1
|
Nguyen DD, Hooper WF, Liu W, Chu TR, Geiger H, Shelton JM, Shah M, Goldstein ZR, Winterkorn L, Helland A, Sigouros M, Manohar J, Moyer J, Al Assaad M, Semaan A, Cohen S, Madorsky Rowdo F, Wilkes D, Osman M, Singh RR, Sboner A, Valentine HL, Abbosh P, Tagawa ST, Nanus DM, Nauseef JT, Sternberg CN, Molina AM, Scherr D, Inghirami G, Mosquera JM, Elemento O, Robine N, Faltas BM. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 2024:10.1038/s41586-024-07955-3. [PMID: 39385020 DOI: 10.1038/s41586-024-07955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Advanced urothelial cancer is a frequently lethal disease characterized by marked genetic heterogeneity1. In this study, we investigated the evolution of genomic signatures caused by endogenous and external mutagenic processes and their interplay with complex structural variants (SVs). We superimposed mutational signatures and phylogenetic analyses of matched serial tumours from patients with urothelial cancer to define the evolutionary dynamics of these processes. We show that APOBEC3-induced mutations are clonal and early, whereas chemotherapy induces mutational bursts of hundreds of late subclonal mutations. Using a genome graph computational tool2, we observed frequent high copy-number circular amplicons characteristic of extrachromosomal DNA (ecDNA)-forming SVs. We characterized the distinct temporal patterns of APOBEC3-induced and chemotherapy-induced mutations within ecDNA-forming SVs, gaining new insights into the timing of these mutagenic processes relative to ecDNA biogenesis. We discovered that most CCND1 amplifications in urothelial cancer arise within circular ecDNA-forming SVs. ecDNA-forming SVs persisted and increased in complexity, incorporating additional DNA segments and contributing to the evolution of treatment resistance. Oxford Nanopore Technologies long-read whole-genome sequencing followed by de novo assembly mapped out CCND1 ecDNA structure. Experimental modelling of CCND1 ecDNA confirmed its role as a driver of treatment resistance. Our findings define fundamental mechanisms that drive urothelial cancer evolution and have important therapeutic implications.
Collapse
Affiliation(s)
- Duy D Nguyen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Weisi Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alissa Semaan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Florencia Madorsky Rowdo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Osman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul R Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Henkel L Valentine
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Phillip Abbosh
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Urology, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Jones T Nauseef
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cora N Sternberg
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Douglas Scherr
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Bishoy M Faltas
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Jiang D, Song Q, Zhang F, Xu C, Li X, Zeng H, Su J, Huang J, Xu Y, Lu S, Hou Y. Prognostic significance of CCND1 amplification/overexpression in smoking patients with esophageal squamous cell carcinoma. Cancer Genet 2023; 278-279:1-8. [PMID: 37556965 DOI: 10.1016/j.cancergen.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer, with 5-year survival rate less than 30%. In order to offer an individual therapeutic approach, it is necessary to identify novel prognostic factors to recognize high-risk patients. Given the high frequency of CCND1 abnormalities and the important biological effects of smoking in ESCC, we explored the potential relationship between CCND1 abnormalities and smoking in ESCC patients. CCND1 status was examined by fluorescence in situ hybridization and immunohistochemical staining in ESCC tissue microarrays (n = 519). CCND1 amplification and cyclinD1 overexpression were found in 53.2 and 34.1% ESCC, respectively. CCND1 amplification (P = 0.142 for DFS and P = 0.191 for OS) and cyclinD1 overexpression (P = 0.035 for DFS and P = 0.092 for OS) tended to be poorer prognostic factors in all patients. Among smoking patients, those with CCND1 amplification had significantly poorer prognosis, with a median DFS and OS of 25.0 and 30.0 months compared to not reached and 52.0 months for those without CCND1 amplification (P = 0.020 and 0.018). A similar trend was found in the 68 patients with cyclinD1 overexpression (P = 0.043 and 0.048). Further univariate and multivariate analysis revealed CCND1 amplification was independently poorer prognostic factor in smoking patients, which was not found in non-smoking patients. Smokers with CCND1 amplification or cyclinD1 overexpression have poorer survival, which help us to identify distinct groups of patients with apparently poorer outcome and would enable appropriate follow-up and treatment strategies.
Collapse
Affiliation(s)
- Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Fuhan Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaojing Li
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
3
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
He Y, Mei J, Hao H, Liu F, Yi Y, Hu C, Zou F, Lu X. Selinexor demonstrates anti-tumor efficacy in paired patient-derived xenograft models and hydrogel-embedded histoculture drug sensitivity test of penile cancer. J Cancer Res Clin Oncol 2023; 149:6931-6941. [PMID: 36840755 DOI: 10.1007/s00432-023-04618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Penile cancer is a rare malignancy with a poor prognosis, even with various treatment options. Considering the little progress in the study of the pathogenesis and treatment of penile cancer because of the lack of models that mimic the biological properties of the tumor, we have developed a patient-derived xenograft (PDX) model and paired hydrogel-embedded histoculture drug sensitivity test (HDST) to screen for drugs that can inhibit tumors. The increased expression of XPO1, as a key nuclear export protein involved in the transport of various tumor suppressors and cell cycle regulatory proteins, is associated with the prognosis of a variety of tumors [World J Uroly 27(2):141-150, 2009]. Selinexor is an inhibitor of XPO1, which can treat cancers, such as multiple myeloma, gastric cancer, triple-negative breast cancer, and non-small cell carcinoma [Transl Androl Urol 6(5):785-790, 2017; OncoTargets Therapy 13:6405-6416, 2020]. However, whether XPO1 inhibition has a role in penile cancer remains unknown. Therefore, this article used the PDX and HDST models to investigate whether the inhibition of XPO1 has an effect on penile cancer and its underlying mechanism. METHODS We used penile cancer tumor tissues to construct a PDX model of penile cancer and paired PDXE model and confirmed the consistency of PDX tumor tissues in source patients. Then, we assessed the ability of Selinexor to inhibit penile cancer tissues in vivo using a PDX model and in vitro by HDST. We also examined the potential mechanism of XPO1 action on penile cancer by IHC and TUNEL. Finally, we assessed the safety of the drug treatment by H&E and biochemical blood analysis. RESULTS Result showed that the penile cancer PDX model and patient penile cancer tissues were clinically consistent in morphological characteristics and protein expression. In addition, Selinexor could inhibit tumor growth in PDX models and HDST. We found that P53, P21 expression was upregulated; Cyclin D1 expression was downregulated, and apoptosis of tumor cells was increased in the Selinexor-treated PDX model. Moreover, it had no significant effect on liver, kidney, and cardiac function. CONCLUSION The PDX model of penile cancer was a powerful tool for penile cancer research and new drug development. It showed that Selinexor can effectively inhibit penile cancer in vitro and in vivo. In addition, XPO1 may affect P53, P21, and Cyclin D1 expression to regulate the growth and apoptosis of penile carcinoma.
