1
|
Gelmez MY, Betul Oktelik F, Cinar S, Ozbalak M, Ozluk O, Aktan M, Deniz G. High expression of OX-40, ICOS, and low expression PD-L1 of follicular helper and follicular cytotoxic T cells in chronic lymphocytic leukemia. J Hematop 2022. [DOI: 10.1007/s12308-022-00497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
2
|
Abramenko I, Bilous N, Chumak A, Kryachok I, Fedorenko Z, Martina Z, Dyagil I. The signs of negative selection in IGHV framework regions are associated with worse overall survival of chronic lymphocytic leukemia patients. Leuk Res 2021; 110:106686. [PMID: 34492598 DOI: 10.1016/j.leukres.2021.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022]
Abstract
The mutational status of the variable region of the immunoglobulin heavy chain (IGHV) genes remains the most significant prognostic factor in chronic lymphocytic leukemia (CLL) patients. However, the groups of mutated (M) and unmutated (UM) patients are also heterogeneous, and additional markers are used for a more accurate prognosis. The aim of our work was to determine the prognostic value of the signs of antigen selection determined by BASELINe statistics in M IGHV sequences of CLL patients. Clinical data, IGHV gene configuration, TP53, NOTCH1, SF3B1 mutations were analyzed in 127 CLL patients with M IGHV sequences. The median OS of patients with negative selection in the framework regions (FWRs) of IGHV genes was 120 months compared to 202 month in other CLL patients (P = 0.016). In multivariate Cox regression analysis Binet stage C vs A + B (P < 0.0001), SF3B1 mutations (P < 0.0001), negative selection in the FWRs (HR P = 0.007), and age ≥65 years (P = 0.034) were powerful adverse prognostic factors for OS in CLL patients with M IGHV genes. These preliminary data suggest that the signs of antigen-driven selection may be used as a prognostic factor in CLL patients with M IGHV genes in combination with other markers.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Female
- Follow-Up Studies
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mutation
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Iryna Abramenko
- Department of Clinical Immunology, National Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, 119/121 Prospect Peremohy Str., 03115, Kyiv, Ukraine.
| | - Nadia Bilous
- Department of Clinical Immunology, National Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, 119/121 Prospect Peremohy Str., 03115, Kyiv, Ukraine.
| | - Anatoliy Chumak
- Department of Clinical Immunology, National Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, 119/121 Prospect Peremohy Str., 03115, Kyiv, Ukraine.
| | - Iryna Kryachok
- Department of Oncohematology, National Cancer Institute, 33/43 Lomonosova Str., 03022, Kyiv, Ukraine.
| | - Zoya Fedorenko
- National Cancer Registry, National Cancer Institute, 33/43 Lomonosova Str., 03022, Kyiv, Ukraine.
| | - Zoya Martina
- Department of Hematology, National Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, 119/121 Prospect Peremohy Str., 03115, Kyiv, Ukraine.
| | - Iryna Dyagil
- Department of Hematology, National Research Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, 119/121 Prospect Peremohy Str., 03115, Kyiv, Ukraine.
| |
Collapse
|
3
|
Morande PE, Yan XJ, Sepulveda J, Seija N, Marquez ME, Sotelo N, Abreu C, Crispo M, Fernández-Graña G, Rego N, Bois T, Methot SP, Palacios F, Remedi V, Rai KR, Buschiazzo A, Di Noia JM, Navarrete MA, Chiorazzi N, Oppezzo P. AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood 2021; 138:246-258. [PMID: 34292322 DOI: 10.1182/blood.2020008654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eμ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.
