1
|
Santos Freire M, Victor de Oliveira Monteiro A, Moura Martins T, Socorro Silva Lima Duarte M, Carlos Lima A, Luiz Araújo Bentes Leal A, Rodolfo Pereira da Silva F, Fernando Marques Barcellos J. Genetic variations in immune mediators and prostate cancer risk: A field synopsis with Bayesian calculations. Cytokine 2024; 179:156630. [PMID: 38696882 DOI: 10.1016/j.cyto.2024.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE Our study aimed to revaluate the significant data from meta-analyses on genetic variations in immune mediators and the risk of prostate cancer (PCa) by Bayesian approaches. METHODS We performed a search on the literature before September 5th, 2023, for meta-analytic studies on polymorphisms in immune mediator genes and the risk of PCa. Two Bayesian approaches were used to assess the level of noteworthiness in the meta-analytic data: the False-Positive Rate Probability (FPRP) and the Bayesian False Discovery Probability (BFDP) with a statistical power of 1.2 and 1.5 of Odds Ratio at a prior probability of 10-3 and 10-6. The quality evaluation of studies was performed with the Venice criteria. Gene-gene and protein-protein networks were designed for the genes and products enrolled in the results. RESULTS As results, 18 meta-analyses on 17 polymorphisms in several immune mediator genes were included (IL1B rs16944/rs1143627, IL4 rs2243250/rs2227284/rs2070874, IL6 1800795/rs1800796/rs1800797, IL8 rs4073, IL10 rs1800896/rs1800871/rs1800872, IL18 rs1946518, COX2 rs2745557, TNFA rs361525 and PTGS2 rs20417/689470). The Bayesian calculations showed the rs1143627 and the rs1946518 polymorphisms in IL1B and IL18 genes, respectively, were noteworthy. The Venice criteria showed that only four studies received the highest level of evidence. The gene-gene and protein-protein networks reinforced the findings on IL1B and IL18 genes. CONCLUSION In conclusion, this current Bayesian revaluation showed that the rs1143627 and the rs1946518 polymorphisms in the IL1B and IL18 genes, respectively, were noteworthy biomarker candidates for PCa risk.
Collapse
Affiliation(s)
- Matheus Santos Freire
- Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Tayane Moura Martins
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Antonio Carlos Lima
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Felipe Rodolfo Pereira da Silva
- Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil; Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil.
| | | |
Collapse
|
2
|
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F, Xu Q. Role of N 6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 2024; 51:88. [PMID: 38757383 PMCID: PMC11110010 DOI: 10.3892/or.2024.8747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6‑methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro‑molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
3
|
Shi Y, Wang H, Golijanin B, Amin A, Lee J, Sikov M, Hyams E, Pareek G, Carneiro BA, Mega AE, Lagos GG, Wang L, Wang Z, Cheng L. Ductal, intraductal, and cribriform carcinoma of the prostate: Molecular characteristics and clinical management. Urol Oncol 2024; 42:144-154. [PMID: 38485644 DOI: 10.1016/j.urolonc.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/15/2024]
Abstract
Prostatic acinar adenocarcinoma accounts for approximately 95% of prostate cancer (CaP) cases. The remaining 5% of histologic subtypes of CaP are known to be more aggressive and have recently garnered substantial attention. These histologic subtypes - namely, prostatic ductal adenocarcinoma (PDA), intraductal carcinoma of the prostate (IDC-P), and cribriform carcinoma of the prostate (CC-P) - typically exhibit distinct growth characteristics, genomic features, and unique oncologic outcomes. For example, PTEN mutations, which cause uncontrolled cell growth, are frequently present in IDC-P and CC-P. Germline mutations in homologous DNA recombination repair (HRR) genes (e.g., BRCA1, BRCA2, ATM, PALB2, and CHEK2) are discovered in 40% of patients with IDC-P, while only 9% of patients without ductal involvement had a germline mutation. CC-P is associated with deletions in common tumor suppressor genes, including PTEN, TP53, NKX3-1, MAP3K7, RB1, and CHD1. Evidence suggests abiraterone may be superior to docetaxel as a first-line treatment for patients with IDC-P. To address these and other critical pathological attributes, this review examines the molecular pathology, genetics, treatments, and oncologic outcomes associated with CC-P, PDA, and IDC-P with the objective of creating a comprehensive resource with a centralized repository of information on PDA, IDC-P, and CC-P.
Collapse
Affiliation(s)
- Yibo Shi
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT
| | - Borivoj Golijanin
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Joanne Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Mark Sikov
- Department of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI
| | - Elias Hyams
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Gyan Pareek
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Anthony E Mega
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Galina G Lagos
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Lisha Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Zara Rozalen A, Martin JM, Rajendran R, Jain M, Nava VE. Ductal Adenocarcinoma of the Prostate with Novel Genetic Alterations Characterized by Next-Generation Sequencing. Curr Oncol 2024; 31:1556-1561. [PMID: 38534951 PMCID: PMC10968787 DOI: 10.3390/curroncol31030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 03/17/2024] [Indexed: 05/26/2024] Open
Abstract
Ductal adenocarcinoma of the prostate (DAP) is an uncommon variant of prostate cancer associated with aggressive disease and poor outcome. It presents most frequently as a mixed tumor combined with acinar adenocarcinoma. Although the histopathological features of DAP are well known, its genomic characteristics are still evolving, prompting the suggestion that all DAP would benefit from molecular analysis with the purpose of improving tumor recognition, genetic classification, and, ultimately, personalized therapy. Herein, we report a case of DAP with novel genetic alterations (BCOR P1153S, ERG M219I, KDR A750E, POLE S1896P, and RAD21 T461del).
Collapse
Affiliation(s)
- Alexandra Zara Rozalen
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
- Department of Pathology, Mount Sinai Morningside and West Hospitals, New York, NY 10019, USA
| | - Jose Manuel Martin
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
| | - Rithika Rajendran
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
| | - Maneesh Jain
- Section of Hematology & Oncology, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Medicine, The George Washington University Hospital, Washington, DC 20037, USA
| | - Victor E. Nava
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
- Department of Pathology, The George Washington University Hospital, Washington, DC 20037, USA
| |
Collapse
|
5
|
Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Moch H. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs-Part B: Prostate and Urinary Tract Tumors. Eur Urol 2022; 82:469-482. [PMID: 35965208 DOI: 10.1016/j.eururo.2022.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The 2022 World Health Organization (WHO) classification of the urinary and male genital tumors was recently published by the International Agency for Research on Cancer. This fifth edition of the WHO "Blue Book" offers a comprehensive update on the terminology, epidemiology, pathogenesis, histopathology, diagnostic molecular pathology, and prognostic and predictive progress in genitourinary tumors. In this review, the editors of the fifth series volume on urologic and male genital neoplasms present a summary of the salient changes introduced to the classification of tumors of the prostate and the urinary tract.