Collapse
Affiliation(s)
- Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, 330031, China
- Nanchang Royo Biotechnology, Nanchang, 330006, China
| | - Jiaqi Mei
- The First Clinical Medical College, Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Hua Hao
- Department of Pathology, School of Medicine, Yangpu Hospital, Tongji University, Shanghai, 200090, China
| | - Fanrong Liu
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yun Yi
- Center of Biobank, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chao Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Fangxing Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| |
Collapse
|
5
|
Su Y, Zhou H, Ma Z, Liu J, Li C. CCND1-Induced Autophagy Contributes to Lymph Node Metastasis in Endometrial Cancer. Horm Metab Res 2023; 55:413-419. [PMID: 37019147 DOI: 10.1055/a-2044-9227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Endometrial cancer with lymph node metastasis shows poor prognosis, while the biomarker to predict the metastasis is lacking. The relative mRNA or protein expression of cyclin D1 (CCND1) and autophagy-related molecules were detected in real-time PCR and Western blot. Correlation analysis was applied to identify any significant patterns, and receiver operating characteristics (ROC) was performed to assess the prediction value. CCND1 vector was transfected in Ishikawa (ISK) cells, and the relative expression of autophagy-related molecules was detected with Western blot. CCND1 was overexpressed in endometrial cancer and correlated with lymph node metastasis. ROC analysis found that CCND1 had a predictive value to discriminate tumors from normal tissues (cut off=1.455; sensitivity, 71%; specificity, 84%; area under curve (AUC) 0.82; p<0.001) and had a predictive value to indicate metastasis (cut off=1.871; sensitivity, 54.17%; specificity, 75%; AUC 0.674; p=0.003). Increased BECLIN1 (r=0.39, p<0.001) and ATG5 (r=0.41, p<0.001) expression were positively correlated to CCND1. On the other hand, the relative protein expression of CCND1, BECLIN1, ATG5, ATG7, and LC3 I/II were also increased in tumor tissues. CCND1 overexpressed ISK cells showed upregulated BECLIN1, ATG5, ATG7, and LC3 I/II expression. CCND1 promoted autophagy may contribute to lymph node metastasis in endometrial cancer.
Collapse
Affiliation(s)
- Yi Su
- Shandong University Cancer Center, Jinan, China
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Haonan Zhou
- The First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhao Ma
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Jing Liu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, China
| | - Chen Li
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
6
|
Montero-Hidalgo AJ, Pérez-Gómez JM, Martínez-Fuentes AJ, Gómez-Gómez E, Gahete MD, Jiménez-Vacas JM, Luque RM. Alternative splicing in bladder cancer: potential strategies for cancer diagnosis, prognosis, and treatment. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1760. [PMID: 36063028 DOI: 10.1002/wrna.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Urology Service, HURS/IMIBIC, Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| |
Collapse
|
7
|
Jardim DLF, Millis SZ, Ross JS, Lippman S, Ali SM, Kurzrock R. Comprehensive Landscape of Cyclin Pathway Gene Alterations and Co-occurrence with FGF/FGFR Aberrations Across Urinary Tract Tumors. Oncologist 2023; 28:e82-e91. [PMID: 36082904 PMCID: PMC9907036 DOI: 10.1093/oncolo/oyac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cyclin pathway gene alterations are frequent in urothelial tumors and may co-exist with other important aberrations, leading to therapeutic opportunities. We characterized the landscape of cyclin gene alterations in urothelial and non-urothelial urinary tract (UT) malignancies. PATIENTS AND METHODS Overall, 6842 urothelial and 897 non-urothelial UT cancers were analyzed (hybrid-capture-based comprehensive genomic profile (Foundation Medicine)). Alteration frequency in cyclin-sensitizing and -resistance genes, and co-occurrence with fibroblast growth factor receptor (FGFR) gene abnormalities were evaluated. RESULTS Cyclin-activating gene alterations were detected in 47.3% of urothelial and 37.9% of non-urothelial UT cancers. Frequency varied by histology and tumor site. CDKN2A and CDKN2B loss were the most frequent alterations in urothelial tumors (present in 38.5% and 30.4% of patients, respectively). Both genes were less frequently altered in adenocarcinomas (15.2% and 8.9%), but commonly altered in squamous cell carcinomas (74.4% and 39%). Tumors of neuroendocrine origin were relatively silent in activating cyclin alterations, but frequently displayed Rb1 alterations (86% and 83.7% of neuroendocrines and small cell carcinomas). Urachal tumors (n = 79) presented a distinct landscape of cyclin alterations relative to other UT cancers, with less frequent alterations overall. FGF/FGFR genes were altered in 34.9% of urothelial (22.1% in FGFR3), and 19.4% of non-urothelial urinary tract tumors (6.8% FGFR3). Cyclin-activating alterations frequently co-occurred with FGF/FGFR alterations but were in general mutually exclusively with cyclin resistance alterations (RB1/CCNE1). CONCLUSIONS Cyclin pathway activating alterations are common in urinary tract tumors, but frequency varies with histology and tumors sites. Co-occurrence of cyclin and FGFR pathway alterations may inform therapeutic opportunities.
