear that mutations in epigenetic regulatory genes are common in human cancers. Therapeutic strategies are now being developed to target cancers with mutations in these genes using specific chemical inhibitors. In addition, a complementary approach based on the concept of synthetic lethality, which allows exploitation of loss-of-function mutations in cancers that are not targetable by conventional methods, has gained traction. Both of these approaches are now being tested in several clinical trials. In this Review, we present recent advances in epigenetic drug discovery and development, and suggest possible future avenues of investigation to drive progress in this area.
Collapse
|
14
|
Yu L, Li J, Xu S, Navia Miranda M, Wang G, Duan Y. An Xp11.2 translocation renal cell carcinoma with SMARCB1 (INI1) inactivation in adult end-stage renal disease: a case report. Diagn Pathol 2016; 11:98. [PMID: 27733182 PMCID: PMC5062893 DOI: 10.1186/s13000-016-0551-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/08/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Xp11.2 translocation/transcription factor E3 (TFE3) rearrangement renal cell carcinoma (RCC) is a rare subtype of RCC with limited clinical and pathological data. CASE PRESENTATION Here we present an unusual high-grade Xp11.2 translocation RCC with a rhabdoid feature and SMARCB1 (INI1) inactivation in a 40-year-old man with end-stage kidney disease. The histological examination of the dissected left renal tumor showed an organoid architecture of the eosinophilic or clear neoplastic cells with necrosis and high mitotic activity. In some areas, non-adhesive tumor cells with eccentric nuclei were observed. Immunohistochemically (IHC), the tumor cells are positive for TFE3 and the renal tubular markers (PAX2 and PAX8), and completely negative for SMARCB1, an oncosuppressor protein. Break-apart florescence in situ hybridization and reverse transcription polymerase chain reaction confirmed TFE3 rearrangement on Xp11.2 and the presence of ASPSCR1-TFE3 fusion gene. DNA sequencing revealed a frameshift mutation in exon 4 of SMARCB1 gene. CONCLUSION It is important to recognize this rare RCC with both TFE3 rearrangement and SMARCB1 inactivation, as the prognosis and therapeutic strategies, particularly targeted therapies for such tumors, might be different.
Collapse
Affiliation(s)
- Lu Yu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jun Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mariajose Navia Miranda
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Kohashi K, Tanaka Y, Kishimoto H, Yamamoto H, Yamada Y, Taguchi T, Iwamoto Y, Oda Y. Reclassification of rhabdoid tumor and pediatric undifferentiated/unclassified sarcoma with complete loss of SMARCB1/INI1 protein expression: three subtypes of rhabdoid tumor according to their histological features. Mod Pathol 2016; 29:1232-42. [PMID: 27338635 DOI: 10.1038/modpathol.2016.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/21/2022]
Abstract
Rhabdoid tumor is characterized by rhabdoid cells and shows complete loss of SMARCB1/INI1 protein expression. In existing classifications, the diagnostic synonyms vary depending on the anatomic site: rhabdoid tumors in the central nervous system or extra-central nervous system are, respectively, classified as atypical teratoid/rhabdoid tumor or malignant rhabdoid tumor. In this study, we analyzed the histological, immunohistochemical, microRNA, and clinicopathological statuses of tumors initially diagnosed as malignant rhabdoid tumor (n=33), atypical teratoid/rhabdoid tumor (n=11), and pediatric undifferentiated/unclassified sarcoma (n=8) with complete loss of SMARCB1/INI1 expression, and considered the possibility of their histological reclassification. Our analysis indicated that the tumors could be histologically reclassified into three groups: conventional-type tumors resembling malignant rhabdoid tumor, atypical teratoid/rhabdoid-type tumors resembling atypical teratoid/rhabdoid tumor, and small cell-type tumors resembling malignant lymphoma. The reclassified conventional type was composed of 27 malignant rhabdoid tumors and 9 atypical teratoid/rhabdoid tumors (36 cases). The atypical teratoid/rhabdoid type consisted of six malignant rhabdoid tumors, two atypical teratoid/rhabdoid tumors, and two undifferentiated/unclassified sarcomas (10 cases). The six cases of small cell type were made up of six undifferentiated/unclassified sarcomas. All of the available tumor specimens were positive for vimentin and epithelial marker (EMA, CAM5.2, or AE1/AE3). MicroRNA profiles were not significantly different between the conventional- and small cell-type tumors (Pearson's correlation coefficient: 0.888300 or 0.891388). There was no significant difference in overall survival between atypical teratoid/rhabdoid tumor and malignant rhabdoid tumor (P=0.16). In addition, there were no significant differences in survival between any of the reclassified combinations. In conclusion, we could classify eight tumors initially diagnosed as undifferentiated/unclassified sarcomas into two cases of atypical teratoid/rhabdoid type and six cases of small cell type. We suggest that reclassification of malignant rhabdoid tumors into three groups according to their histologic features rather than the traditional classification by sites of origin would be favorable for their histopathological diagnosis.