Collapse
Affiliation(s)
- George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Eva M Compérat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital St Leonards, Sydney, Australia; Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards, Sydney, Australia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Santosh Menon
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maria R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), Bern Center for Precision Medicine (BCPM), University of Bern and Inselspital, Bern, Switzerland
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, AichiMedicalUniversity Hospital, Nagakut, Japan
| | - Samra Turajlic
- The Francis Crick Institute and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
7
|
Histological patterns, subtypes and aspects of prostate cancer: different aspects, different outcomes. Curr Opin Urol 2022; 32:643-648. [PMID: 36081403 DOI: 10.1097/mou.0000000000001038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The most common prostatic cancers (PCa) are acinary adenocarcinomas. Histological subtypes have been variably defined. The purpose of this review is to discuss unusual histological patterns and subtypes of acinar adenocarcinoma, as well as other types of PCa and their prognostic and therapeutic relevance. RECENT FINDINGS The new term 'subtype' for morphologically defined tumor entities replaced the term 'variant' in the new 2022 classification of the WHO to allow for clear terminological distinction from genetic variants. The 2022 WHO classification mentions prostatic intraepithelial neoplasia (PIN)-like carcinoma, signet-cell-like adenocarcinoma, sarcomatoid carcinoma and pleomorphic-giant-cell adenocarcinoma of the prostate as true subtypes of acinary PCa. Other forms of acinary PCa are termed unusual histological patterns and include atrophic, foamy-cell, microcystic, pseudohyperplastic and mucinous patterns. Nonacinar forms of prostate cancer include other glandular PCa, the ductal adenocarcinoma and the treatment-associated neuroendocrine carcinoma, and nonglandular PCa, the adenosquamous carcinoma, the squamous cell carcinoma and the adenoid cystic (basal cell) carcinoma of the prostate. SUMMARY True subtypes of acinary PCa and other forms of glandular and nonglandular PCa show relevant differences in prognosis and treatment approach compared with classic acinary PCa. The relevance of unusual histological patterns mainly lies in their deceptive benign appearance and the need for pathologists to know about these entities for accurate and timely diagnosis.
Collapse
|
8
|
Mohanty SK, Lobo A, Cheng L. The 2022 revision of World Health Organization classification of tumors of the urinary system and male genital organs: advances and challenges. Hum Pathol 2022; 136:123-143. [PMID: 36084769 DOI: 10.1016/j.humpath.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023]
Abstract
The fifth edition of the World Health Organization (WHO) classification of urinary and male genital organ tumors has been recently published in 2022. The application of molecular profiling has made a substantial impact on classification of urologic tumors. The new WHO classification introduces a group of molecularly well-defined renal tumor subtypes. The significant changes include addition of a category of "other oncocytic tumors" with oncocytoma/chromophobe renal cell carcinoma (chRCC)-like features, elimination of the subcategorization of type1/2 papillary RCC and inclusion of eosinophilic solid and cystic RCC as an independent tumor entity. The WHO/ISUP grading now has been recommended for all RCCs. Major nomenclature changes include replacement of histologic 'variants' by 'subtypes', 'clear cell papillary renal cell carcinoma' to 'clear cell renal cell tumor','TCEB1-mutated RCC' to 'ELOC-mutated RCC', 'hereditary leiomyomatosis and renal cell carcinoma' to 'fumarate hydratase-deficient RCC', 'RCC-Unclassified' to 'RCC-NOS', 'primitive neuroectodermal tumor' to 'embryonic neuroectodermal tumor', 'testicular carcinoid' to 'testicular neuroendocrine tumor', and 'basal cell carcinoma of the prostate' to 'adenoid-cystic (basal-cell) carcinoma of the prostate'. Metastatic, hematolymphoid, mesenchymal, melanocytic, soft tissue and neuroendocrine tumors are collectively discussed in separate chapters. It has been suggested that the morphological classification of urothelial cancer be replaced with a new molecular taxonomic classification system.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and CORE Diagnostics, Gurgaon, India (Zipcode:122016)
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Center of Urology and Pathology, Raipur, India (Zipcode:490042)
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA (Zipcode: 02903).
| |
Collapse
|
9
|
Lindh C, Samaratunga H, Delahunt B, Bergström R, Chellappa V, Yaxley J, Lindberg J, Egevad L. Ductal and acinar components of mixed prostatic adenocarcinoma frequently have a common clonal origin. Prostate 2022; 82:576-583. [PMID: 35049068 PMCID: PMC9306900 DOI: 10.1002/pros.24304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ductal adenocarcinoma (DA) is an aggressive subtype of prostate cancer. It is most commonly seen in mixed tumors together with conventional acinar adenocarcinoma (AA). The genetic profile of DA and its clonal origin is not fully characterized. OBJECTIVE To investigate whether DA represents a distinct genetic subtype and to investigate the somatic relationship between the ductal and acinar components of mixed cancers. DESIGN, SETTING, AND PARTICIPANTS In 17 radical prostatectomy specimens ductal and acinar tumor components from the same tumor foci were dissected. DNA was extracted and genomic sequencing performed. After exclusion of two cases with low cell yield, 15 paired samples remained for analysis. RESULTS In 12 of 15 cases a common somatic denominator was identified, while three cases had clonally separate components. In DA, TMPRSS2-ERG gene fusions were detected in 47% (7/15), clonal FOXA1 alterations in 33% (5/15) and SPOP alterations in 27% (4/15) of cases. In one case KIAA1549-BRAF fusion was identified. Genome doubling events, resulting in an increased ploidy, were identified in the DA in 53% (8/15) of cases, but not seen in any AA. PTEN and CTNNB1 alterations were enriched in DA (6/15) but not seen in any AA. No cancers showed microsatellite instability or high tumor mutation burden. CONCLUSIONS Ductal and acinar prostate adenocarcinoma components of mixed tumors most often share the same origin and are clonally related. DA components in mixed tumor often exhibit genome doubling events resulting in aneuploidy, consistent with the aggressive nature of high grade prostate cancer.
Collapse
Affiliation(s)
- Claes Lindh
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | | | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health SciencesUniversity of OtagoWellingtonNew Zealand
| | - Rebecka Bergström
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Venkatesh Chellappa
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - John Yaxley
- Wesley Urology ClinicBrisbaneQueenslandAustralia
| | - Johan Lindberg
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Lars Egevad
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
10
|
Surintrspanont J, Zhou M. Prostate Pathology: What is New in the 2022 WHO Classification of Urinary and Male Genital Tumors? Pathologica 2022; 115:41-56. [PMID: 36645399 DOI: 10.32074/1591-951x-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/17/2023] Open
Abstract
In 2022, after a six-year interval, the International Agency for Research on Cancer (IARC) has published the 5th edition of the WHO Classification of Urinary and Male Genital Tumors, which provides a comprehensive update on tumor classification of the genitourinary system. This review article focuses on prostate carcinoma and underscores changes in the prostate chapter as well as those made across the entire series of the 5th edition of WHO Blue Books. Although no major alterations were made to this chapter, some of the most notable updates include restructure of contents and introduction of a new format; standardization of mitotic counts, genomic nomenclatures, and units of length; refined definition for the terms "variant", "subtype", and "histologic pattern"; reclassification of prostatic intraepithelial neoplasia (PIN)-like adenocarcinoma as a subtype of prostatic acinar adenocarcinoma; and recognition of treatment-related neuroendocrine prostatic carcinoma as a distinct tumor type. Evolving and unsettled issues related to grading of intraductal carcinoma of the prostate and reporting of tertiary Gleason pattern, the definition and prognostic significance of cribriform growth pattern, and molecular pathology of prostate cancer will also be covered in this review.