Collapse
Affiliation(s)
- Denis L F Jardim
- Department of Clinical Oncology, Hospital Sirio Libanes, São Paulo, Brazil
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, RS, Brazil
| | | | - Jeffrey S Ross
- Foundation Medicine, Cambridge, MA, USA
- Departments of Pathology and Urology, Upstate Medical University, Syracuse, NY, USA
| | - Scott Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
| | | | - Razelle Kurzrock
- WIN Consortium for Personalized Cancer Therapy, Paris, France
- Medical College of Wisconsin, Milwaukee, WI, USA
- University of Nebraska (adjunct)
| |
Collapse
|
8
|
Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-Wide Microarray Data and Deep Learning Method with Drug Design Specifications. Int J Mol Sci 2022; 23:ijms232213869. [PMID: 36430344 PMCID: PMC9692470 DOI: 10.3390/ijms232213869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Bladder cancer is the 10th most common cancer worldwide. Due to the lack of understanding of the oncogenic mechanisms between muscle-invasive bladder cancer (MIBC) and advanced bladder cancer (ABC) and the limitations of current treatments, novel therapeutic approaches are urgently needed. In this study, we utilized the systems biology method via genome-wide microarray data to explore the oncogenic mechanisms of MIBC and ABC to identify their respective drug targets for systems drug discovery. First, we constructed the candidate genome-wide genetic and epigenetic networks (GWGEN) through big data mining. Second, we applied the system identification and system order detection method to delete false positives in candidate GWGENs to obtain the real GWGENs of MIBC and ABC from their genome-wide microarray data. Third, we extracted the core GWGENs from the real GWGENs by selecting the significant proteins, genes and epigenetics via the principal network projection (PNP) method. Finally, we obtained the core signaling pathways from the corresponding core GWGEN through the annotations of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to investigate the carcinogenic mechanisms of MIBC and ABC. Based on the carcinogenic mechanisms, we selected the significant drug targets NFKB1, LEF1 and MYC for MIBC, and LEF1, MYC, NOTCH1 and FOXO1 for ABC. To design molecular drug combinations for MIBC and ABC, we employed a deep neural network (DNN)-based drug-target interaction (DTI) model with drug specifications. The DNN-based DTI model was trained by drug-target interaction databases to predict the candidate drugs for MIBC and ABC, respectively. Subsequently, the drug design specifications based on regulation ability, sensitivity and toxicity were employed as filter criteria for screening the potential drug combinations of Embelin and Obatoclax for MIBC, and Obatoclax, Entinostat and Imiquimod for ABC from their candidate drugs. In conclusion, we not only investigated the oncogenic mechanisms of MIBC and ABC, but also provided promising therapeutic options for MIBC and ABC, respectively.
Collapse
|
9
|
Bhanvadia RR, Lotan Y. Progress in the development of tissue-based biomarkers for urothelial cancer. Expert Rev Anticancer Ther 2022; 22:605-619. [PMID: 35459430 DOI: 10.1080/14737140.2022.2070154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION As the understanding of molecular mechanisms of bladder cancer advances, molecularly-guided precision medicine becomes increasingly relevant. Biomarkers play a critical role in this setting, predicting treatment response and identifying candidates for targeted therapies. AREAS COVERED Current literature on biomarkers in their role in disease prognosis, and response to neoadjuvant and adjuvant therapies. In non-muscle invasive bladder cancer, particular focus is on markers of disease progression, and response to intravesical therapy. In muscle invasive and advanced bladder cancer, particular emphasis is on markers associated with neoadjuvant chemotherapy, as well as systemic immunotherapy. We discuss current shortcomings and pitfalls in contemporary markers, and future avenues of prospective research. EXPERT OPINION The focus on biomarkers has moved from immunohistochemical analysis and tumor-related phenotypic changes to examining genetic alterations. Single marker analysis has been shown to be insufficient in predicting both disease course and response to therapy, and studies have shifted towards examining marker combinations and genetic classifiers. Ultimately, significant progress in implementing biomarkers into clinical guidelines remains elusive, largely due to lack of prospective studies in well-defined patient cohorts and with clinically-meaningful endpoints. Until then, despite their promising value, tissue markers should be limited to experimental settings and clinical trials.