Collapse
Affiliation(s)
- Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Kishimoto
- Department of Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Lazo de la Vega L, Hovelson DH, Cani AK, Liu CJ, McHugh JB, Lucas DR, Thomas DG, Patel RM, Tomlins SA. Targeted next-generation sequencing of CIC-DUX4 soft tissue sarcomas demonstrates low mutational burden and recurrent chromosome 1p loss. Hum Pathol 2016; 58:161-170. [PMID: 27664537 DOI: 10.1016/j.humpath.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/13/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Abstract
Gene fusions between CIC and DUX4 define a rare class of soft tissue sarcomas poorly understood at the molecular level. Previous karyotyping and fluorescence in situ hybridization studies support chromosome 8 trisomy as a recurrent alteration; however, other driving alterations are largely unknown. Thus, we analyzed 11 formalin-fixed, paraffin-embedded CIC-DUX4 sarcoma tissue samples (including 3 sample pairs) using targeted Ion Torrent-based multiplexed polymerase chain reaction next-generation sequencing to characterize potential somatic driver alterations in 409 genes. Although we did not identify recurrent somatic mutations (point mutations or insertions/deletions), copy number analysis showed recurrent, broad copy number alterations, including gain of chromosome 8 and loss of 1p. In one sample pair (untreated primary and local recurrence resections), we identified similar copy number profiles and a somatic ARID1A R963X nonsense mutation exclusively in the local recurrence sample. In another sample pair (pre- and post-radiation treatment specimens), we observed single-copy loss of chromosome 7q exclusively in the posttreatment recurrence sample, supporting it as an acquired event after radiation treatment. In the last sample pair (near-concurrent, postchemotherapy primary and distant metastasis), molecular profiles were highly concordant, consistent with limited intertumoral heterogeneity. In summary, next-generation sequencing identified limited somatic driver mutations in CIC-DUX4 sarcomas. However, we identified novel, recurrent copy number alterations, including chromosome 1p, which is also the locus of ARID1A. Additional functional work and assessment of larger cohorts are needed to determine the biological and clinical significance of the alterations identified herein.
Collapse
Affiliation(s)
- Lorena Lazo de la Vega
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel H Hovelson
- Michigan Center for Translational Pathology, Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Andi K Cani
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonathan B McHugh
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; Michigan Center for Translational Pathology, Department of Oral Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - David R Lucas
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dafydd G Thomas
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Rajiv M Patel
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109.
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109; Michigan Center for Translational Pathology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109.
| |
Collapse
|
17
|
Huang SC, Zhang L, Sung YS, Chen CL, Kao YC, Agaram NP, Antonescu CR. Secondary EWSR1 gene abnormalities in SMARCB1-deficient tumors with 22q11-12 regional deletions: Potential pitfalls in interpreting EWSR1 FISH results. Genes Chromosomes Cancer 2016; 55:767-76. [PMID: 27218413 DOI: 10.1002/gcc.22376] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/02/2023] Open
Abstract
SMARCB1 inactivation occurs in a variety of tumors, being caused by various genetic mechanisms. Since SMARCB1 and EWSR1 genes are located close to each other on chromosome 22, larger SMARCB1 deletions may encompass the EWSR1 locus. Herein, we report four cases with SMARCB1-deletions showing concurrent EWSR1 gene abnormalities by FISH, which lead initially to misinterpretations as EWSR1-rearranged tumors. Our study group included various morphologies: a poorly differentiated chordoma, an extrarenal rhabdoid tumor, a myoepithelial carcinoma, and a proximal-type epithelioid sarcoma. All cases showed loss of SMARCB1 (INI1) by immunohistochemistry (IHC) and displayed characteristic histologic features for the diagnoses. The SMARCB1 FISH revealed homozygous or heterozygous deletions in three and one case, respectively. The co-hybridized EWSR1 probes demonstrated either unbalanced split signals or heterozygous deletion in two cases each. The former suggested bona fide rearrangement, while the latter resembled an unbalanced translocation. However, all the FISH patterns were quite complex and distinct from the simple and uniform split signals seen in typical EWSR1 rearrangements. We conclude that in the context of 22q11-12 regional alterations present in SMARCB1-deleted tumors, simultaneous EWSR1 involvement may be misinterpreted as equivalent to EWSR1 rearrangement. A detailed clinicopathologic correlation and supplementing the EWSR1 FISH assay with complementary methodology is mandatory for correct diagnosis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shih-Chiang Huang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chun-Liang Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu-Chien Kao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
18
|
Alaggio R, Coffin CM. The Evolution of Pediatric Soft Tissue Sarcoma Classification in the Last 50 Years. Pediatr Dev Pathol 2015; 18:481-94. [PMID: 26701753 DOI: 10.2350/15-07-1666-misc.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review discusses the history of the classification of soft tissue sarcomas in children and adolescents, the current transition toward integration of morphology and molecular genetics as new entities emerge, and future perspectives.
Collapse
Affiliation(s)
- Rita Alaggio
- 1 Department of Medicine-DIMED, Pathology Unit, University of Padova, Via Gabelli, 61 35124, Padova, Italy
| | - Cheryl M Coffin
- 2 Department of Pathology, Vanderbilt Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Magro G, Longo FR, Angelico G, Spadola S, Amore FF, Salvatorelli L. Immunohistochemistry as potential diagnostic pitfall in the most common solid tumors of children and adolescents. Acta Histochem 2015; 117:397-414. [PMID: 25881477 DOI: 10.1016/j.acthis.2015.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
Making a correct diagnosis when dealing with a small round blue cell tumor (SRBCT) of children and adolescents may be relatively straightforward if the tumor arises in the typical clinical setting and the classic pathologic features are all recognizable. However it is widely known that diagnostic difficulties may arise because of: (i) many tumors share overlapping morphological and/or immunohistochemical features; (ii) considerable clinical, pathologic, and immunohistochemical variations do exist; (iii) the increasing use of small biopsies in daily practice makes the diagnosis of these neoplasms more challenging. Accordingly, immunohistochemical analyses are currently mandatory in establishing the correct diagnosis. In this regard there is the need to identify more sensitive and specific immunomarkers useful in the distinction of the several tumor entities. Over the last decades, several markers, such as CD99, WT1 protein, desmin, myogenin, NB84, and INI1 have been identified, providing a considerable help in recognition of the most common solid tumors (ESW/pPNET, rhabdomyosarcoma, neuroblastoma, Wilms' tumor, desmoplastic small round cell tumor; malignant rhabdoid tumor) in children and adolescents. However, at the same time, their unusual, unexpected expression can result in a misinterpretation of the immunohistochemical results, especially by pathologists who are not familiar with oncologic pediatric pathology. Therefore the present review focuses on the potential immunohistochemical pitfalls which should be kept in mind by pathologists to prevent diagnostic errors when dealing with SRBCTs.