Collapse
Affiliation(s)
- Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
11
|
Russell DH, Epstein JI. Intraductal Adenocarcinoma of the Prostate With Cribriform or Papillary Ductal Morphology: Rare Biopsy Cases Lacking Associated Invasive High-grade Carcinoma. Am J Surg Pathol 2022; 46:233-240. [PMID: 34619708 DOI: 10.1097/pas.0000000000001819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prostatic duct adenocarcinoma, characterized by pseudostratified columnar epithelium, has historically been considered invasive carcinoma, although it may commonly have an intraductal component. Usual (acinar) intraductal carcinoma of the prostate (IDC-P) is a noninvasive high-risk lesion typically associated with high-grade, high-stage prostate cancer. Whereas there have been rare biopsy studies of pure acinar IDC-P or IDC-P associated with only low-grade carcinoma, there have been no analogous series of IDC-P with cribriform or papillary ductal morphology on biopsy unassociated with invasive high-grade carcinoma. We identified 14 patients with biopsies showing IDC-P with ductal morphology, defined as prostatic duct adenocarcinoma confined to glands/ducts with immunohistochemically proven retention of basal cells. Our series includes 12 patients with pure IDC-P and 2 patients with concurrent low-volume Grade Group 1 invasive cancer in unassociated cores. Three patients underwent radical prostatectomy: 2/3 had high-grade cancer in their resection specimen (Grade Group 3, Grade Group 5), including 1 with advanced stage and nodal metastases; 1/3 had Grade Group 1 organ-confined carcinoma and spatially distinct IDC-P with ductal morphology. Five men had only follow-up biopsies: 2/5 had cancer (Grade Group 2, Grade Group 4); 1/5 had IDC-P (on 2 repeat biopsies); and 2/5 had benign transurethral resection of the prostate. In all 5 cases with invasive cancer, the invasive portion was comprised purely of acinar morphology; no invasive ductal component was identified. Five patients did not have follow-up biopsies and were treated with radiation therapy±androgen deprivation. One patient had no follow-up information. In an analogous situation to acinar IDC-P, we propose that rarely there is a precursor form of ductal adenocarcinoma that can exist without concurrent invasive high-grade carcinoma and propose the term "IDC-P with ductal morphology," consistent with the terminology for acinar prostate adenocarcinoma. Until more evidence is accumulated, we recommend reporting and treating patients with IDC-P with ductal morphology in a manner analogous to those with acinar IDC-P. As with pure IDC-P with acinar morphology, we would also recommend not grading pure IDC-P with ductal morphology. Finally, we propose a new addition to the diagnostic criteria of IDC-P to include intraductal lesions with ductal morphology consisting of papillary fronds or cribriform lesions lined by cytologically atypical pseudostratified epithelium.
Collapse
Affiliation(s)
| | - Jonathan I Epstein
- Departments of Pathology
- Urology
- Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
12
|
Lawrence MG, Porter LH, Clouston D, Murphy DG, Frydenberg M, Taylor RA, Risbridger GP. Knowing what's growing: Why ductal and intraductal prostate cancer matter. Sci Transl Med 2021; 12:12/533/eaaz0152. [PMID: 32132214 DOI: 10.1126/scitranslmed.aaz0152] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer is a common malignancy, but only some tumors are lethal. Accurately identifying these tumors will improve clinical practice and instruct research. Aggressive cancers often have distinctive pathologies, including intraductal carcinoma of the prostate (IDC-P) and ductal adenocarcinoma. Here, we review the importance of these pathologies because they are often overlooked, especially in genomics and preclinical testing. Pathology, genomics, and patient-derived models show that IDC-P and ductal adenocarcinoma accompany multiple markers of poor prognosis. Consequently, "knowing what is growing" will help translate preclinical research to pinpoint and treat high-risk prostate cancer in the clinic.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia.,Epworth HealthCare, Melbourne, VIC 3000, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Australian Urology Associates, Melbourne, VIC 3000, Australia.,Department of Urology, Cabrini Health, Malvern, VIC 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Ranasinghe W, Shapiro DD, Zhang M, Bathala T, Navone N, Thompson TC, Broom B, Aparicio A, Tu SM, Tang C, Davis JW, Pisters L, Chapin BF. Optimizing the diagnosis and management of ductal prostate cancer. Nat Rev Urol 2021; 18:337-358. [PMID: 33824525 DOI: 10.1038/s41585-021-00447-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Ductal adenocarcinoma (DAC) is the most common variant histological subtype of prostate carcinoma and has an aggressive clinical course. DAC is usually characterized and treated as high-risk prostatic acinar adenocarcinoma (PAC). However, DAC has a different biology to that of acinar disease, which often poses a challenge for both diagnosis and management. DAC can be difficult to identify using conventional diagnostic modalities such as serum PSA levels and multiparametric MRI, and the optimal management for localized DAC is unknown owing to the rarity of the disease. Following definitive therapy for localized disease with radical prostatectomy or radiotherapy, the majority of DACs recur with visceral metastases at low PSA levels. Various systemic therapies that have been shown to be effective in high-risk PAC have limited use in treating DAC. Although current understanding of the biology of DAC is limited, genomic analyses have provided insights into the pathology behind its aggressive behaviour and potential future therapeutic targets.
Collapse
Affiliation(s)
- Weranja Ranasinghe
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Daniel D Shapiro
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Miao Zhang
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Tharakeswara Bathala
- Department of Radiology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nora Navone
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley Broom
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shi-Ming Tu
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - John W Davis
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Louis Pisters
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Brian F Chapin
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Kaur HB, Salles DC, Paulk A, Epstein JI, Eshleman JR, Lotan TL. PIN-like ductal carcinoma of the prostate has frequent activating RAS/RAF mutations. Histopathology 2020; 78:327-333. [PMID: 32740981 DOI: 10.1111/his.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
AIMS Prostatic intraepithelial neoplasia-like (PIN-like) ductal carcinoma is a rare tumour characterised by often cystically dilated glands architecturally resembling high-grade PIN, but lacking basal cells. These tumours are frequently accompanied by grade group 1 acinar cancer and behave relatively indolently. In contrast, conventional ductal adenocarcinoma of the prostate is an aggressive variant comparable to grade group 4 acinar cancer. Here, we used targeted next-generation sequencing to molecularly profile PIN-like ductal carcinoma cases at radical prostatectomy. METHODS AND RESULTS Five PIN-like ductal carcinoma samples at radical prostatectomy with sufficient tumour tissue available were analysed for genomic alterations by targeted next-generation sequencing using the Johns Hopkins University (JHU) solid tumour panel. DNA was captured using SureSelect for 640 genes and sequenced on the Illumina HiSeq platform. Three of five (60%) of the PIN-like ductal carcinomas showed activating mutations in the RAS/RAF pathways, which are extraordinarily rare in conventional primary prostate carcinoma (<3% of cases), including an activating hot-spot BRAF mutation (p.K601E), an activating hot-spot mutation in HRAS (p.Q61K) and an in-frame activating deletion in BRAF (p.T488_Q493delinsK). An additional two cases lacked BRAF or HRAS mutations, but harboured in-frame insertions of uncertain significance in MAP2K4 and MAP3K6. One case had sufficient acinar tumour for sequencing, and showed a similar molecular profile as the concurrent PIN-like ductal carcinoma, suggesting a clonal relationship between the two components. CONCLUSIONS PIN-like ductal carcinoma represents a molecularly unique tumour, enriched for potentially targetable oncogenic driver mutations in the RAS/RAF/MAPK pathway. This molecular profile contrasts with that of conventional ductal adenocarcinoma, which is typically enriched for pathogenic mutations in the mismatch repair (MMR) and homologous recombination (HR) DNA repair pathways.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adina Paulk
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan I Epstein
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Schweizer MT, Antonarakis ES, Bismar TA, Guedes LB, Cheng HH, Tretiakova MS, Vakar-Lopez F, Klemfuss N, Konnick EQ, Mostaghel EA, Hsieh AC, Nelson PS, Yu EY, Montgomery RB, True LD, Epstein JI, Lotan TL, Pritchard CC. Genomic Characterization of Prostatic Ductal Adenocarcinoma Identifies a High Prevalence of DNA Repair Gene Mutations. JCO Precis Oncol 2019; 3. [PMID: 31123724 DOI: 10.1200/po.18.00327] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Ductal prostate cancer (dPC) is a rare variant of prostatic adenocarcinoma associated with poor outcomes. Although its histopathologic features are well characterized, the underlying molecular hallmarks of this aggressive subtype are not well described. We sought to provide a comprehensive overview of the spectrum of mutations associated with dPC. METHODS Three case series across multiple institutions were assembled. All patients had a diagnosis of dPC, and histopathologic classification was confirmed by an expert genitourinary pathologist. Case series 1 included men who were prospectively enrolled in a tumor sequencing study at the University of Washington (n = 22). Case series 2 and 3 included archival samples from men treated at Johns Hopkins Hospital (n = 21) and University of Calgary (n = 8), respectively. Tumor tissue was sequenced on a targeted next-generation sequencing assay, UW-OncoPlex, according to previously published methods. The frequency of pathogenic/likely pathogenic mutations are reported. RESULTS Overall, 25 patients (49%) had at least one DNA damage repair gene alteration, including seven (14%) with a mismatch repair gene mutation and 16 (31%) with a homologous repair mutation. Germline autosomal dominant mutations were confirmed or suspected in 10 patients (20%). Activating mutations in the PI3K pathway (n = 19; 37%), WNT pathway (n = 16; 31%), and MAPK pathway (n = 8; 16%) were common. CONCLUSION This study strongly suggests that dPCs are enriched for actionable mutations, with approximately 50% of patients demonstrating DNA damage repair pathway alteration(s). Patients with dPC should be offered next-generation sequencing to guide standard-of-care treatment (eg, immune checkpoint inhibitors) or triaged toward an appropriate clinical trial (eg, poly [ADP-ribose] polymerase inhibitors).