Collapse
Affiliation(s)
- Raj R Bhanvadia
- Department of Urology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
10
|
Wang X, Liu X, Yang Y, Yang D. Cyclin D1 mediated by the nuclear translocation of nuclear factor kappa B exerts an oncogenic role in lung cancer. Bioengineered 2022; 13:6866-6879. [PMID: 35246017 PMCID: PMC8974107 DOI: 10.1080/21655979.2022.2043099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The relevance of cyclin D1 (CCND1) has been implicated in lung cancer progression. Nevertheless, the mechanism by which CCND1 supports lung cancer development is yet to be expounded. Here, we established that CCND1 is overexpressed in clinical lung cancer specimens and various lung cancer cells. Importantly, CCND1 overexpression enhanced lung cancer cell proliferation, invasion and migration, and arrested the cell cycle at the S phase. In vivo, overexpression of CCND1 promoted lung cancer growth and metastasis. The nuclear translocation of nuclear factor kappa B (NF-κB) promoted p65 protein expression and CCND1 transcription. Meanwhile, PI3K/AKT pathway activity was significantly reduced when NF-κB nuclear translocation was decreased. PI3K/AKT pathway activity was significantly elevated upon CCND1 overexpression. Inhibition of PI3K/AKT pathway activity or suppression of NF-κB translocation in cells with high CCND1 expression was found to significantly reduce the activity of lung cancer cells in vitro and in vivo. Our data revealed that NF-κB/CCND1/PI3K/AKT axis could act as a prospective diagnostic biomarker and a therapeutic option for lung cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province & Northwest University for Nationality, Lanzhou, Gansu, China
| | - Xiaoping Liu
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province & Northwest University for Nationality, Lanzhou, Gansu, China
| | - Yanxia Yang
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province & Northwest University for Nationality, Lanzhou, Gansu, China
| | - Daowen Yang
- Department 1 of Lung Disease of TCM, China-Japan Friendship Hospital, Beijing, Chaoyang, China
| |
Collapse
|
11
|
Genomic characterization of non-schistosomiasis-related squamous cell carcinoma of the urinary bladder: A retrospective exploratory study. PLoS One 2021; 16:e0259272. [PMID: 34851968 PMCID: PMC8635362 DOI: 10.1371/journal.pone.0259272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Non-schistosomiasis related-squamous cell carcinoma of urinary bladder (NSR-SCCUB) is a rare tumor subtype distinct from urothelial carcinoma (UC). Studies assessing molecular biomarkers in bladder cancer have generally focused on UC, and genomic data of NSR-SCCUB is limited. We aim to provide additional insight into the molecular underpinnings of this rare entity. Methods NSR-SCCUB patients were identified retrospectively at Princess Margaret Cancer Centre between 2002 and 2017. Demographics, disease characteristics, therapeutic approaches, and outcomes were collected. Tissue samples were interrogated using the Oncomine Comprehensive Assay v3 (ThermoFisher). Kaplan-Meier method was used to estimate the disease-free survival and overall survival (OS). Results Overall, 11 patients with NSR-SCCUB were identified between 2002 and 2017 with adequate tissue samples. Median age was 71 years (45–86), predominantly male (63.6%). At time of diagnosis, 9 patients (81.8%) had muscle-invasive disease, 1 (9.1%) had non-muscle invasive, and 1 (9.1%) had advanced disease. Nine (81.8%) patients had radical cystectomy and pelvic lymph nodes dissection. Eight (72.7%) patients had pT3 or pT4 with N0, and 5 (45.5%) were grade 3. Median OS was 12.5 months (95% CI 7.7–17.2 months). Single nucleotide variants or insertion/deletions were identified in TP53, TERT, PIK3CA, PTEN, CREBBP, FBXW7, and FGFR3. Amplifications were found in CCND1, and EGFR. Conclusions NSR-SCCUB has potentially actionable genomic alterations with anticancer agents and many of these aberrations are also seen in UC. The recruitment of NSR-SCCUB patients harboring such mutations should be considered in biomarker driven urinary bladder cancer studies.
Collapse
|
12
|
Xu QH, Yuan Q, Zhang YQ, Li B, Min YL, Ge QM, Liang RB, Shao Y. Ocular Metastasis in Elderly Male Bladder Cancer Patients: Potential Risk Factors. Am J Mens Health 2021; 14:1557988320908998. [PMID: 32146866 PMCID: PMC7065287 DOI: 10.1177/1557988320908998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bladder cancer is a common type of tumor among elderly male population; it causes intraocular metastasis (IOM). The study investigated the differences between elderly male bladder cancer patients with and without IOM, and identified risk factors for IOM. In this study, 749 elderly male patients (aged ≥50 years) with bladder cancer were included from November 2003 to December 2016. Differences between the IOM and non-IOM (NIOM) groups were evaluated by chi-square test and Student’s t-test. The binary logistic regression analysis calculates the risk factors. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value of IOM in elderly male patients with bladder cancer. The incidence of IOM in patients with bladder cancer was 1.7%. No significant differences were detected in age and histopathology between the IOM and NIOM groups. According to the study, the IOM group had higher ALP and Cyfra21-1. Binary logistic regression indicated that ALP and Cyfra21-1 were risk factors for IOM in elderly male bladder cancer patients (p < .05). ROC curve analysis revealed area under the curve values for ALP and Cyfra21-1 of 0.913 and 0.814, using cutoff values of 9.65 and 83.5 U/L, respectively. The sensitivity and specificity values for ALP were 61.5% and 95.8%, respectively, while those for Cyfra21-1 were 84.6% and 73.3%. The investigation indicates that ALP and Cyfra21-1 are risk factors for IOM in elderly male patients with bladder cancer and ALP is more reliable at distinguishing IOM from NIOM in elderly male patients with bladder cancer.