Collapse
MESH Headings
- Animals
- Cytidine Deaminase/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Up-Regulation
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xiao-Jie Yan
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Julieta Sepulveda
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Elena Marquez
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Sotelo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Therence Bois
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Stephen P Methot
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Florencia Palacios
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Victoria Remedi
- Hospital Maciel, Administración de los Servicios de Salud del Estado (ASSE), Ministerio de Salud, Montevideo, Uruguay
| | - Kanti R Rai
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; and
- Integrative Microbiology of Zoonotic Agents-International Joint Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marcelo A Navarrete
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
4
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
5
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
6
|
Morande PE, Sivina M, Uriepero A, Seija N, Berca C, Fresia P, Landoni AI, Di Noia JM, Burger JA, Oppezzo P. Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia. Blood 2019; 133:2056-2068. [PMID: 30814061 PMCID: PMC7022232 DOI: 10.1182/blood-2018-09-876292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of the immunoglobulin genes. As a trade-off for its physiological function, AID also contributes to tumor development through its mutagenic activity. In chronic lymphocytic leukemia (CLL), AID is overexpressed in the proliferative fractions (PFs) of the malignant B lymphocytes, and its anomalous expression has been associated with a clinical poor outcome. Recent preclinical data suggested that ibrutinib and idelalisib, 2 clinically approved kinase inhibitors, increase AID expression and genomic instability in normal and neoplastic B cells. These results raise concerns about a potential mutagenic risk in patients receiving long-term therapy. To corroborate these findings in the clinical setting, we analyzed AID expression and PFs in a CLL cohort before and during ibrutinib treatment. We found that ibrutinib decreases the CLL PFs and, interestingly, also reduces AID expression, which correlates with dampened AKT and Janus Kinase 1 signaling. Moreover, although ibrutinib increases AID expression in a CLL cell line, it is unable to do so in primary CLL samples. Our results uncover a differential response to ibrutinib between cell lines and the CLL clone and imply that ibrutinib could differ from idelalisib in their potential to induce AID in treated patients. Possible reasons for the discrepancy between preclinical and clinical findings, and their effect on treatment safety, are discussed.
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Angimar Uriepero
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Catalina Berca
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Inés Landoni
- Hospital Maciel, Administración de los Servicios de Salud del Estado, Ministerio de Salud, Montevideo, Uruguay
| | - Javier M Di Noia
- Division of Immunity and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; and
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
7
|
Li H, Li Q, Ma Z, Zhou Z, Fan J, Jin Y, Wu Y, Cheng F, Liang P. AID modulates carcinogenesis network via DNA demethylation in bladder urothelial cell carcinoma. Cell Death Dis 2019; 10:251. [PMID: 30874539 PMCID: PMC6420503 DOI: 10.1038/s41419-019-1472-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
Bladder cancer is one of the most common malignant diseases in the urinary system, with poor survival after metastasis. Activation-induced cytidine deaminase (AID), a versatile enzyme involved in antibody diversification, is an oncogenic gene that induces somatic hypermutation and class-switch recombination (CSR). However, the contribution of AID-mediated DNA demethylation to bladder urothelial cell carcinoma (BUCC) remains unclear. Herein, we evaluated the impact on BUCC caused by AID and explored the gene network downstream of AID by using a proteomic approach. Lentiviral vector containing AID-specific shRNA significantly reduced AID expression in T24 and 5637 cells. Silencing AID expression remarkably inhibited tumour malignancies, including cell proliferation, invasion and migration. We used Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics analysis technology to study the underpinning mechanism in monoclonal T24 cells, with or without AID knockdown. Among the 6452 proteins identified, 99 and 142 proteins in shAICDA-T24 cells were significantly up- or downregulated, respectively (1.2-fold change) compared with the NC-T24 control. After a pipeline of bioinformatics analyses, we identified three tumour-associated factors, namely, matrix metallopeptidase 14 (MMP14), C–X–C motif chemokine ligand 12 and wntless Wnt ligand secretion mediator, which were further confirmed in human BUCC tissues. Nonetheless, only MMP14 was sensitive to the DNA demethylation molecule 5-aza-2’-deoxycytidine (5-azadC; 5 μM), which reversed the inhibition of carcinogenesis by AID silence in T24 and 5637 cells. Overall, AID is an oncogene that mediates tumourigenesis via DNA demethylation. Our findings provide novel insights into the clinical treatment for BUCC.