Collapse
Affiliation(s)
- Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy.
| | - Francesca Romana Longo
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Saveria Spadola
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Flavia Francesca Amore
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Rekhi B, Vogel U. Utility of characteristic ‘Weak to Absent’ INI1/SMARCB1/BAF47 expression in diagnosis of synovial sarcomas. APMIS 2015; 123:618-28. [DOI: 10.1111/apm.12395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/05/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Bharat Rekhi
- Department of Pathology; Tata Memorial Centre; Parel Mumbai India
| | - Ulrich Vogel
- Institute of Pathology; University Hospital Tuebingen; Eberhard-Karls-University; Tuebingen Germany
| |
Collapse
|
21
|
Thompson KW, Marquez SB, Lu L, Reisman D. Induction of functional Brm protein from Brm knockout mice. Oncoscience 2015; 2:349-61. [PMID: 26097869 PMCID: PMC4468321 DOI: 10.18632/oncoscience.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Once the knockout of the Brm gene was found to be nontumorigenic in mice, the study of BRM's involvement in cancer seemed less important compared with that of its homolog, Brg1. This has likely contributed to the disparity that has been observed in the publication ratio between BRG1 and BRM. We show that a previously published Brm knockout mouse is an incomplete knockout whereby a truncated isoform of Brm is detected in normal tissue and in tumors. We show that this truncated Brm isoform has functionality comparable to wild type Brm. By immunohistochemistry (IHC), this truncated Brm is undetectable in normal lung tissue and is minimal to very low in Brmnull tumors. However, it is significant in a subset (~40%) of Brg1/Brm double knockout (DKO) tumors that robustly express this truncated BRM, which in part stems from an increase in Brm mRNA levels. Thus, it is likely that this mutant mouse model does not accurately reflect the role that Brm plays in cancer development. We suggest that the construction of a completely new mouse Brm knockout, where Brm is functionally absent, is needed to determine whether or not Brm is actually tumorigenic and if Brm might be a tumor suppressor.
Collapse
Affiliation(s)
- Kenneth W. Thompson
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stefanie B. Marquez
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Transformation of a primitive myxoid mesenchymal tumor of infancy to an undifferentiated sarcoma: a first reported case. J Pediatr Hematol Oncol 2015; 37:e118-20. [PMID: 24390443 DOI: 10.1097/mph.0000000000000107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An 8-month-old girl underwent surgical resection of a cervical mass with histologic diagnosis of a primitive myxoid mesenchymal tumor of infancy (PMMTI). More than 5 years after the initial surgical intervention, the tumor recurred locally, with numerous distant metastases. The histologic morphology of this tumor was compatible with a diagnosis of an undifferentiated high-grade sarcoma. PMMTI is a recently described poorly differentiated fibroblastic soft-tissue tumor of infancy, of at least borderline biological behavior, characterized by local recurrence and a potential to metastasize. We present here the first case of a transformation of a PMMTI into an undifferentiated high-grade sarcoma.
Collapse
|
23
|
Masliah-Planchon J, Bièche I, Guinebretière JM, Bourdeaut F, Delattre O. SWI/SNF chromatin remodeling and human malignancies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:145-71. [PMID: 25387058 DOI: 10.1146/annurev-pathol-012414-040445] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The SWI/SNF complexes, initially identified in yeast 20 years ago, are a family of multi-subunit complexes that use the energy of adenosine triphosphate (ATP) hydrolysis to remodel nucleosomes. Chromatin remodeling processes mediated by the SWI/SNF complexes are critical to the modulation of gene expression across a variety of cellular processes, including stemness, differentiation, and proliferation. The first evidence of the involvement of these complexes in carcinogenesis was provided by the identification of biallelic, truncating mutations of the SMARCB1 gene in malignant rhabdoid tumors, a highly aggressive childhood cancer. Subsequently, genome-wide sequencing technologies have identified mutations in genes encoding different subunits of the SWI/SNF complexes in a large number of tumors. SWI/SNF mutations, and the subsequent abnormal function of SWI/SNF complexes, are among the most frequent gene alterations in cancer. The mechanisms by which perturbation of the SWI/SNF complexes promote oncogenesis are not fully elucidated; however, alterations of SWI/SNF genes obviously play a major part in cancer development, progression, and/or resistance to therapy.
Collapse
|
24
|
Undifferentiated sarcoma in the cerebellopontine angle of an 11-year-old boy. Can J Neurol Sci 2014; 41:397-9. [PMID: 24718828 DOI: 10.1017/s0317167100017376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Abstract
Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies.