Collapse
Affiliation(s)
- Qian-Hui Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Yu-Qing Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, People's Republic of China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, People's Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, People's Republic of China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
13
|
Li X, Zhao J, Yan T, Mu J, Lin Y, Chen J, Deng H, Meng X. Cyanidin-3-O-glucoside and cisplatin inhibit proliferation and downregulate the PI3K/AKT/mTOR pathway in cervical cancer cells. J Food Sci 2021; 86:2700-2712. [PMID: 33908630 DOI: 10.1111/1750-3841.15740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Natural compounds have been increasingly investigated as substances enhancing the effect of drugs and reducing drug-related adverse reactions. The objective of this study was to determine how a combination of cisplatin (DDP) with cyanidin-3-O-glucoside (C3G) affected malignancy features of cervical cancer cells. The results demonstrated that the proliferation of HeLa cells treated with 5 µg/ml DDP, 400 µg/ml C3G, or a combination of both (5 µg/ml DDP and 400 µg/ml C3G) was inhibited by 17.43%, 34.98%, and 63.38%, respectively. The IC50 values for DDP and the DDP/C3G combination treatments in HeLa cells were 18.53 and 6.435 µg/ml, respectively. Flow cytometry analysis indicated that treatment with DDP, C3G, or the combination induced G1 cell cycle arrest and apoptosis in HeLa cells. Furthermore, after treatment, cyclin D1 and Bcl-2 levels decreased; Bax, cleaved caspase-3, p53, and TIMP-1 were activated; and the PI3K/AKT/mTOR signaling pathway was modulated. These anticancer effects were enhanced in cells treated with the combination of DDP and C3G compared to those treated with DDP or C3G alone. Our study indicates that C3G increases the antitumor activity of DDP, suggesting a potential strategy to reduce adverse effects associated with chemotherapy in cervical cancer. PRACTICAL APPLICATION: Natural biologically active food ingredients are suggested to have a potential to enhance the effect of chemotherapy in cancer. We believe that our study makes a significant contribution to the literature because it revealed, for the first time, that C3G could increase the antitumor activity of DDP, suggesting a potential strategy to reduce adverse effects associated with chemotherapy in cervical cancer.
Collapse
Affiliation(s)
- Xu Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jin Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jingjing Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yang Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jing Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Haotian Deng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Todorović-Raković N, Milovanović J, Durosaro SO, Radulovic M. The prognostic value of cyclin D1 in breast cancer patients treated with hormonal therapy: A pilot study. Pathol Res Pract 2021; 222:153430. [PMID: 33839437 DOI: 10.1016/j.prp.2021.153430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
THE AIM of the study was to determine the clinical relevance of cyclin D1 (cD1) and its association with clinicopathological parameters in breast cancer patients treated with hormonal therapy. MATERIAL AND METHODS The study included 96 primary breast cancer patients with known clinicopathological parameters. In adjuvant setting, 44 patients were tamoxifen-treated and 52 were treated with ovarian irradiation/ablation. The cD1 status (gene amplified/nonamplified) was determined on formalin-fixed paraffin-embedded tumor tissue sections by chromogenic in situ hybridization. Associations between parameters were analyzed by Chi-square and Spearman's rank order correlation tests. Cox proportional hazards regression test was performed. Survival curves for relapse-free survival were constructed according to the Kaplan-Meier method. RESULTS There were no significant associations between cyclin D1 and clinicopathological parameters in either patient group. Amplified cyclin D1 associated significantly with the actual relapse incidence in the ovarian ablation patient group (p = 0.01, HR = 3.1), but not in the tamoxifen-treated patient group. Estrogen receptor and cyclin D1 have proven to be independent parameters of poor outcome in the ovarian ablation patient group (p = 0.03, HR = 2.9; and p = 0.009, HR = 2.5; respectively). CONCLUSIONS Cyclin D1 might be a candidate biomarker of poor outcome in breast cancer patients treated with ovarian ablation, suggesting its possible involvement in acquirement of hormonal resistance. The role of cyclin D1 as potential parameter of response to tamoxifen was not as pronounced.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Jelena Milovanović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Samuel Olutunde Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria.
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| |
Collapse
|
15
|
Zhang Z, Chen P, Xie H, Cao P. Overexpression of GINS4 Is Associated With Tumor Progression and Poor Survival in Hepatocellular Carcinoma. Front Oncol 2021; 11:654185. [PMID: 33842367 PMCID: PMC8027117 DOI: 10.3389/fonc.2021.654185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Our research was aimed to identify the expression, clinical value and biological significance of GINS complex subunit 4 (GINS4) in hepatocellular carcinoma (HCC). Materials and Methods GINS4 was initially screened through weighted gene co-expression network analysis (WGCNA). The TCGA, GEO, and TIMER databases were applied for analyzing the GINS4 mRNA expression in HCC. GINS4 protein levels were detected via immunohistochemistry (IHC). Receiver operating characteristic (ROC) curve was applied for estimating the diagnostic significance of GINS4 in HCC. Kaplan-Meier plots, Cox model, and nomogram were used to assess the prognostic performance of GINS4 in HCC. Nomogram validation was conducted through time-dependent ROC and decision curve analysis (DCA). The Wanderer, UALCAN, and DiseaseMeth databases were utilized to identify GINS4 methylation levels in HCC. Genes co-expressed with GINS4 in HCC were estimated through the TCGA, cBioPortal, and GEPIA. GO, KEGG, and GSEA unraveled the possible biological mechanisms of GINS4 in HCC. Results WGCNA confirmed that GINS4 was one of hub genes significantly associated with histological grade of HCC. Multiple databases confirmed the significant upregulation of GINS4 in HCC tissues compared with non-tumor controls. IHC analysis of 35 HCC patients demonstrated that overexpressed GINS4 positively correlated with advanced TNM stage and poor pathological differentiation. GINS4 could effectively differentiate HCC cases from healthy individuals, with an AUC of 0.865. Increased GINS4 expression predicted unsatisfactory prognosis in HCC patients, especially in age >60 years, histological grade 1, HBV infection-negative, and occurring relapse subgroup. Nomogram incorporating GINS4 level and TNM stage displayed satisfactory predictive accuracy and clinical utility in predicting HCC prognosis. Upregulated GINS4 exhibited hypomethylated levels in HCC. Functional analysis indicated that GINS4 potentially positively modulated cell cycle and PI3K/AKT/mTOR pathway. Conclusion GINS4 is overexpressed in HCC and is correlated with undesirable survival of HCC patients.