Collapse
Affiliation(s)
- Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhe Ma
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhiyan Zhou
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Jinfeng Fan
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Yingxia Jin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yaoxi Wu
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Peiyu Liang
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China.
| |
Collapse
|
8
|
Schubert M, Hackl H, Gassner FJ, Greil R, Geisberger R. Investigating epigenetic effects of activation-induced deaminase in chronic lymphocytic leukemia. PLoS One 2018; 13:e0208753. [PMID: 30571766 PMCID: PMC6301619 DOI: 10.1371/journal.pone.0208753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 11/19/2022] Open
Abstract
Activation induced deaminase (AID) has two distinct and well defined roles, both relying on its deoxycytidine (dC) deaminating function: one as a DNA mutator and another in DNA demethylation. In chronic lymphocytic leukemia (CLL), AID was previously shown to be an independent negative prognostic factor. While there is substantial impact on DNA mutations, effects of AID on gene expression by promoter demethylation of disease related target genes in leukemia has not been addressed. To shed light on this question, we aimed at determining genome wide methylation changes as well as gene expression changes in response to AID expression in CLL. Although we found minor differences in individual methylation variable positions following AID expression, we could not find recurrent methylation changes of specific target sites or changes in global methylation.
Collapse
MESH Headings
- Computational Biology
- DNA Methylation/physiology
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukocytes, Mononuclear/enzymology
- Porphyria, Acute Intermittent/metabolism
Collapse
Affiliation(s)
- Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Salzburg, Austria
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Salzburg, Austria
- * E-mail:
| |
Collapse
|
9
|
Zaprazna K, Reblova K, Svobodova V, Radova L, Bystry V, Baloun J, Durechova K, Tom N, Loja T, Buresova M, Stranska K, Oltova A, Doubek M, Atchison ML, Trbusek M, Malcikova J, Pospisilova S. Activation-induced deaminase and its splice variants associate with trisomy 12 in chronic lymphocytic leukemia. Ann Hematol 2018; 98:423-435. [PMID: 30368590 DOI: 10.1007/s00277-018-3520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme essential for somatic hypermutation (SHM) and class switch recombination (CSR) during effective adaptive immune responses. Its aberrant expression and activity have been detected in lymphomas, leukemias, and solid tumors. In chronic lymphocytic leukemia (CLL) increased expression of alternatively spliced AID variants has been documented. We used real-time RT-PCR to quantify the expression of AID and its alternatively spliced transcripts (AIDΔE4a, AIDΔE4, AIDivs3, and AIDΔE3E4) in 149 CLL patients and correlated this expression to prognostic markers including recurrent chromosomal aberrations, the presence of complex karyotype, mutation status of the immunoglobulin heavy chain variable gene, and recurrent mutations. We report a previously unappreciated association between higher AID transcript levels and trisomy of chromosome 12. Functional analysis of AID splice variants revealed loss of their activity with respect to SHM, CSR, and induction of double-strand DNA breaks. In silico modeling provided insight into the molecular interactions and structural dynamics of wild-type AID and a shortened AID variant closely resembling AIDΔE4, confirming its loss-of-function phenotype.
Collapse
MESH Headings
- Aged
- Alternative Splicing
- Animals
- Chromosomes, Human, Pair 12/enzymology
- Chromosomes, Human, Pair 12/genetics
- Computer Simulation
- Cytidine Deaminase/biosynthesis
- Cytidine Deaminase/chemistry
- Cytidine Deaminase/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Models, Biological
- Molecular Dynamics Simulation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Trisomy/genetics
- Trisomy/pathology
Collapse
Affiliation(s)
- Kristina Zaprazna
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic.
| | - Kamila Reblova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Veronika Svobodova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Vojtech Bystry
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Jiri Baloun
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Kristina Durechova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Martina Buresova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Kamila Stranska
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael L Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic.
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
10
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
11
|
Patten PEM, Ferrer G, Chen SS, Simone R, Marsilio S, Yan XJ, Gitto Z, Yuan C, Kolitz JE, Barrientos J, Allen SL, Rai KR, MacCarthy T, Chu CC, Chiorazzi N. Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6-deficient process. JCI Insight 2016; 1. [PMID: 27158669 DOI: 10.1172/jci.insight.86288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Xenografting primary tumor cells allows modeling of the heterogeneous natures of malignant diseases and the influences of the tissue microenvironment. Here, we demonstrate that xenografting primary chronic lymphocytic leukemia (CLL) B lymphocytes with activated autologous T cells into alymphoid mice results in considerable CLL B cell division and sizable T cell expansion. Nevertheless, most/all CD5+CD19+ cells are eventually lost, due in part to differentiation into antibody-secreting plasmablasts/plasma cells. CLL B cell differentiation is associated with isotype class switching and development of new IGHV-D-J mutations and occurs via an activation-induced deaminase-dependent pathway that upregulates IRF4 and Blimp-1 without appreciable levels of the expected Bcl-6. These processes were induced in IGHV-unmutated and IGHV-mutated clones by Th1-polarized T-bet+ T cells, not classical T follicular helper (Tfh) cells. Thus, the block in B cell maturation, defects in T cell action, and absence of antigen-receptor diversification, which are often cardinal characteristics of CLL, are not inherent but imposed by external signals and the microenvironment. Although these activities are not dominant features in human CLL, each occurs in tissue proliferation centers where the mechanisms responsible for clonal evolution operate. Thus, in this setting, CLL B cell diversification and differentiation develop by a nonclassical germinal center-like reaction that might reflect the cell of origin of this leukemia.