Collapse
Affiliation(s)
- Michael T Schweizer
- University of Washington, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | - Heather H Cheng
- University of Washington, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | - Elahe A Mostaghel
- University of Washington, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | - Evan Y Yu
- University of Washington, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | |
Collapse
|
16
|
Inamura K. Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget 2018; 9:14723-14737. [PMID: 29581876 PMCID: PMC5865702 DOI: 10.18632/oncotarget.24515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that prostatic cancers represent a group of histologically and molecularly heterogeneous diseases with variable clinical courses. In accordance with the increased knowledge of their clinicopathologies and genetics, the World Health Organization (WHO) classification of prostatic cancers has been revised. Additionally, recent data on their comprehensive molecular characterization have increased our understanding of the genomic basis of prostatic cancers and enabled us to classify them into subtypes with distinct molecular pathologies and clinical features. Our increased understanding of the molecular pathologies of prostatic cancers has permitted their evolution from a poorly understood, heterogeneous group of diseases with variable clinical courses to characteristic molecular subtypes that allow the implementation of personalized therapies and better patient management. This review provides perspectives on the new 2016 WHO classification of prostatic cancers as well as recent knowledge of their molecular pathologies. The WHO classification of prostatic cancers will require additional revisions to allow for reliable and clinically meaningful cancer diagnoses as a better understanding of their molecular characteristics is obtained.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
17
|
Zhou M. High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod Pathol 2018; 31:S71-79. [PMID: 29297491 DOI: 10.1038/modpathol.2017.138] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023]
Abstract
Many prostate lesions have 'large gland' morphology with gland size similar to or larger than benign glands, complex glandular architecture including papillary, cribriform, and solid, and significant cytological atypia in glandular epithelium with nucleomegaly, prominent nucleoli, or anisonucleosis. The most common and clinically important lesions with 'large gland' morphology include high-grade prostatic intraepithelial neoplasia (HGPIN), PIN-like carcinoma, ductal adenocarcinoma, and intraductal carcinoma. These lesions have diverse clinical significance and management implications. HGPIN refers to proliferation of glandular epithelium that displays severe cytological atypia within the confines of prostatic ducts and acini. A HGPIN diagnosis in biopsies connotes ~25% risk of detection of cancer in repeat biopsies. It has been accepted as the main precursor lesion to invasive carcinoma. PIN-like carcinoma is a variant of acinar carcinoma that is morphologically reminiscent of HGPIN and is composed of large cancer glands lined with pseudostratified epithelium. Its clinical outcome is similar to that of usual acinar carcinomas and is graded as Gleason score 3+3=6. Ductal adenocarcinoma comprises large glands lined with tall columnar and pseudostratified epithelium. It is more aggressive than acinar carcinomas and is associated with higher stage disease and greater risk of PSA recurrence and mortality. Intraductal carcinoma is an intraglandular/ductal neoplastic proliferation of glandular epithelial cells that results in marked expansion of glandular architecture and nuclear atypia that often exceeds that in invasive carcinomas. In majority of cases, it is thought to represent retrograde extension of invasive carcinoma into pre-existing ducts and acini. Rarely it may represent a peculiar form of carcinoma with predilection for intraductal location. It is considered an adverse pathological feature and is seen almost always in high-grade and volume carcinoma and harbingers worse clinical outcomes. This article reviews 'new' information on the clinical and pathological features of HGPIN, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma, and focuses morphological features that aid the differential diagnosis.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Gillard M, Lack J, Pontier A, Gandla D, Hatcher D, Sowalsky AG, Rodriguez-Nieves J, Vander Griend D, Paner G, VanderWeele D. Integrative Genomic Analysis of Coincident Cancer Foci Implicates CTNNB1 and PTEN Alterations in Ductal Prostate Cancer. Eur Urol Focus 2017; 5:433-442. [PMID: 29229583 DOI: 10.1016/j.euf.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 12/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ductal adenocarcinoma of the prostate is an aggressive subtype, with high rates of biochemical recurrence and overall poor prognosis. It is frequently found coincident with conventional acinar adenocarcinoma. The genomic features driving evolution to its ductal histology and the biology associated with its poor prognosis remain unknown. OBJECTIVE To characterize genomic features distinguishing ductal adenocarcinoma from coincident acinar adenocarcinoma foci from the same patient. DESIGN, SETTING, AND PARTICIPANTS Ten patients with coincident acinar and ductal prostate cancer underwent prostatectomy. Laser microdissection was used to separately isolate acinar and ductal foci. DNA and RNA were extracted, and used for integrative genomic and transcriptomic analyses. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Single nucleotide mutations, small indels, copy number estimates, and expression profiles were identified. Phylogenetic relationships between coincident foci were determined, and characteristics distinguishing ductal from acinar foci were identified. RESULTS AND LIMITATIONS Exome sequencing, copy number estimates, and fusion genes demonstrated coincident ductal and acinar adenocarcinoma diverged from a common progenitor, yet they harbored distinct alterations unique to each focus. AR expression and activity were similar in both histologies. Nine of 10 cases had mutually exclusive CTNNB1 hotspot mutations or phosphatase and tensin homolog (PTEN) alterations in the ductal component, and these were absent in the acinar foci. These alterations were associated with changes in expression in WNT- and PI3K-pathway genes. CONCLUSIONS Coincident ductal and acinar histologies typically are clonally related and thus arise from the same cell of origin. Ductal foci are enriched for cases with either a CTNNB1 hotspot mutation or a PTEN alteration, and are associated with WNT- or PI3K-pathway activation. These alterations are mutually exclusive and may represent distinct subtypes. PATIENT SUMMARY The aggressive subtype ductal adenocarcinoma is closely related to conventional acinar prostate cancer. Ductal foci contain additional alterations, however, leading to frequent activation of two targetable pathways.