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Wu J, Wen JM, Wang YC, Luo WJ, Wang QF, Lv H, Dai B, Ye DW, Su HC, Zhu YP. Prognostic Value of an Immunohistochemical Signature in Patients With Bladder Cancer Undergoing Radical Cystectomy. Front Oncol 2021; 11:641385. [PMID: 33842349 PMCID: PMC8027317 DOI: 10.3389/fonc.2021.641385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to assess the prognostic value of various diagnostic immunohistochemical (IHC) markers and develop an IHC-based classifier to predict the disease-free survival (DFS) of patients with bladder cancer undergoing radical cystectomy. Methods IHC was performed on tumor specimens from 366 patients with transitional cell bladder cancer. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to develop a multi-marker classifier for predicting DFS of patients with bladder cancer. The Kaplan-Meier estimate was performed to assess DFS, and unadjusted and adjusted Cox regression models were used to identify independent risk factors to predict DFS of patients with bladder cancer. Results Based on the LASSO Cox regression model, nine prognostic markers were identified in the training cohort. Patients were stratified into low- and high-risk groups using the IHC-based classifier. In the training cohort, the 10-year DFS was significantly better in low-risk patients (71%) compared with high-risk patients (18%) (p < 0.001); in the validation cohort, the 10-year DFS was 86% for the low-risk group and 20% for the high-risk group (p < 0.001). Multivariable Cox regression analyses showed that the high-risk group based on the classifier was associated with poorer DFS adjusted by clinicopathological characteristics. Finally, a nomogram comprising the classifier and clinicopathological factors was developed for clinical application. Conclusion The nine-IHC-based classifier is a reliable prognostic tool, which can eventually guide clinical decision making regarding treatment strategy and follow-up scheduling of bladder cancer.
Collapse
Affiliation(s)
- Jie Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Miao Wen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu-Chen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jie Luo
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi-Feng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Lv
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Heng-Chuan Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
EPHA2 Promotes the Invasion and Migration of Human Tongue Squamous Cell Carcinoma Cal-27 Cells by Enhancing AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4219690. [PMID: 33834064 PMCID: PMC8016562 DOI: 10.1155/2021/4219690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.
Collapse
|
18
|
Chen L, Ke X. MMP7 as a potential biomarker of colon cancer and its prognostic value by bioinformatics analysis. Medicine (Baltimore) 2021; 100:e24953. [PMID: 33655961 PMCID: PMC7939218 DOI: 10.1097/md.0000000000024953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Colon cancer is one of the most common cancers in the world. To identify the candidate genes in the carcinogenesis and progression of colon cancer, the microarray datasets GSE10950, GSE44861 and GSE74602 were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and functional enrichment analyses were performed. A total of 176 DEGs were identified, consisting of 55 genes upregulated and 121 genes downregulated in colon cancer tissues compared to non-cancerous tissues. The DEGs were mainly enriched in mineral absorption, nitrogen metabolism and complement and coagulation cascades. By using STRING database analysis, we constructed a coexpression network composed of 140 nodes and 280 edges for the DEGs with a combined score >0.4 and a significant interaction relation. Thirteen hub genes were identified, and poor OS of patients was only associated with high expression of Matrix Metallopeptidase 7 (MMP7), which may be involved in the carcinogenesis, invasion or recurrence of colon cancer. In conclusion, we propose that the DEGs and hub genes identified in the present study may be regarded as diagnostic biomarkers for colon cancer. Moreover, the overexpression of MMP7 may correlate with poor prognosis.
Collapse
Affiliation(s)
- Li Chen
- Department of Colorectal Surgery
| | - Xueying Ke
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, Watkins TBK, Rosenthal R, Biswas D, Rowan A, Lim E, Al Bakir M, Turati V, Guerra-Assunção JA, Conde L, Furness AJS, Saini SK, Hadrup SR, Herrero J, Lee SH, Van Loo P, Enver T, Larkin J, Hellmann MD, Turajlic S, Quezada SA, McGranahan N, Swanton C. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021; 184:596-614.e14. [PMID: 33508232 PMCID: PMC7933824 DOI: 10.1016/j.cell.2021.01.002] [Citation(s) in RCA: 481] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/26/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Collapse
Affiliation(s)
- Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - James L Reading
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Krupa Thakkar
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Chris Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emilia Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Virginia Turati
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - José Afonso Guerra-Assunção
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew J S Furness
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Sunil Kumar Saini
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tariq Enver
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Matthew D Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Parker Center for Cancer Immunotherapy, 885 2nd Avenue, New York, NY 10017, USA
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Sturaro G, Tasso A, Menilli L, Di Liddo R, Miolo G, Conconi MT. 4,6,4'-Trimethylangelicin Photoactivated by Blue Light Might Represent an Interesting Option for Photochemotherapy of Non-Invasive Bladder Carcinoma: An In Vitro Study on T24 Cells. Biomolecules 2021; 11:biom11020158. [PMID: 33504020 PMCID: PMC7911445 DOI: 10.3390/biom11020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is frequently used to treat non-muscle invasive bladder cancer due its low toxicity and high selectivity. Since recurrence often occurs, alternative approaches and/or designs of combined therapies to improve PDT effectiveness are needed. This work aimed to evaluate the cytotoxicity of 4,6,4′-trimethylangelicin (TMA) photoactivated by blue light (BL) on human bladder cancer T24 cells and investigate the mechanisms underlying its biological effects. TMA/BL exerted antiproliferative activity through the induction of apoptosis without genotoxicity, as demonstrated by the expression levels of phospho-H2AX, an indicator of DNA double-stranded breaks. It also modulated the Wnt canonical signal pathway by increasing the phospho-β-catenin and decreasing the nuclear levels of β-catenin. The inhibition of this pathway was due to the modulation of the GSK3β phosphorylation state (Tyr 216) that induces a proteasomal degradation of β-catenin. Indeed, a partial recovery of nuclear β-catenin expression and reduction of its phosphorylated form after treatment with LiCl were detected. As demonstrated by RT-PCR and cytofluorimetric analysis, TMA/BL also decreased the expression of CD44v6, a marker of cancer stem cells. Taken together, our data suggest that TMA photoactivated by BL may represent an interesting option for the photochemotherapy of noninvasive bladder carcinomas, since this treatment is able to inhibit key pathways for tumour growth and progression in the absence of genotoxic effects.