Collapse
Affiliation(s)
- Piers E M Patten
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; King's College London, Department of Haematological Medicine, London, United Kingdom
| | - Gerardo Ferrer
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Shih-Shih Chen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Rita Simone
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Sonia Marsilio
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Zachary Gitto
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Chaohui Yuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York, USA
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Jacqueline Barrientos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Kanti R Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York, USA
| | - Charles C Chu
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA.; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA.; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| |
Collapse
|
12
|
Kawamura K, Wada A, Wang JY, Li Q, Ishii A, Tsujimura H, Takagi T, Itami M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Expression of activation-induced cytidine deaminase is associated with a poor prognosis of diffuse large B cell lymphoma patients treated with CHOP-based chemotherapy. J Cancer Res Clin Oncol 2016; 142:27-36. [PMID: 26077666 DOI: 10.1007/s00432-015-2001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Activation-induced cytidine deaminase (AID) is involved in somatic hypermutation and class switch recombination processes in the antibody formation. The AID activity induces gene mutations and could be associated with transformation processes of B cells. Nevertheless, the relation between AID expression and the prognosis of B cell lymphoma patients remains uncharacterized. METHODS We examined expression levels of the AID gene in 89 lymph node specimens from lymphoma and non-lymphoma patients with Northern blot analysis and investigated an association with their survival. RESULTS The AID gene was preferentially expressed in B cell lymphoma in particular in diffuse large B cell lymphoma and follicular lymphoma. We confirmed AID protein expression in the mRNA-positive but not in the negative specimens with Western blot analysis and immunohistochemical staining. Survival of the patients treated with cyclophosphamide-/doxorubicin-/vincristine-/prednisone-based chemotherapy demonstrated that the prognosis of diffuse large B cell patients was unfavorable in the mRNA-positive group compared with the negative group, and that AID expression levels were correlated with the poor prognosis. In contrast, AID expression was not linked with the prognosis of follicular lymphoma patients. CONCLUSIONS AID expression is a predictive marker for an unfavorable outcome in DLBCL patients treated with the chemotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Northern
- Blotting, Western
- Cyclophosphamide/therapeutic use
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Doxorubicin/therapeutic use
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prednisone/therapeutic use
- Prognosis
- Survival Rate
- Vincristine/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Akihiko Wada
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ji-Yang Wang
- Department of Immunology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Quanhai Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akihiro Ishii
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Hideki Tsujimura
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Toshiyuki Takagi
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadasinden, Yachiyo, 276-8524, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
13
|
AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature. DNA Repair (Amst) 2014; 25:60-71. [PMID: 25486549 DOI: 10.1016/j.dnarep.2014.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022]
Abstract
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.
Collapse
|
14
|
Huemer M, Rebhandl S, Zaborsky N, Gassner FJ, Hainzl S, Weiss L, Hebenstreit D, Greil R, Geisberger R. AID induces intraclonal diversity and genomic damage in CD86(+) chronic lymphocytic leukemia cells. Eur J Immunol 2014; 44:3747-57. [PMID: 25179679 PMCID: PMC4276288 DOI: 10.1002/eji.201344421] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 08/01/2014] [Accepted: 08/29/2014] [Indexed: 02/04/2023]
Abstract
The activation-induced cytidine deaminase (AID) mediates somatic hypermutation and class switch recombination of the Ig genes by directly deaminating cytosines to uracils. As AID causes a substantial amount of off-target mutations, its activity has been associated with lymphomagenesis and clonal evolution of B-cell malignancies. Although it has been shown that AID is expressed in B-cell chronic lymphocytic leukemia (CLL), a clear analysis of in vivo AID activity in this B-cell malignancy remained elusive. In this study performed on primary human CLL samples, we report that, despite the presence of a dominant VDJ heavy chain region, a substantial intraclonal diversity was observed at VDJ as well as at IgM switch regions (Sμ), showing ongoing AID activity in vivo during disease progression. This AID-mediated heterogeneity was higher in CLL subclones expressing CD86, which we identified as the proliferative CLL fraction. Finally, CD86 expression correlated with shortened time to first treatment and increased γ-H2AX focus formation. Our data demonstrate that AID is active in CLL in vivo and thus, AID likely contributes to clonal evolution of CLL.