Collapse
|
26
|
Rekhi B, A. Jambhekar N. Immunohistochemical validation of INI1/SMARCB1 in a spectrum of musculoskeletal tumors: An experience at a Tertiary Cancer Referral Centre. Pathol Res Pract 2013; 209:758-66. [DOI: 10.1016/j.prp.2013.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/16/2013] [Accepted: 08/07/2013] [Indexed: 02/03/2023]
|
27
|
Wöhrle S, Weiss A, Ito M, Kauffmann A, Murakami M, Jagani Z, Thuery A, Bauer-Probst B, Reimann F, Stamm C, Pornon A, Romanet V, Guagnano V, Brümmendorf T, Sellers WR, Hofmann F, Roberts CWM, Graus Porta D. Fibroblast growth factor receptors as novel therapeutic targets in SNF5-deleted malignant rhabdoid tumors. PLoS One 2013; 8:e77652. [PMID: 24204904 PMCID: PMC3813701 DOI: 10.1371/journal.pone.0077652] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/12/2013] [Indexed: 01/11/2023] Open
Abstract
Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.
Collapse
Affiliation(s)
- Simon Wöhrle
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Moriko Ito
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Masato Murakami
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zainab Jagani
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Anne Thuery
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Flavia Reimann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Astrid Pornon
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Vincent Romanet
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Vito Guagnano
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - William R. Sellers
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | | | - Charles W. M. Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Diana Graus Porta
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Abstract
Sarcomatoid renal cell carcinoma (SRCC) with rhabdoid features is a rare tumor with aggressive behavior and poor prognosis. We report a case of a 71-year-old man with a large left-sided renal mass. Nephrectomy specimen revealed clear cell carcinoma with sarcomatoid and rhabdoid tumor cells. The rhabdoid cells were immunoreactive for mesenchymal markers such as vimentin, epithelial markers such as cytokeratin, and epithelial membrane antigen. These cells were also positive for p53 and had a high proliferation index. The rhabdoid component also demonstrated the loss of immunostaining for integrase interactor 1 (INI1), which stained the other components of the tumor. Only a few cases are available in the published reports documenting rhabdoid cells in SRCC. None of these cases were studied by INI1 immunostain.
Collapse
Affiliation(s)
- Nagla Ahmed Al-Saidi
- Dr. Mohammed Akhtar, King Faisal Specialist Hospital and Research Center, Pathology & Laboratory Medicine, DPLM, MBC 10 PO Box 3354 Riyadh 11211 Saudi Arabia, T: +966-11-4424280, F: +966-11-4424280,
| | | |
Collapse
|
29
|
Chan ES, Pawel BR, Corao DA, Venneti S, Russo P, Santi M, Sullivan LM. Immunohistochemical expression of glypican-3 in pediatric tumors: an analysis of 414 cases. Pediatr Dev Pathol 2013; 16:272-7. [PMID: 23530909 DOI: 10.2350/12-06-1216-oa.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glypican-3 (GPC3) is a proteoglycan thought to play an important role during development. Germline GPC3 mutations are seen in the rare Simpson-Golabi-Behmel syndrome (SGBS), which predisposes patients to Wilms tumor, hepatoblastoma, and neuroblastoma. While numerous adult tumors have been evaluated by immunohistochemistry for GPC3, no comprehensive assessment has been done in pediatric tumors. We therefore investigated GPC3 expression in 143 pediatric central nervous system (CNS) tumors and 271 non-CNS tumors. Among non-CNS tumors, GPC3 expression was seen in 9/9 (100%) hepatoblastomas, 4/6 (67%) malignant rhabdoid tumors, 5/13 (38%) Wilms tumors, 11/37 (30%) alveolar rhabdomyosarcomas, and 8/45 (18%) embryonal rhabdomyosarcomas. All 136 neuroblastomas, 14 Ewing sarcoma/primitive neuroectodermal tumors, and 11 synovial sarcomas were immunonegative for GPC3. Among CNS tumors, GPC3 had restricted expression, with positivity in 6/6 (100%) atypical teratoid rhabdoid tumors and 1/4 (25%) craniopharyngiomas. The remaining 136 CNS tumors-23 medulloblastomas, 21 pilocytic astrocytomas, 13 gangliogliomas, 12 ependymomas, 12 glioblastomas, 11 choroid plexus neoplasms, 10 diffuse astrocytomas (grade II/III), 10 meningiomas, 8 dysembryoplastic neuroepithelial tumors, 8 oligodendrogliomas, 3 craniopharyngiomas, 3 germinomas, and 2 neurocytomas-were entirely negative for GPC3. These results showed GPC3 positivity in a number of non-CNS tumors, with no consistent discrimination between tumors that were or were not associated with SGBS. Within the CNS, GPC3 positivity was limited to a small subset of CNS neoplasms and may thus serve as a useful positive diagnostic biomarker (P < 0.0001) in addition to negative INI1/BAF47/SMARCB1 staining to differentiate atypical teratoid rhabdoid tumors from other high-grade pediatric brain tumors.