Collapse
|
21
|
THAP11 Functions as a Tumor Suppressor in Gastric Cancer through Regulating c-Myc Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7838924. [PMID: 32908912 PMCID: PMC7474744 DOI: 10.1155/2020/7838924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022]
Abstract
We aim to investigate the role of THAP11 (thanatos-associated protein11) in gastric cancer and its regulation mechanisms. THAP11 expression was analyzed in 51 pairs of GC tissues and the corresponding paracancerous tissues by qRT-PCR and Western blot. After THAP11 was overexpressed or knocked-down, cell proliferation, cell cycle, and apoptosis were detected in MKN-45 cells. We found that THAP11 was significantly downregulated in GC tissues and GC cell lines. Functionally, THAP11 overexpression markedly inhibited cell growth, induced G1/G0 cell-cycle arrest, and promoted cell apoptosis of MKN-45 cells, while silencing of THAP11 led to increased cell growth, increased DNA synthesis, and inhibited apoptosis. In addition, THAP11 negatively regulated the expression of c-Myc, decreased cyclinD1 protein, and increased p27 and p21 protein levels. We also found cell growth suppression induced by THAP11 was rescued by c-Myc overexpression, further confirming that THAP11 suppresses gastric cancer cell growth via the c-Myc pathway. THAP11 acts as a cell growth suppressor and exerts its role possibly through negatively regulating c-Myc pathway in gastric cancer.
Collapse
|
22
|
Gao Y, Liu J, Huan J, Che F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int 2020; 20:334. [PMID: 32714093 PMCID: PMC7376840 DOI: 10.1186/s12935-020-01421-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background One of the main reasons for the failure of prostate cancer (PCa) treatment is the generation of chemoresistance. Circular RNA hsa_circ_0000735 (hsa_circ_0000735) is connected with the progression of cancer. Nevertheless, the role and regulatory mechanism of hsa_circ_0000735 in the resistance of PCa to docetaxel (DTX) are unclear. Methods Expression levels of hsa_circ_0000735 and miR-7-5p (miR-7) in tissue samples and cells were examined via quantitative real-time polymerase chain reaction (qRT-PCR). The DTX sensitivity, viability, colony formation, cell cycle progression, and apoptosis of DTX-resistant PCa cells were determined via Cell Counting Kit-8 (CCK-8), cell colony formation, or flow cytometry assays. The levels of multidrug resistance protein 1 (MDR1) protein, cyclinD1, and B cell lymphoma 2 (bcl-2) were detected by western blotting. The interaction between hsa_circ_0000735 and miR-7 was verified via dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The role of hsa_circ_0000735 in vivo was validated through tumor formation experiments. Results Hsa_circ_0000735 was upregulated and miR-7 was downregulated in DTX-resistant PCa tissues and cells. High hsa_circ_0000735 expression had a shorter overall survival. Both hsa_circ_0000735 knockdown and miR-7 mimic boosted DTX sensitivity, constrained viability, colony formation, cell cycle progression, and fostered apoptosis of DTX-resistant PCa cells. Also, hsa_circ_0000735 silencing elevated DTX sensitivity and repressed tumor growth in PCa in vivo. Mechanistically, hsa_circ_0000735 served as a sponge for miR-7. MiR-7 inhibition overturned hsa_circ_0000735 silencing-mediated impacts on DTX sensitivity and the malignant behaviors of DTX-resistant PCa cells. Conclusion Hsa_circ_0000735 downregulation boosted PCa sensitivity to DTX and reduced tumor growth via sponging miR-7, providing a promising prognostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Yisheng Gao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Urology, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Jie Liu
- Department of Urology, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Jing Huan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Acupuncture and Moxibustion, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Fengyuan Che
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Neurology, Linyi People's Hospital, No. 27, East Section of Jiefang Road, Lanshan District, Linyi, 276003 Shandong China
| |
Collapse
|
23
|
Liu Y, Liu Q, Wang Z, Chen M, Chen Y, Li X, Huang D, Fan S, Xiong W, Li G, Zhang W. Upregulation of cyclin D1 can act as an independent prognostic marker for longer survival time in human nasopharyngeal carcinoma. J Clin Lab Anal 2020; 34:e23298. [PMID: 32697404 PMCID: PMC7439355 DOI: 10.1002/jcla.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/14/2023] Open
Abstract
Background Cyclin D1 is an essential part of oncogenic transformation. We previously proved that cyclin D1 was upregulated in nasopharyngeal carcinoma (NPC) and promoted the NPC cell proliferation. But the association between cyclin D1 and the clinical outcome of NPC has not yet been determined. The study explores the possible relevance between the cyclin D1 expression and clinical parameters and its predictive value of prognosis in NPC patients. Methods We analyzed the clinical data from 379 NPC patients and 112 non‐NPC patients in our previous study, which made further statistics. Receiver operating curve (ROC) was applied to select the optimal cutoff points. By analyzing the clinical data from 101 NPC patients using Chi‐squared test, we estimated the relationship between the cyclin D1 expression level and clinicopathological parameters. We also used Kaplan‐Meier method and log‐rank test assess and compared the disease‐free survival (DFS) rate and overall survival (OS) rate. The Cox proportional hazards model was adopted to perform the univariate and multivariate analyses. Result Receiver operating curve analysis reported that cyclin D1 was used to differentiate between NPC patients and non‐NPC patients (P < .001, sensitivity: 53.6%, specificity: 85.7%, AUC = 0.752). Cyclin D1 was positively correlated with lymph node metastasis (P = .015). A survival analysis of the 101 NPC patients indicated that the positive expression of cyclin D1 was predictive of a good prognosis (DFS: P = .010, OS: P = .019). Multivariate analysis showed that cyclin D1 could be used independently to predict NPC patients' prognosis (DFS: P = .038). Conclusion The overexpression of cyclin D1 is a good prognostic marker for NPC.