Collapse
Affiliation(s)
- Michael Huemer
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Krokan HE, Sætrom P, Aas PA, Pettersen HS, Kavli B, Slupphaug G. Error-free versus mutagenic processing of genomic uracil—Relevance to cancer. DNA Repair (Amst) 2014; 19:38-47. [DOI: 10.1016/j.dnarep.2014.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Tsai CT, Yang PM, Chern TR, Chuang SH, Lin JH, Klemm L, Müschen M, Chen CC. AID downregulation is a novel function of the DNMT inhibitor 5-aza-deoxycytidine. Oncotarget 2014; 5:211-23. [PMID: 24457556 PMCID: PMC3960202 DOI: 10.18632/oncotarget.1319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/23/2013] [Indexed: 11/25/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) was originally identified as an inducer of somatic hypermutation (SHM) and class switch recombination (CSR) in immunoglobulin genes. However, AID can also cause mutations in host genes and contribute to cancer progression and drug resistance. In this study, molecular docking showed the interaction of free 5-aza-CdR and Zebularine (Zeb) with AID. However, only 5-aza-CdR-incorporated ssDNA bound to the active site of AID and inhibited AID expression through proteasomal degradation. 5-aza-CdR demonstrated cytotoxicity against AID-positive and -negative hematopoietic cancer cells. In contrast, Zeb exhibited a cytotoxic effect only in AID-negative cells due to its inability to inhibit AID expression. This differential effect might be due to the DNMT1 stabilization induced by AID, thus restricting the ability of Zeb to deplete DNMT1 and induce tumor suppressor genes (TSGs), such as p21, in AID-positive cells. Moreover, the in vivo anticancer effect of 5-aza-CdR but not Zeb in AID-positive hematopoietic cancer cells was demonstrated. The study not only displays the association of AID and DNMT1 and identifies a novel biological function of AID, but also provides novel information regarding the use of DNMT inhibitors to treat AID-positive hematopoietic cancers.
Collapse
Affiliation(s)
- Chiou-Tsun Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Ming Yang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Rong Chern
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hui Chuang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Hsin Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Lars Klemm
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Ching-Chow Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Gelmez MY, Teker ABA, Aday AD, Yavuz AS, Soysal T, Deniz G, Aktan M. Analysis of activation-induced cytidine deaminase mRNA levels in patients with chronic lymphocytic leukemia with different cytogenetic status. Leuk Lymphoma 2013; 55:326-30. [PMID: 23662991 DOI: 10.3109/10428194.2013.803225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation induced cytidine deaminase (AID) enzyme, which converts cytosine into uracil and is expressed only by activated B lymphocytes, plays a role in B cells in both the mechanisms of somatic hypermutation (SHM) and class switch recombination (CSR). There are studies showing that AID can cause numerous translocations in different lymphoproliferative diseases. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of monoclonal B cells in bone marrow and peripheral blood. The predictability and clinical status of B-CLL are difficult to determine. About 30-50% of patients have chromosomal abnormalities. AID, which is thought to create fraction segments for translocations, might also cause deletions in DNA regions of 17p13, 11q22.3, 13q14 and 13q34 that are associated with prognostic implications in patients with CLL. In this study, the AID gene expression in patients with CLL with and without deletions was investigated. When compared to healthy subjects and patients without deletions, increased levels of AID expression in patients with deletions of 17p13, 11q22.3 or 13q14 were found, but not for the 13q34 region. Our results show that AID expression may be associated with deletions in patients with CLL.