Collapse
Affiliation(s)
- Elaine S Chan
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Huidobro C, Fernandez AF, Fraga MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 2013; 70:1543-73. [PMID: 23474979 PMCID: PMC11113764 DOI: 10.1007/s00018-013-1296-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein-Taybi syndrome, Coffin-Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
31
|
Kohashi K, Nakatsura T, Kinoshita Y, Yamamoto H, Yamada Y, Tajiri T, Taguchi T, Iwamoto Y, Oda Y. Glypican 3 expression in tumors with loss of SMARCB1/INI1 protein expression. Hum Pathol 2013; 44:526-33. [DOI: 10.1016/j.humpath.2012.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
|
32
|
Sullivan LM, Folpe AL, Pawel BR, Judkins AR, Biegel JA. Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol 2013; 26:385-92. [PMID: 23060122 PMCID: PMC3556344 DOI: 10.1038/modpathol.2012.175] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SMARCB1 gene alterations were first described in highly malignant rhabdoid tumors of the kidney, brain (atypical teratoid/rhabdoid tumor) and soft tissue. An increasing number of tumors have now shown loss of SMARCB1 protein expression by immunohistochemistry, including the majority of epithelioid sarcomas. However, investigations of SMARCB1 gene alterations in epithelioid sarcoma have produced conflicting results. The aim of this study was to evaluate SMARCB1 status using Sanger sequencing of the coding region and multiplex ligation-dependent probe amplification, a rapid and sensitive method for detecting intragenic deletions and duplications, which has not been used in previous studies. Twenty-one epithelioid sarcomas of both classical and proximal type were selected for SMARCB1 gene testing and SMARCB1 immunohistochemistry. Nineteen of 21 (90%) epithelioid sarcomas were SMARCB1 negative by immunohistochemistry. Twelve of the 19 (63%) had adequate DNA recovery for evaluation. Ten of 12 (83%) tumors showed homozygous deletions of the gene. Two cases showed heterozygous deletions and polymorphisms, but no sequence mutations. These results confirm the high frequency of SMARCB1 deletions in epithelioid sarcoma and show that multiplex ligation-dependent probe amplification is a reliable method for detection of deletions in these cases, which can be performed on formalin-fixed, paraffin-embedded tissue. Given the high percentage of SMARCB1 alterations in epithelioid sarcoma, these findings argue against using SMARCB1 gene deletion as a tool in distinguishing them from malignant rhabdoid tumors.
Collapse
Affiliation(s)
- Lisa M. Sullivan
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| | - Andrew L. Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Bruce R. Pawel
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA USA
| | - Jaclyn A. Biegel
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA,Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
33
|
Abstract
The SWI/SNF complex is a multiprotein complex essential for chromatin remodelling. As such, it plays a key role in the epigenetic regulation of genome expression. This complex is composed of a dozen of proteins, some of which are constant and ubiquitous, especially SMARCB1 and SMARCA4. Mutations in these genes are now described in an increasing number of tumors. Mutations in SMARCB1 characterize the majority of rhabdoid tumors, an aggressive malignancy that exquisitely depends on this single genetic event. Rare rhabdoid tumors have mutation in SMARCA4, a genetic abnormality also found in some medulloblastomas. Many other tumor types, of variable aggressiveness, show an abnormal loss of expression of SMARCB1, but the genetic underlying cause most often remains elusive. The recent sequencings of whole exomes have described frequent mutations in other genes of the SWI/SNF complex: mutations in ARID1A in liver, gastric or bladder carcinomas, and PBRM1 mutations in renal cancers. These data establish the wide role of SWI/SNF complex in cancers and justify that major efforts should now be devoted to this common mechanism of human oncogenesis.
Collapse
|
34
|
Andreu-Vieyra CV, Liang G. Nucleosome occupancy and gene regulation during tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 754:109-34. [PMID: 22956498 DOI: 10.1007/978-1-4419-9967-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleosomes are the basic structural units of eukaryotic chromatin. In recent years, it has become evident that nucleosomes and their position, in concert with other epigenetic mechanisms (such as DNA methylation, histone modifications, changes in histone variants, as well as small noncoding regulatory RNAs) play essential roles in the control of gene expression. Here, we discuss the mechanisms and factors that regulate nucleosome position and gene expression in normal and cancer cells.
Collapse
|
35
|
Jahromi MS, Putnam AR, Druzgal C, Wright J, Spraker-Perlman H, Kinsey M, Zhou H, Boucher KM, Randall RL, Jones KB, Lucas D, Rosenberg A, Thomas D, Lessnick SL, Schiffman JD. Molecular inversion probe analysis detects novel copy number alterations in Ewing sarcoma. Cancer Genet 2012; 205:391-404. [PMID: 22868000 DOI: 10.1016/j.cancergen.2012.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 01/22/2023]
Abstract
Ewing sarcoma (ES) is the second most common bone tumor in children and young adults, with dismal outcomes for metastatic and relapsed disease. To better understand the molecular pathogenesis of ES and to identify new prognostic markers, we used molecular inversion probes (MIPs) to evaluate copy number alterations (CNAs) and loss of heterozygosity (LOH) in formalin-fixed paraffin-embedded (FFPE) samples, which included 40 ES primary tumors and 12 ES metastatic lesions. CNAs were correlated with clinical features and outcome, and validated by immunohistochemistry (IHC). We identified previously reported CNAs, in addition to SMARCB1 (INI1/SNF5) homozygous loss and copy neutral LOH. IHC confirmed SMARCB1 protein loss in 7-10% of clinically diagnosed ES tumors in three separate cohorts (University of Utah [N = 40], Children's Oncology Group [N = 31], and University of Michigan [N = 55]). A multifactor copy number (MCN)-index was highly predictive of overall survival (39% vs. 100%, P < 0.001). We also identified RELN gene deletions unique to 25% of ES metastatic samples. In summary, we identified both known and novel CNAs using MIP technology for the first time in FFPE samples from patients with ES. CNAs detected by microarray correlate with outcome and may be useful for risk stratification in future clinical trials.