Collapse
Affiliation(s)
- Marc Gillard
- Department of Surgery, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Justin Lack
- Center for Cancer Research Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrea Pontier
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Divya Gandla
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Hatcher
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Adam G Sowalsky
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jose Rodriguez-Nieves
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gladell Paner
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - David VanderWeele
- Department of Medicine, University of Chicago, Chicago, IL, USA; Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
19
|
Genetic profile of ductal adenocarcinoma of the prostate. Hum Pathol 2017; 69:1-7. [DOI: 10.1016/j.humpath.2017.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
|
20
|
A rare case of prostatic ductal adenocarcinoma presenting as papillary metastatic carcinoma of unknown primary: A case report and review of the literature. HUMAN PATHOLOGY: CASE REPORTS 2016. [DOI: 10.1016/j.ehpc.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Seipel AH, Delahunt B, Samaratunga H, Egevad L. Ductal adenocarcinoma of the prostate: histogenesis, biology and clinicopathological features. Pathology 2016; 48:398-405. [DOI: 10.1016/j.pathol.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 12/20/2022]
|
22
|
High alpha-methylacyl-CoA racemase (AMACR) is associated with ERG expression and with adverse clinical outcome in patients with localized prostate cancer. Tumour Biol 2016; 37:12287-12299. [PMID: 27271990 DOI: 10.1007/s13277-016-5075-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Abstract
Alpha-methylacyl-CoA racemase (AMACR) is a well-characterized marker extensively utilized in prostate cancer (PCA) diagnosis. However, the prognostic value of AMACR expression and its relation to TMPRSS2-ERG gene rearrangement as one of the most common molecular alterations in PCA is not fully explored. AMACR expression was investigated in a cohort of 218 men with localized PCA treated by radical prostatectomy and correlated with ERG and various clinical and pathological parameters. In vitro studies assessed AMACR changes to ERG knockdown and other related genes. In addition, bioinformatics validated the significance of AMACR/ERG expression and assessed relevant genetic signatures in relation to AMACR/ERG expression. AMACR expression was significantly associated with disease progression and with ERG (p ∼0). Seventeen percent of cancer foci showed negative/weak AMACR expression while being ERG positive. High AMACR expression was significantly associated with positive surgical margins (p = 0.01), specifically in tumors with lower Gleason score <7, with ∼95 % exhibiting positive surgical margin (p = 0.008). High AMACR showed marginal association with PSA biochemical recurrence (BCR) (p = 0.06) which was slightly more pronounced in ERG-positive tumors (p = 0.04). This was validated in other public cohorts. However, in this cohort, the association with BCR was not statistically significant in multivariate analysis (p = 0.09). Using in vitro cellular models, AMACR messenger RNA (mRNA) expression, but not protein levels, showed an association with ERG expression. We report for the first time a significant association between AMACR and ERG with prognostic implication. Patients with high AMACR/ERG-positive PCA may be at higher risk for disease progression, and additional studies in larger cohorts are needed to confirm the above findings. Functional studies investigating the molecular pathways connecting AMACR and ERG may provide an additional insight into PCA progression pathways.
Collapse
|
23
|
Liu T, Wang Y, Zhou R, Li H, Cheng H, Zhang J. The update of prostatic ductal adenocarcinoma. Chin J Cancer Res 2016; 28:50-7. [PMID: 27041926 DOI: 10.3978/j.issn.1000-9604.2016.02.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since initially described in 1967, prostatic ductal adenocarcinoma (PDA) has engendered a series of controversies on its origin, histological features, and biological behavior. Owing to the improvement of molecular biological technique, there are some updated findings on the characteristics of PDA. In the current review, we will mainly analyze its origin, clinical manifestations, morphological features, differential diagnosis, immunophenotype and molecular genetics, with the purpose of enhancing recognition of this tumor and making a correct diagnosis and treatment choice.
Collapse
Affiliation(s)
- Tantan Liu
- 1 State Key Laboratory of Tumor Biology, Department of Pathology, Xijing Hospital, Xi'an 710032, China ; 2 Cadet Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingmei Wang
- 1 State Key Laboratory of Tumor Biology, Department of Pathology, Xijing Hospital, Xi'an 710032, China ; 2 Cadet Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Ru Zhou
- 1 State Key Laboratory of Tumor Biology, Department of Pathology, Xijing Hospital, Xi'an 710032, China ; 2 Cadet Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Haiyang Li
- 1 State Key Laboratory of Tumor Biology, Department of Pathology, Xijing Hospital, Xi'an 710032, China ; 2 Cadet Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Hong Cheng
- 1 State Key Laboratory of Tumor Biology, Department of Pathology, Xijing Hospital, Xi'an 710032, China ; 2 Cadet Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhang
- 1 State Key Laboratory of Tumor Biology, Department of Pathology, Xijing Hospital, Xi'an 710032, China ; 2 Cadet Brigade, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
24
|
Morais CL, Herawi M, Toubaji A, Albadine R, Hicks J, Netto GJ, De Marzo AM, Epstein JI, Lotan TL. PTEN loss and ERG protein expression are infrequent in prostatic ductal adenocarcinomas and concurrent acinar carcinomas. Prostate 2015; 75:1610-9. [PMID: 26178158 PMCID: PMC4537350 DOI: 10.1002/pros.23042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/27/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostatic ductal adenocarcinoma is an unusual and aggressive morphologic subtype of prostate cancer. PTEN gene deletion and ERG gene rearrangement are among the most common genomic changes in acinar prostate cancers. Though ductal adenocarcinoma most commonly occurs with synchronous usual-type acinar adenocarcinoma, little is known about the molecular phenotype of these mixed tumors. METHODS We used genetically validated immunohistochemistry (IHC) assays to assess PTEN and ERG status in a group of 37 surgically treated ductal adenocarcinomas and 18 synchronous acinar adenocarcinomas where we have previously reported ERG gene rearrangement status by fluorescence in situ hybridization (FISH). A group of 34 stage and grade-matched pure acinar adenocarcinoma cases was studied as a control. RESULTS ERG IHC was highly concordant with ERG FISH results, with 100% (36/36) concordance among ductal adenocarcinomas and 91% (31/34) concordance among 34 pure acinar carcinomas. Similar to previous FISH results, ERG expression by IHC was significantly less common among ductal adenocarcinomas (11% or 4/37) and their synchronous acinar tumors (6% or 1/18) compared to matched pure acinar adenocarcinoma cases (50% or 17/34; P = 0.0005 and 0.002, respectively). PTEN loss by IHC was also less common among ductal adenocarcinomas (18% or 6/34) and their synchronous acinar tumors (22% or 4/18) compared to matched pure acinar carcinomas (50% or 17/34; P = 0.01 and 0.08, respectively). As expected, PTEN loss was enriched among ERG positive compared to ERG-negative tumors in the pure acinar tumor control group (2.5-fold enrichment; P = 0.04) however this was not observed among the ductal adenocarcinomas (1.5 fold enrichment; P = NS). Of ductal adenocarcinomas with an evaluable synchronous acinar component, ERG status was concordant in 94% (17/18) and PTEN status was concordant in 94% (16/17). CONCLUSIONS Based on PTEN and ERG, ductal adenocarcinomas and their concurrent acinar carcinomas may be clonally related in some cases and show important molecular differences from pure acinar carcinoma.
Collapse
Affiliation(s)
- Carlos L. Morais
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Mehsati Herawi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Antoun Toubaji
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Roula Albadine
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Jessica Hicks
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - George J. Netto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Jonathan I. Epstein
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
25
|
Bagci O, Kurtgöz S. Amplification of Cellular Oncogenes in Solid Tumors. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:341-6. [PMID: 26417556 PMCID: PMC4561439 DOI: 10.4103/1947-2714.163641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The term gene amplification refers to an increase in copy number of a gene. Upregulation of gene expression through amplification is a general mechanism to increase gene dosage. Oncogene amplifications have been shown in solid human cancers and they are often associated with progression of cancer. Defining oncogene amplification is useful since it is used as a prognostic marker in clinical oncology nowadays, especially v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2) targeted agents are used in breast cancer patients with high level of HER2 overexpression as a therapeutic approach. However, patients without HER2 overexpression do not appear to benefit from these agents. We concluded that determination of oncogene amplification in solid tumors is an important factor in treatment of human cancers with many unknowns. We have referred to PubMed and some databases to prepare this article.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Genetics, Suleyman Demirel University, School of Medicine, Isparta, Turkey
| | - Serkan Kurtgöz
- Department of Medical Genetics, Suleyman Demirel University, School of Medicine, Isparta, Turkey
| |
Collapse
|
26
|
ERG Protein Expression Is of Limited Prognostic Value in Men with Localized Prostate Cancer. ISRN UROLOGY 2013; 2013:786545. [PMID: 24027643 PMCID: PMC3762160 DOI: 10.1155/2013/786545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/27/2013] [Indexed: 02/08/2023]
Abstract
Background. The prognostic significance of ERG expression in prostate cancer (PCA) has generated mixed results. We sought to investigate the prognostic significance of ERG expression in a localized cohort of men with PCA. Material and Methods. We investigated ERG protein expression in a cohort of 198 men with localized PCA. ERG expression was correlated with patients' clinical outcome and several pathological parameters, including Gleason score (GS), pathological stage, surgical margin, and extra-capsular extension. Results. ERG expression was detected in 86/198 (43.4%) patients exclusively in neoplastic epithelium. Overall, ERG mean expression intensity was 1.01 ± 1.27 versus 0.37 ± 0.83 in acinar PCA compared to foamy type PCA (P < 0.001). In HGPIN, ERG intensity levels were comparable to those in foamy type PCA (0.13 ± 0.56) but significantly lower than those in acinar PCA (P < 0.001). ERG expression was significantly associated with extra-prostatic extension and higher pathological stage and showed a trend toward seminal vesicle invasion. Herein, ERG expression was documented in 50/131 (38.1%) patients with pT2 versus 30/55 (54.5%) patients with pT3 (P = 0.04). ERG association with higher pathological stage was more pronounced in patients with GS > 7. Grouping patients into those with GS ≤ 7 versus >7, there was no significant association between ERG expression and GS. Similarly, no association was present in relation to either surgical margins or postsurgical serum PSA levels. Conclusion. We report significant association between ERG protein levels and extra-prostatic extension and higher pathological stage. ERG expression is not associated with adverse clinical outcome and is of limited prognostic value in localized PCA.