Collapse
Affiliation(s)
- Metin Y Gelmez
- Department of Immunology, Institute of Experimental Medicine (DETAE), Istanbul University , Istanbul , Turkey
| | | | | | | | | | | | | |
Collapse
|
18
|
Tinguely M, Thies S, Frigerio S, Reineke T, Korol D, Zimmermann DR. IRF8 is associated with germinal center B-cell-like type of diffuse large B-cell lymphoma and exceptionally involved in translocation t(14;16)(q32.33;q24.1). Leuk Lymphoma 2013; 55:136-42. [PMID: 23573829 DOI: 10.3109/10428194.2013.793324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chromosomal translocations involving the immunoglobulin loci represent frequent oncogenic events in B-cell lymphoma development. Although IRF8 (ICSBP-1) protein expression has been demonstrated in germinal center B-cells and related lymphomas in a single report, the IRF8 gene was not described as an immunoglobulin heavy chain (IGH) translocation partner. In a discovery-driven approach we searched for new translocation partners of IGH in diffuse large B-cell lymphoma (DLBCL) by long distance inverse polymerase chain reaction (LDI-PCR) and Sanger sequencing. A t(14;16)(q32.33;q24.1) IGH/IRF8 was detected in a CD5+de novo DLBCL, confirmed by translocation specific PCR and fluorescence in situ hybridization (FISH) analysis. No further IRF8 aberration could be identified either by LDI-PCR in an additional five CD5+DLBCLs or by FISH on 78 formalin-fixed paraffin-embedded biopsies. Subsequent screening for IRF8 by immunohistochemistry revealed IRF8 expression in 18/78 (23%), correlating with a germinal center B-cell-like (GCB) type of DLBCL. This hitherto unknown translocation t(14;16)(q32.33;q24.1) is likely to represent the initiator of a multistep lymphomagenesis in a CD5+de novo DLBCL.
Collapse
Affiliation(s)
- Marianne Tinguely
- Institute of Surgical Pathology, University Hospital Zurich , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Li MM, Ewton AA, Smith JL. Using Cytogenetic Rearrangements for Cancer Prognosis and Treatment (Pharmacogenetics). CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Takata K, Sato Y, Nakamura N, Tokunaka M, Miki Y, Yukie Kikuti Y, Igarashi K, Ito E, Harigae H, Kato S, Hayashi E, Oka T, Hoshii Y, Tari A, Okada H, Al-Kader LA, Mohamad AAL, Maeda Y, Tanimoto M, Kinoshita T, Yoshino T. Duodenal follicular lymphoma lacks AID but expresses BACH2 and has memory B-cell characteristics. Mod Pathol 2013; 26:22-31. [PMID: 22899287 DOI: 10.1038/modpathol.2012.127] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have reported previously that duodenal follicular lymphoma (FL) is distinct from nodal FL and showed more resemblance to mucosa-associated lymphoid tissue lymphoma, and that FL frequently involved the duodenal second portion. In the present study, we examined duodenal FLs and gastric/colonic FLs to clarify the clinicopathological and immunological differences between the tumor types. We analyzed 8 samples of gastric FL, 17 of duodenal ones, and 5 of colonic/rectal ones, and characterized them by immunohistochemistry, immunogenotyping, and histology. Gastric and colonic FLs presented in submucosal to subserosal areas, whereas duodenal ones presented in the mucosal to submucosal layers. Immunohistochemical analysis revealed that duodenal FLs exhibited the following phenotypes: CD10 (+), B-cell lymphoma 2 (BCL-2) (+), BCL-6 (+), activation-induced cytidine deaminase (AID) (-), BACH2 (+), CD27 (+), MUM-1 (-), Blimp-1 (-), and loose CD21 network (duodenal pattern). Gastric/colonic FLs exhibited the following phenotypes: CD10 (+), BCL-2 (+), BCL-6 (+), AID (+), BACH2 (+), CD27 (-), MUM-1 (-), Blimp-1 (-), and a dense CD21 network (nodal pattern). Expression of AID and CD27 in lymphoma cells and the CD21 network pattern were considerably different between duodenal FLs and gastric/colonic ones. Moreover, in situ hybridization revealed that, in the duodenal FLs, BACH2 was expressed at the periphery of the tumor follicle and tumor villi. The number of immunoglobulin heavy-chain variable domains VH4 and VH5 were higher in duodenal follicular lymphomoas than in gastric FLs. The lymphoma cells of duodenal FLs are different from those of gastric/colonic FLs, and duodenal FL is distinct even within the gastrointestinal tract. Somatic hypermutation in immunoglobulin genes and CD27 expression are hallmarks of memory B cells. We suggest that duodenal FL cells are in the memory B-cell stage, and require BACH2 instead of AID for ongoing mutation.