Collapse
Affiliation(s)
- Mona S Jahromi
- Center for Children's Cancer Research (C3R), Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
SMARCB1 deficiency in tumors from the peripheral nervous system: a link between schwannomas and rhabdoid tumors? Am J Surg Pathol 2012; 36:964-72. [PMID: 22614000 DOI: 10.1097/pas.0b013e31825798f1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inactivation of SMARCB1 tumor-suppressor gene was originally described as highly specific for rhabdoid tumors (RTs). Nevertheless, recent reports have illustrated that SMARCB1 alterations also characterize other tumors; in particular, some familial schwannomatosis and epithelioid malignant peripheral nerve sheath tumors, both from peripheral nervous system (PNS) origin, lack BAF47 expression. To document the putative role of SMARCB1 in PNS, we reviewed PNS tumors referred to our institution for a molecular analysis of SMARCB1 because of histologic features compatible with RT. METHODS Clinicopathologic, radiologic, and molecular characteristics were detailed for the 12 cases showing loss of expression and/or biallelic inactivation of SMARCB1. The status of the NF2 gene, likely to synergize with SMARCB1 in PNS tumors, was also analyzed. RESULTS Patients' age ranged from 0 to 45 years (median age, 6.6 y). Neurological symptoms were observed in 7/12 cases with radiologic features evoking a neuroblastic tumor in 6 cases and a peripheral nerve tumor in 4 cases. The mean delay before diagnosis was 3 months. Histologic examination revealed rhabdoid features in 11/12 tumors. All tumors showed a complete loss of SMARCB1 expression. Interestingly, adjacent nervous proliferation resembling neurofibromas were observed in 3 cases, suggesting a multistep transformation. Three tumors harbored a hemizygous deletion at the NF2 locus, but all NF2 sequences were normal. CONCLUSIONS We report the first series of PNS RT. In patients with aggressive PNS tumors, RT should be suspected, and anti-SMARCB1 immunohistochemical analysis should be performed. SMARCB1 inactivation, occasionally associated with NF2 deletion, might have oncogenic effects in peripheral nerves.
Collapse
|
37
|
Abstract
Many soft tissue tumors of childhood lack obvious differentiation toward a defined mesenchymal tissue type or have a phenotype that does not correspond to any defined normal tissue. These challenging tumors are currently regarded as neoplasms of uncertain differentiation. Nonetheless, there have been great strides in the understanding of their pathologic and genetic features and biologic underpinnings. The application of new genetic information to the pathologic diagnosis among this group of tumors is an emerging area in diagnostic pediatric pathology. This article reviews the clinicopathologic features of tumors of uncertain and/or miscellaneous origin, with an emphasis on the unique aspects of these neoplasms in children and adolescents, use of diagnostic adjuncts, and differential diagnosis.
Collapse
Affiliation(s)
- Rita Alaggio
- Department of Pathology, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
38
|
Abstract
Fibroblastic and myofibroblastic tumors in children and adolescents are a relatively common group of soft tissue proliferations that range from reactive to hamartomatous to neoplastic, with a full spectrum of benign, intermediate, and malignant neoplasms. These lesions are diagnostically challenging because of morphologic and immunohistochemical overlap, despite significant clinical, genetic, and prognostic differences. The fibromatoses are a major subgroup, and all types of fibromatoses can occur in the 1st 2 decades of life. Intermediate and malignant fibroblastic-myofibroblastic tumors are an important group that includes variants of fibrosarcoma and other tumors with recurrent cytogenetic or molecular genetic abnormalities and low metastatic potential. Pathologic examination is enhanced by adjunct techniques, such as immunohistochemistry, cytogenetics, and molecular genetics, although morphology provides the ultimate criteria for a specific diagnosis. This article reviews the clinicopathologic features of fibroblastic and myofibroblastic tumors with an emphasis on the unique aspects of these neoplasms in children and adolescents, the use of diagnostic adjuncts, and differential diagnoses.
Collapse
Affiliation(s)
- Cheryl M Coffin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.
| | | |
Collapse
|
39
|
Graham C, Chilton-MacNeill S, Zielenska M, Somers GR. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol 2012; 43:180-9. [DOI: 10.1016/j.humpath.2011.04.023] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/24/2011] [Accepted: 04/02/2011] [Indexed: 12/28/2022]
|
40
|
Abstract
Claudins are tight junction proteins with claudin-6 (CLDN6) expression mostly restricted to embryonic and fetal life. Previously reported gene expression microarray analysis showed an increased level of CLDN6 in atypical teratoid rhabdoid tumors (AT/RT) compared with other central nervous system (CNS) tumors and sarcomas. However, there exist conflicting data on expression of CLDN6 as assessed by immunohistochemistry in CNS tumors. We established membranous staining as a specific and reproducible method for evaluating CLDN6 expression based on fetal and adolescent controls. We then evaluated a large group (257) of pediatric tumors using tissue microarrays, including: 47 malignant rhabdoid tumors (MRTs), (31 AT/RTs and 16 non-CNS MRTs); 67 small, round, blue cell tumors (10 Wilms tumors, 10 embryonal rhabdomyosarcomas, 10 neuroblastomas (NBs), 10 synovial sarcomas (SSs), 9 hepatoblastomas (HBs), 9 alveolar rhabdomyosarcomas, and 9 Ewings sarcomas); and 143 CNS tumors (24 medulloblastomas, 21 pilocytic astrocytomas, 14 astrocytomas grade II/III, 13 gangliogliomas, 12 glioblastomas, 12 ependymal tumors, 11 choroid plexus tumors, 10 meningiomas, 8 dysembryoplastic neuroepithelial tumors, 8 oligodendrogliomas, 4 craniopharyngiomas, 2 germinomas, 2 primitive neuroectodermal tumors (PNET), and 2 central neurocytomas). CLDN6 expression was seen in 12 of 31 (39%) AT/RTs, 7 of 16 (44%) non-CNS MRTs, 5 of 10 (50%) Wilms tumors, 1 of 9 (11%) HBs, 2 of 2 (100%) germinomas, 1 of 2 (50%) CNS PNETs, 1 of 24 (4%) medulloblastomas, and 1 of 10 (10%) meningiomas. Ten of 11 (91%) choroid plexus tumors showed apical staining but no concentric membranous staining. Although CLDN6 is expressed in both AT/RTs and MRTs, it is not a specific biomarker as it is expressed in a variety of other pediatric CNS and soft tissue tumors.