Collapse
|
27
|
Jardel P, Debiais C, Godet J, Irani J, Fromont G. Ductal carcinoma of the prostate shows a different immunophenotype from high grade acinar cancer. Histopathology 2013; 63:57-63. [DOI: 10.1111/his.12129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/08/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | - Celine Debiais
- Department of Pathology; CHU/Université de Poitiers; Poitiers; France
| | - Julie Godet
- Department of Pathology; CHU/Université de Poitiers; Poitiers; France
| | - Jacques Irani
- Department of Urology; CHU/Université de Poitiers; Poitiers; France
| | - Gaelle Fromont
- Department of Pathology; CHU/Université de Poitiers; Poitiers; France
| |
Collapse
|
28
|
Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, Martin NE, Kunz L, Penney KL, Ligon AH, Suppan C, Flavin R, Sesso HD, Rider JR, Sweeney C, Stampfer MJ, Fiorentino M, Kantoff PW, Sanda MG, Giovannucci EL, Ding EL, Loda M, Mucci LA. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 2012; 21:1497-509. [PMID: 22736790 DOI: 10.1158/1055-9965.epi-12-0042] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Whether the genomic rearrangement transmembrane protease, serine 2 (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (ERG) has prognostic value in prostate cancer is unclear. METHODS Among men with prostate cancer in the prospective Physicians' Health and Health Professionals Follow-Up Studies, we identified rearrangement status by immunohistochemical assessment of ERG protein expression. We used Cox models to examine associations of ERG overexpression with biochemical recurrence and lethal disease (distant metastases or cancer-specific mortality). In a meta-analysis including 47 additional studies, we used random-effects models to estimate associations between rearrangement status and outcomes. RESULTS The cohort consisted of 1,180 men treated with radical prostatectomy between 1983 and 2005. During a median follow-up of 12.6 years, 266 men experienced recurrence and 85 men developed lethal disease. We found no significant association between ERG overexpression and biochemical recurrence [hazard ratio (HR), 0.99; 95% confidence interval (CI), 0.78-1.26] or lethal disease (HR, 0.93; 95% CI, 0.61-1.43). The meta-analysis of prostatectomy series included 5,074 men followed for biochemical recurrence (1,623 events), and 2,049 men followed for lethal disease (131 events). TMPRSS2:ERG was associated with stage at diagnosis [risk ratio (RR)(≥T3 vs. T2), 1.23; 95% CI, 1.16-1.30) but not with biochemical recurrence (RR, 1.00; 95% CI, 0.86-1.17) or lethal disease (RR, 0.99; 95% CI, 0.47-2.09). CONCLUSIONS These results suggest that TMPRSS2:ERG, or ERG overexpression, is associated with tumor stage but does not strongly predict recurrence or mortality among men treated with radical prostatectomy. IMPACT This is the largest prospective cohort study to examine associations of ERG overexpression and lethal prostate cancer among men treated with radical prostatectomy.
Collapse
Affiliation(s)
- Andreas Pettersson
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Netto GJ, Cheng L. Emerging critical role of molecular testing in diagnostic genitourinary pathology. Arch Pathol Lab Med 2012; 136:372-90. [PMID: 22458900 DOI: 10.5858/arpa.2011-0471-ra] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The unprecedented advances in cancer genetics and genomics are rapidly affecting clinical management and diagnostics in solid tumor oncology. Molecular diagnostics is now an integral part of routine clinical management in patients with lung, colon, and breast cancer. In sharp contrast, molecular biomarkers have been largely excluded from current management algorithms of urologic malignancies. OBJECTIVE To discuss promising candidate biomarkers that may soon make their transition to the realm of clinical management of genitourologic malignancies. The need for new treatment alternatives that can improve upon the modest outcome so far in patients with several types of urologic cancer is evident. Well-validated prognostic molecular biomarkers that can help clinicians identify patients in need of early aggressive management are lacking. Identifying robust predictive biomarkers that will stratify response to emerging targeted therapeutics is another crucially needed development. A compiled review of salient studies addressing the topic could be helpful in focusing future efforts. DATA SOURCES A PubMed (US National Library of Medicine) search for published studies with the following search terms was conducted: molecular , prognostic , targeted therapy , genomics , theranostics and urinary bladder cancer , prostate adenocarcinoma , and renal cell carcinoma . Articles with large cohorts and multivariate analyses were given preference. CONCLUSIONS Our recent understanding of the complex molecular alterations involved in the development and progression of urologic malignancies is yielding novel diagnostic and prognostic molecular tools and opening the doors for experimental targeted therapies for these prevalent, frequently lethal solid tumors.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
30
|
Epstein JI, Leclercq NR. Diagnostic issues of prostate biopsies. Case 6. PIN-like ductal adenocarcinoma. Ann Pathol 2012; 32:132-6. [PMID: 22520607 DOI: 10.1016/j.annpat.2012.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2012] [Indexed: 11/15/2022]
|
31
|
Bismar TA, Dolph M, Teng LH, Liu S, Donnelly B. ERG protein expression reflects hormonal treatment response and is associated with Gleason score and prostate cancer specific mortality. Eur J Cancer 2012; 48:538-46. [DOI: 10.1016/j.ejca.2012.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
32
|
|
33
|
Toubaji A, Albadine R, Meeker AK, Isaacs WB, Lotan T, Haffner MC, Chaux A, Epstein JI, Han M, Walsh PC, Partin AW, De Marzo AM, Platz EA, Netto GJ. Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas. Mod Pathol 2011; 24:1511-20. [PMID: 21743434 PMCID: PMC3360950 DOI: 10.1038/modpathol.2011.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of TMPRSS2-ERG gene fusion in prostate cancer prognostication remains controversial. We evaluated the prognostic role of TMPRSS2-ERG fusion using fluorescence in situ hybridization analysis in a case-control study nested in The Johns Hopkins retropubic radical prostatectomy cohort. In all, 10 tissue microarrays containing paired tumors and normal tissues obtained from 172 cases (recurrence) and 172 controls (non-recurrence) matched on pathological grade, stage, race/ethnicity, and age at the time of surgery were analyzed. All radical prostatectomies were performed at our institution between 1993 and 2004. Recurrence was defined as biochemical recurrence, development of clinical evidence of metastasis, or death from prostate carcinoma. Each tissue microarray spot was scored for the presence of TMPRSS2-ERG gene fusion and for ERG gene copy number gains. The odds ratio of recurrence and 95% confidence intervals were estimated from conditional logistic regression. Although the percentage of cases with fusion was slightly lower in cases than in controls (50 vs 57%), the difference was not statistically significant (P=0.20). The presence of fusion due to either deletion or split event was not associated with recurrence. Similarly, the presence of duplicated ERG deletion, duplicated ERG split, or ERG gene copy number gain with a single ERG fusion was not associated with recurrence. ERG gene polysomy without fusion was significantly associated with recurrence (odds ratio 2.0, 95% confidence interval 1.17-3.42). In summary, TMPRSS2-ERG fusion was not prognostic for recurrence after retropubic radical prostatectomy for clinically localized prostate cancer, although men with ERG gene copy number gain without fusion were twice more likely to recur.