Collapse
Affiliation(s)
- Katsuyoshi Takata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions. Blood 2012; 120:4802-11. [PMID: 23071276 DOI: 10.1182/blood-2012-08-449744] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clonal evolution occurs during the course of chronic lymphocytic leukemia (CLL) and activation-induced deaminase (AID) could influence this process. However, this possibility has been questioned in CLL because the number of circulating AID mRNA(+) cells is exceedingly low; synthesis of AID protein by blood CLL cells has not been demonstrated; the full range of AID functions is lacking in unmutated CLL (U-CLL), and no prospective analysis linking AID expression and disease severity has been reported. The results of the present study show that circulating CLL cells and those within secondary lymphoid tissues can make AID mRNA and protein. This production is related to cell division because more AID mRNA was detected in recently divided cells and AID protein was limited to the dividing fraction and was up-regulated on induction of cell division. AID protein was functional because AID(+) dividing cells exhibited more double-stranded DNA breaks, IGH class switching, and new IGHV-D-J mutations. Each of these actions was documented in U-CLL and mutated CLL (M-CLL). Furthermore, AID protein was associated with worse patient outcome and adverse cytogenetics. We conclude that the production of fully functional AID protein by U-CLL and M-CLL cells could be involved in clonal evolution of the disease.
Collapse
|
22
|
Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes. Proc Natl Acad Sci U S A 2012; 109:2479-84. [PMID: 22308462 DOI: 10.1073/pnas.1120791109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites.
Collapse
|
23
|
High prevalence of adverse prognostic genetic aberrations and unmutated IGHV genes in small lymphocytic lymphoma as compared to chronic lymphocytic leukemia. J Hematop 2011. [DOI: 10.1007/s12308-011-0108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Wiltgen M, Tilz GP. Molecular diagnosis and prognosis with DNA microarrays. Hematology 2011; 16:166-76. [PMID: 21669057 DOI: 10.1179/102453311x12953015767257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microarray analysis makes it possible to determine thousands of gene expression values simultaneously. Changes in gene expression, as a response to diseases, can be detected allowing a better understanding and differentiation of diseases at a molecular level. By comparing different kinds of tissue, for example healthy tissue and cancer tissue, the microarray analysis indicates induced gene activity, repressed gene activity or when there is no change in the gene activity level. Fundamental patterns in gene expression are extracted by several clustering and machine learning algorithms. Certain kinds of cancer can be divided into subtypes, with different clinical outcomes, by their specific gene expression patterns. This enables a better diagnosis and tailoring of individual patient treatments.
Collapse
Affiliation(s)
- Marco Wiltgen
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria.
| | | |
Collapse
|
25
|
van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from October 2009 to January 2010. J Hematop 2011; 3:47-58. [PMID: 21633487 DOI: 10.1007/s12308-010-0060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
26
|
Abstract
An increasing number of neoplasms are associated with variably specific genetic abnormalities. This is best exemplified by hematological malignancies, in which there is a growing list of entities that are defined by their genetic lesion(s); this is not (yet) the case in mature B-cell lymphomas. However, enhanced insights into the pathogenesis of this large and diverse group of lymphomas have emerged with the ongoing unraveling of a plethora of fascinating genetic abnormalities. The purpose of this review is to synthesize well-recognized data and nascent discoveries in our understanding of the genetic basis of a spectrum of mature B-cell lymphomas, and how this may be applied to contemporary clinical practice. Despite the explosion of new and exciting knowledge in this arena, with the potential for enhanced diagnostic and prognostic strategies, it is essential to remain cognizant of the limitations (and complexity) of genetic investigations, so that assays can be developed and used both judiciously and rationally.
Collapse
|
27
|
Nagaoka H, Tran TH, Kobayashi M, Aida M, Honjo T. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int Immunol 2010; 22:227-35. [DOI: 10.1093/intimm/dxq023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|