Collapse
|
41
|
Marino M, Mampel A, Furfuro S, Di María M, Oliva J, Vargas A. Recovery of DNA from paraffin embedded tumour samples of pediatric sarcomas. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2011. [DOI: 10.1016/j.fsigss.2011.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
|
43
|
Wang X, Werneck MBF, Wilson BG, Kim HJ, Kluk MJ, Thom CS, Wischhusen JW, Evans JA, Jesneck JL, Nguyen P, Sansam CG, Cantor H, Roberts CWM. TCR-dependent transformation of mature memory phenotype T cells in mice. J Clin Invest 2011; 121:3834-45. [PMID: 21926465 PMCID: PMC3195451 DOI: 10.1172/jci37210] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/03/2011] [Indexed: 01/21/2023] Open
Abstract
A fundamental goal in cancer research is the identification of the cell types and signaling pathways capable of initiating and sustaining tumor growth, as this has the potential to reveal therapeutic targets. Stem and progenitor cells have been implicated in the genesis of select lymphoid malignancies. However, the identity of the cells in which mature lymphoid neoplasms are initiated remains unclear. Here, we investigate the origin of peripheral T cell lymphomas using mice in which Snf5, a chromatin remodelling-complex subunit with tumor suppressor activity, could be conditionally inactivated in developing T cells. In this model of mature peripheral T cell lymphomas, the cell of origin was a mature CD44hiCD122loCD8⁺ T cell that resembled a subset of memory cells that has capacity for self-renewal and robust expansion, features shared with stem cells. Further analysis showed that Snf5 loss led to activation of a Myc-driven signaling network and stem cell transcriptional program. Finally, lymphomagenesis and lymphoma proliferation depended upon TCR signaling, establishing what we believe to be a new paradigm for lymphoid malignancy growth. These findings suggest that the self-renewal and robust proliferative capacities of memory T cells are associated with vulnerability to oncogenic transformation. Our findings further suggest that agents that impinge upon TCR signaling may represent an effective therapeutic modality for this class of lethal human cancers.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Savage N, Linn D, McDonough C, Donohoe JM, Franco A, Reuter V, Biddinger PW, Eaton KW, Biegel JA, Sharma S. Molecularly confirmed primary malignant rhabdoid tumor of the urinary bladder: implications of accurate diagnosis. Ann Diagn Pathol 2011; 16:504-7. [PMID: 21775180 DOI: 10.1016/j.anndiagpath.2011.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 12/28/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are well recognized in the kidney and extrarenal sites such as soft tissues, retroperitoneum, and bladder but are classified as atypical teratoid/rhabdoid tumors in the central nervous system. The unifying features of both extracranial MRT and atypical teratoid/rhabdoid tumors are the exon deletions/mutations of the SMARCB1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1) gene in 22q11.23 and resulting loss of SMARCB1/INI1 (integrase interactor 1) protein expression by immunohistochemistry. We herein report a case of extrarenal rhabdoid tumor confined to the bladder in a 3-year-old child, diagnosed by histopathology and confirmed by immunohistochemical and molecular studies. This is only the fourth molecularly proven primary MRT of the bladder to be reported. The patient's peripheral blood was negative for the deletions observed in the tumor, thereby confirming a sporadic origin for the tumor. Given the possible dismal outcome, urgency for definitive diagnosis to institute intensive multimodality therapy, histopathologic differential diagnosis with rhabdomyosarcoma and urothelial carcinoma with rhabdoid features, and lack of consensus management guidelines, oncologists, urologists, and pathologists must be aware of this entity. Evaluation for a germ line SMARCB1 alteration may greatly aid risk stratification and family planning.