Collapse
Affiliation(s)
- Antoun Toubaji
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roula Albadine
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - William B Isaacs
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tamara Lotan
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael C Haffner
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alcides Chaux
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jonathan I Epstein
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Misop Han
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Patrick C Walsh
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alan W Partin
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elizabeth A Platz
- The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - George J Netto
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
34
|
Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol 2011; 35:1014-20. [PMID: 21677539 DOI: 10.1097/pas.0b013e31821e8761] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND TMPRSS2-ERG fusions have been identified in about one-half of all prostatic adenocarcinomas (PCas). Fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction have been the most commonly used techniques in this setting. The aim of this study was to evaluate the utility of ERG immunoexpression as a surrogate for TMPRSS2-ERG fusion in a large series of PCa cases. MATERIALS AND METHODS Four hundred twenty-seven radical retropubic prostatectomy tissue samples were used to construct 10 tissue microarrays (TMAs). FISH analysis was previously conducted using dual-color interphase break-apart probes for the 5' and 3' regions of the ERG gene. ERG expression was evaluated using a commercial rabbit anti-ERG monoclonal antibody (clone EPR3864; Epitomics, Burlingame, CA). Each TMA spot was independently assessed, and any nuclear staining positivity was considered as indicative of ERG expression. RESULTS TMPRSS2-ERG fusions were detected by FISH in 195 (45.7%) of the PCa cases. ERG immunoexpression was found in 192 (45.0%) of the PCa cases and in none of the nontumoral tissue samples. Mean ERG H-scores were significantly higher in tumors harboring FISH-detected TMPRSS2-ERG fusions (P<0.00001), and there was a strong association between ERG immunohistochemical expression and the TMPRSS2-ERG status defined by FISH (P<0.00001), with a sensitivity of 86% (95% CI, 80%-90%) and a specificity of 89% (95% CI, 84%-93%). Receiver-operating characteristic curve analysis showed that ERG immunoexpression had a high accuracy for identifying TMPRSS2-ERG fusions detected by FISH, with an area under the curve of 0.87 (95% CI, 0.84%-0.91; P<0.00001). CONCLUSIONS We found that ERG immunohistochemical expression has a high accuracy for defining the TMPRSS-ERG fusion status. ERG immunohistochemistry may offer an accurate, simpler, and less costly alternative for evaluation of ERG fusion status in PCa than FISH.
Collapse
|
35
|
van Leenders GJLH, Boormans JL, Vissers CJ, Hoogland AM, Bressers AAJWM, Furusato B, Trapman J. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol 2011; 24:1128-38. [PMID: 21499236 DOI: 10.1038/modpathol.2011.65] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic rearrangements involving genes encoding erythroblast transformation-specific transcription factors are commonly present in prostate cancer. The TMPRSS2-ERG gene fusion that leads to ERG overexpression occurs in ~70% of prostate cancers. Implementation of fusion gene detection in pathological practice, however, has been hampered by the lack of reliable ERG antibodies. The objective of this study was first to compare ERG immunohistochemistry using the recently described antibody EPR3864 with ERG mRNA by quantitative PCR and, second, to investigate ERG immunohistochemistry in diagnostic prostate cancer needle biopsies. We analyzed 41 primary prostate adenocarcinomas obtained by radical prostatectomy and 83 consecutive prostate cancer needle biopsies. In the prostatectomy specimens, immunohistochemical ERG expression was highly concordant with the ERG mRNA overexpression (sensitivity 100% and specificity 85%). ERG overexpression was due to TMPRSS2-ERG gene fusion in all cases. ERG protein expression was identified in 51/83 adenocarcinomas (61%) on needle biopsies. ERG expression was more frequent in tumors infiltrating ≥2 needle biopsies (P<0.001) or occupying ≥50% of a single biopsy (P=0.018). Expression of ERG also occurred in 11/21 (52%) high-grade prostate intraepithelial neoplasia lesions. In 5/87 (6%) needle biopsies containing benign secretory glands, weak ERG staining was focally observed. In all of these cases, respective glands were adjacent to adenocarcinomas. In conclusion, immunohistochemistry for ERG strongly correlated with ERG mRNA overexpression and was specific for prostate cancer on needle biopsies. Therefore, ERG immunohistochemistry is an important adjunctive tool for pathophysiological studies on ERG gene fusions, and might support the pathological diagnosis of adenocarcinoma in a subset of prostate needle biopsies.
Collapse
Affiliation(s)
- Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
CONTEXT Molecular diagnostic applications are now an integral part of the management algorithms of several solid tumors, such as breast, colon, and lung. In stark contrast, the current clinical management of urologic malignancies is lagging behind. Clinically robust molecular tests that can identify patients who are more likely to respond to a given targeted agent or even those in need of a more aggressive treatment based on well-validated molecular prognosticators are still lacking. Several promising biomarkers for detection, prognosis, and targeted therapeutics are being evaluated. OBJECTIVE To discuss candidate biomarkers that may soon make the transition to clinical assay for patients in urologic oncology. DATA SOURCES Selected original articles published in the PubMed service of the US National Library of Medicine. CONCLUSIONS Recent understanding of the complex molecular alterations involved in the development and progression of urologic malignancies is yielding novel diagnostic and prognostic molecular tools and opening the doors for experimental targeted therapies in these prevalent, frequently lethal solid tumors.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins Medical Institutions, The Harry and Jeanette Weinberg Building, 401 N Broadway, Baltimore, MD 21231-2410, USA.
| |
Collapse
|
37
|
Abstract
BACKGROUND High-grade prostatic intraepithelial neoplasia (HGPIN) is currently the only recognized premalignant lesion of prostatic carcinoma. METHODS This review article discusses HGPIN, its link to prostatic adenocarcinoma, and the significance of its presence on needle biopsy. The criteria and clinical impact of the diagnosis of atypical small acinar proliferation on needle biopsy are reviewed. Certain subtypes of prostate cancer that are not associated with HGPIN are of clinical relevance, and the unique clinicopathologic features of these subtypes are discussed. Histologic variants of prostatic adenocarcinoma with distinct cell types are also described. RESULTS HGPIN is the only known pathologic factor currently available to distinguish which patients may be at risk for detecting carcinoma on repeat biopsy. Histologic variants are recognized due to the inference of a particular Gleason grade pattern associated with the cell type, hence affecting prognosis. Typically, pure forms of these histologic variants are associated with worse prognosis due to the associated high Gleason grades. CONCLUSIONS HGPIN has a strong association with acinar-type prostatic adenocarcinoma. HGPIN and acinar-type prostatic adenocarcinoma both show similar molecular alterations, providing further evidence of their association.