Collapse
Affiliation(s)
- Natasha Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sadikovic B, Graham C, Ho M, Zielenska M, Somers GR. Immunohistochemical expression and cluster analysis of mesenchymal and neural stem cell-associated proteins in pediatric soft tissue sarcomas. Pediatr Dev Pathol 2011; 14:259-72. [PMID: 21162641 DOI: 10.2350/10-08-0890-oa.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pediatric undifferentiated soft tissue sarcomas (USTSs) are a group of malignancies composed predominantly of primitive round cell sarcomas, the histogenesis of which is uncertain. Thus, diagnosis and therapy remain a challenge. The aims of the current study were to determine whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of pediatric USTSs and to determine whether pediatric USTSs expressed a unique panel of stem cell-associated proteins to aid diagnosis. Tumors included 28 Ewing sarcoma/primitive neuroectodermal tumors (ESs), 22 embryonal rhabdomyosarcomas (ERMSs), 8 alveolar rhabdomyosarcomas (ARMSs), 5 synovial sarcomas (SSs), 5 malignant peripheral nerve sheath tumors (MPNSTs), and 13 USTSs. Stem cell antibodies included 3 mesenchymal stem cell markers (CD44, CD105, and CD166) and 5 neural stem cell markers (CD15, CD29, CD56, CD133, and nestin). Sections were scored followed by statistical analysis, clustering analysis, and visualizations using Partek Genomic Suite Software. The Euclidean clustering divided the tumors into 2 major groups. ESs and USTSs formed the majority of the 1st group, whereas ERMSs, ARMSs, MPNSTs, and SSs formed the 2nd group. Reduced expression of CD56 was strongly associated with the ES/USTS cluster (P < 0.0001). ESs and USTSs were further separated by CD166 staining, wherein increased expression was associated with ES (P < 0.0001). The 2nd group included the majority of other sarcomas, with no consistent separation between subtypes. The current study demonstrates the usefulness of applying stem cell markers to pediatric sarcomas and indicates that USTSs and ESs are closely related and may share a common histogenesis.
Collapse
Affiliation(s)
- Bekim Sadikovic
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
46
|
Abstract
SWI/SNF chromatin remodelling complexes use the energy of ATP hydrolysis to remodel nucleosomes and to modulate transcription. Growing evidence indicates that these complexes have a widespread role in tumour suppression, as inactivating mutations in several SWI/SNF subunits have recently been identified at a high frequency in a variety of cancers. However, the mechanisms by which mutations in these complexes drive tumorigenesis are unclear. In this Review we discuss the contributions of SWI/SNF mutations to cancer formation, examine their normal functions and discuss opportunities for novel therapeutic interventions for SWI/SNF-mutant cancers.
Collapse
Affiliation(s)
- Boris G Wilson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Abstract
Abstract
Context.—Soft tissue pathology encompasses a remarkably diverse assortment of benign and malignant soft tissue tumors. Rendering a definitive diagnosis is complicated not only by the large volume of existing histologic subtypes (>100) but also frequently by the presence of overlapping clinical, histologic, immunohistochemical, and/or radiographic features. During the past 3 decades, mesenchymal tumor–specific, cytogenetic and molecular genetic abnormalities have demonstrated an increasingly important, ancillary role in mesenchymal tumor diagnostics.
Objectives.—To review molecular diagnostic tools available to the pathologist to further classify specific soft tissue tumor types and recurrent aberrations frequently examined. Advantages and limitations of individual approaches will also be highlighted.
Data Sources.—Previously published review articles, peer-reviewed research publications, and the extensive cytogenetic and molecular diagnostic experience of the authors to include case files of The University of Nebraska Medical Center.
Conclusions.—Cytogenetic and molecular genetic assays are used routinely for diagnostic purposes in soft tissue pathology and represent a powerful adjunct to complement conventional microscopy and clinicoradiographic evaluation in the formulation of an accurate diagnosis. Care should be taken, however, to recognize the limitations of these approaches. Ideally, more than one technical approach should be available to a diagnostic laboratory to compensate for the shortcomings of each approach in the assessment of individual specimens.
Collapse
|
48
|
Harris TJ, Donahue JE, Shur N, Tung GA. Case 168: Rhabdoid Predisposition Syndrome—Familial Cancer Syndromes in Children. Radiology 2011; 259:298-302. [DOI: 10.1148/radiol.10092219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Schittenhelm J, Nagel C, Meyermann R, Beschorner R. Atypical teratoid/rhabdoid tumors may show morphological and immunohistochemical features seen in choroid plexus tumors. Neuropathology 2011; 31:461-7. [DOI: 10.1111/j.1440-1789.2010.01189.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 2011; 56:7-15. [PMID: 21108436 PMCID: PMC3086793 DOI: 10.1002/pbc.22831] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Germline mutations and deletions of SMARCB1/INI1 in chromosome band 22q11.2 predispose patients to rhabdoid tumor and schwannomatosis. Previous estimates suggested that 15-20% of rhabdoid tumors were caused by an underlying germline abnormality of SMARCB1. However, these studies were limited by case selection and an inability to detect intragenic deletions and duplications. PROCEDURE One hundred matched tumor and blood samples from patients with rhabdoid tumors of the brain, kidney, or soft tissues were analyzed for mutations and deletions of SMARCB1 by FISH, multiplex ligation-dependent probe amplification (MLPA), sequence analysis and high resolution Illumina 610K SNP-based oligonucleotide array studies. RESULTS Thirty-five of 100 patients were found to have a germline SMARCB1 abnormality. These abnormalities included point and frameshift mutations, intragenic deletions and duplications, and larger deletions including regions both proximal and distal to SMARCB1. There were nine cases that demonstrated parent to child transmission of a mutated copy of SMARCB1. In eight of the nine cases, one or more family members were also diagnosed with rhabdoid tumor or schwannoma, and two of the eight families presented with multiple affected children in a manner consistent with gonadal mosaicism. CONCLUSIONS Approximately one-third of newly diagnosed patients with rhabdoid tumor have an underlying genetic predisposition to tumors due to a germline SMARCB1 alteration. Families may demonstrate incomplete penetrance and gonadal mosaicism, which must be considered when counseling families of patients with rhabdoid tumor.
Collapse
Affiliation(s)
- Katherine W. Eaton
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Laura S. Tooke
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Luanne M. Wainwright
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jaclyn A. Biegel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine
| |
Collapse
|