Collapse
|
38
|
Fine SW, Gopalan A, Leversha MA, Al-Ahmadie HA, Tickoo SK, Zhou Q, Satagopan JM, Scardino PT, Gerald WL, Reuter VE. TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 2010; 23:1325-33. [PMID: 20562851 PMCID: PMC3413944 DOI: 10.1038/modpathol.2010.120] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TMPRSS2-ERG gene rearrangement is seen in about half of clinically localized prostate cancers, yet controversy exists with regard to its prognostic implications. Similarly, the relationship of TMPRSS2-ERG fusion to Gleason score and morphology remains uncertain. We assigned Gleason scores and recorded morphological features for 521 clinically localized prostate cancers sampled in triplicate and arrayed in eight tissue microarray blocks. Fluorescence in situ hybridization was performed to delineate TMPRSS2-ERG aberrations. Using maximum Gleason score, based on three core evaluation, and overall Gleason score, based on prostatectomy sections, Fisher's exact test was performed for tumors with TMPRSS2-ERG translocation/deletion, copy number increase (≥ 3) of the TMPRSS2-ERG region without translocation/deletion, and copy number increase and concomitant translocation/deletion. In all, 217 (42%) translocation/deletion and 30 (5.9%) copy number increase-alone cases were detected. Among 217 translocation/deletion cases, 32 had translocation/deletion with copy number increase. In all, 237, 200, and 75 cancers had maximum core-specific Gleason score of 6, 7, and 8-10, respectively. Tumors with translocation/deletion tended toward lower Gleason scores than those without (P=0.002) with similar results for overall Gleason score (P=0.02); copy number increase cases tended toward higher Gleason scores than those without (P<0.001). Gleason score of 8-10 tumors demonstrated lower odds of translocation/deletion (odds ratio (OR) 0.38; 95% CI 0.21-0.68) and higher odds of copy number increase alone (OR 7.33; 95% CI 2.65-20.31) or copy number increase+translocation/deletion (OR 3.03; 95% CI 1.12-8.15) relative to Gleason score of <7 tumors. No significant difference in TMPRSS2-ERG incidence was observed between patients with and without cribriform glands, glomerulations, signet-ring cells, or intraductal cancer (P=0.821, 0.095, 0.132, 0.375). TMPRSS2-ERG gene fusion is associated with lower core-specific and overall Gleason scores and not with high-grade morphologies. Conversely, TMPRSS2-ERG copy number increase, with or without rearrangement, is associated with higher Gleason score. These findings indicate that translocation/deletion of TMPRSS2-ERG is not associated with histological features of aggressive prostate cancer.
Collapse
Affiliation(s)
- Samson W. Fine
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Anuradha Gopalan
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Margaret A. Leversha
- Departments of Molecular Cytogenetics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Satish K. Tickoo
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Qin Zhou
- Departments of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jaya M. Satagopan
- Departments of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Peter T. Scardino
- Departments of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - William L. Gerald
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Victor E. Reuter
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
39
|
Netto GJ, Epstein JI. Theranostic and prognostic biomarkers: genomic applications in urological malignancies. Pathology 2010; 42:384-94. [PMID: 20438413 DOI: 10.3109/00313021003779145] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Compared to other solid tumours such as breast, colon, and lung, the current clinical management of urological malignancies is lagging behind in terms of utilisation of clinically robust molecular tests that can identify patients that are more likely to respond to a given targeted agent, or even those in need of a more aggressive treatment approach based on well-validated molecular prognosticators. Several promising biomarkers for detection, prognosis, and targeted therapeutics are now under evaluation. The following review discusses some of the candidate biomarkers that may soon make their transition into clinically applicable assays in urological oncology patients.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| | | |
Collapse
|
40
|
Abstract
Minute prostatic adenocarcinomas are considered to be of insufficient virulence. Given recent suggestions of TMPRSS2-ERG gene fusion association with aggressive prostatic adenocarcinoma, we evaluated the incidence of TMPRSS2-ERG fusion in minute prostatic adenocarcinomas. A total of 45 consecutive prostatectomies with minute adenocarcinoma were used for tissue microarray construction. A total of 63 consecutive non-minimal, Gleason Score 6 tumors, from a separate PSA Era prostatectomy tissue microarray, were used for comparison. FISH was carried out using ERG break-apart probes. Tumors were assessed for fusion by deletion (Edel) or split (Esplit), duplicated fusions and low-level copy number gain in normal ERG gene locus. Minute adenocarcinomas: Fusion was evaluable in 32/45 tumors (71%). Fifteen out of 32 (47%) tumors were positive for fusion. Six (19%) were of the Edel class and 7 (22%) were classified as combined Edel+Esplit. Non-minute adenocarcinomas (pT2): Fusion was identified in 20/30 tumors (67%). Four (13%) were of Edel class and 5 (17%) were combined Edel+Esplit. Duplicated fusions were encountered in 5 (16%) tumors. Non-minute adenocarcinomas (pT3): Fusion was identified in 19/33 (58%). Fusion was due to a deletion in 6 (18%) tumors. Seven tumors (21%) were classified as combined Edel+Esplit. One tumor showed Esplit alone. Duplicated fusions were encountered in 3 (9%) cases. The incidence of duplicated fusions was higher in non-minute adenocarcinomas (13 vs 0%; P=0.03). A trend for higher incidence of low-level copy number gain in normal ERG gene locus without fusion was noted in non-minute adenocarcinomas (10 vs 0%; P=0.07). We found a TMPRSS2-ERG fusion rate of 47% in minute adenocarcinomas. The latter is not significantly different from that of grade matched non-minute adenocarcinomas. The incidence of duplicated fusion was higher in non-minute adenocarcinomas. Our finding of comparable rate of TMPRSS2-ERG fusion in minute adenocarcinomas may argue against its value as a marker of aggressive prostate carcinoma phenotype.
Collapse
|
41
|
Abstract
Ductal adenocarcinoma is an uncommon variant of prostatic adenocarcinoma with a generally more aggressive clinical course than usual acinar adenocarcinoma. However, the molecular distinction between ductal and acinar adenocarcinomas is not well characterized. The aim of this investigation was to evaluate the relatedness of ductal versus acinar prostatic adenocarcinoma by comparative gene expression profiling. Archived, de-identified, snap frozen tumor tissue from 5 ductal adenocarcinomas, 3 mixed ductal-acinar adenocarcinomas, and 11 acinar adenocarcinomas cases were analyzed. All cases of acinar and ductal adenocarcinomas were matched by Gleason grade. RNA from whole tissue sections of the 5 ductal and 11 acinar adenocarcinomas cases were subjected to gene expression profiling on Affymetrix U133Plus2 microarrays. Independently, laser-capture microdissection was also performed on the three mixed ductal-acinar cases and five pure acinar cases to isolate homogeneous populations of ductal and acinar carcinoma cells from the same tumor. Seven of these laser-capture microdissected samples (three ductal and four acinar cell populations) were similarly analyzed on U133Plus2 arrays. Analysis of data from whole sections of ductal and acinar carcinomas identified only 25 gene transcripts whose expression was significantly and at least two-fold different between ductal and acinar adenocarcinomas. A similar analysis of microdissected cell populations identified 10 transcripts, including the prolactin receptor, with more significant differences in expression of 5- to 27-fold between ductal and acinar adenocarcinomas cells. Overexpression of prolactin receptor protein in ductal versus acinar adenocarcinoma was confirmed by immunohistochemistry in an independent set of tumors. We conclude that ductal and acinar adenocarcinomas of the prostate are strikingly similar at the level of gene expression. However, several of the genes identified in this study, including the prolactin receptor, represent targets for further investigations on the molecular basis for histomorphological and clinical behavioral differences between acinar and ductal adenocarcinomas.
Collapse
|
42
|
Esgueva R, Demichelis F, Rubin MA. TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas. Mod Pathol 2009; 22:1398-9; author reply 1399-40. [PMID: 19789567 DOI: 10.1038/modpathol.2009.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Netto GJ, Lotan T, Albadine R, Latour M, Demarzo AM, Meeker A. TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas. Mod Pathol 2009. [DOI: 10.1038/modpathol.2009.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|