Collapse
Affiliation(s)
- Yijun Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meilin Chen
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Chen
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Donghai Huang
- Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Wilson JL, Antoniassi MP, Lopes PI, Azevedo H. Proteomic research and diagnosis in bladder cancer: state of the art review. Int Braz J Urol 2020; 47:503-514. [PMID: 32459456 PMCID: PMC7993960 DOI: 10.1590/s1677-5538.ibju.2021.99.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: Proteomic biomarkers have been emerging as alternative methods to the gold standard procedures of cystoscopy and urine cytology in the diagnosis and surveillance of bladder cancer (BC). This review aims to update the state of the art of proteomics research and diagnosis in BC. Materials and Methods: We reviewed the current literature related to BC research on urinary, tissue, blood and cell line proteomics, using the Pubmed database. Findings: Two urinary protein biomarkers are FDA-approved (NMP22® and BTA® tests), only if performed along with cystoscopy for surveillance after initial diagnosis, but not in the primary diagnostic setting due to high false-positive rates in case of infections, stones and hematuria. There are a great number of non-FDA approved proteins being studied, with good preliminary results; panels of proteins seem valuable tools to be refined in ongoing trials. Blood proteins are a bigger challenge, because of the complexity of the serum protein profile and the scarcity of blood proteomic studies in BC. Previous studies with the BC tissue proteome do not correlate well with the urinary proteome, likely due to the tumor heterogeneity. Cell line proteomic research helps in the understanding of basic mechanisms that drive BC development and progression; the main difficulty is culturing low-grade tumors in vitro, which represents the majority of BC tumors in clinical practice. Conclusion: Protein biomarkers have promising value in the diagnosis, surveillance and prognostic of BC. Urine is the most appropriate body fluid for biomarker research in BC due to its easiness of sampling, stability and enrichment of shed and secreted tumor-specific proteins. Panels of biomarkers may exhibit higher sensitivity than single proteins in the diagnosis of BC at larger populations due to clinical and tumor heterogeneity. Prospective clinical trials are warranted to validate the relevance of proteomic data in the clinical management of BC.
Collapse
Affiliation(s)
- Jorge Luis Wilson
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Mariana Pereira Antoniassi
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Paula Intasqui Lopes
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Hatylas Azevedo
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| |
Collapse
|
25
|
He J, Ge Q, Lin Z, Shen W, Lin R, Wu J, Wang B, Lu Y, Chen L, Liu X, Zheng W, Zhang Y, Wang L, Wang K, Wang L, Zhuo W, Chen S. MiR-129-5p induces cell cycle arrest through modulating HOXC10/Cyclin D1 to inhibit gastric cancer progression. FASEB J 2020; 34:8544-8557. [PMID: 32356314 DOI: 10.1096/fj.201903217r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play important roles in posttranscriptional regulation and may serve as targets for the diagnosis and treatment of cancers. Nevertheless, a comprehensive understanding of miRNAs profiles in gastric cancer progression is still lacking. Here, we report that miR-129-5p is downregulated in gastric cancer by analyzing TCGA database (n = 41) and clinical tumor samples (n = 60). MiR-129-5p transfection suppressed gastric cancer cell proliferation through inducing G1 phase arrest in vitro and inhibit xenograft tumor growth in vivo. MiR-129-5p directly targeted the 3' untranslated regions (3' UTR) of HOXC10 mRNA and downregulated its expression. Importantly, miR-129-5p could reverse the oncogenic effect induced by HOXC10. We systemically screened the downstream target of HOXC10 by ChIP sequencing, and found that HOXC10 could transcriptionally regulate the expression of Cyclin D1 and facilitate G1/S cell cycle transition. Notably, high levels of HOXC10 and Cyclin D1 were related with poor prognosis of gastric cancer patients (n = 90). These findings reveal a novel role of miR-129-5p/HOXC10/Cyclin D1 axis in modulating cell cycle and gastric tumorigenesis, which might provide potential prognostic biomarkers and therapeutic targets for gastric cancer patients.
Collapse
Affiliation(s)
- Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qiwei Ge
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenghua Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Renbin Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jiaguo Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Boya Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunkun Lu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyi Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Xiaosun Liu
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfang Zheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Kan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Liangjing Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuo
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Li C, Li L, Qin Y, Jiang Y, Wei Y, Chen J, Xie Y. Exogenous morphine inhibits the growth of human gastric tumor in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:385. [PMID: 32355829 PMCID: PMC7186659 DOI: 10.21037/atm.2020.03.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Morphine is commonly used to relieve severe pain that is often associated with cancer. Previous studies have found that morphine could affect cancer development; however, this effect is poorly understood. To further clarify the anti-cancer potential of morphine for the development of cancer in vivo, we observed how morphine affects the growth of human gastric tumor in a murine xenografting model and the expression of NF-κB and its downstream target genes (Bcl-2/Bax, cyclind1, and VEGF). The growth of the tumor was evaluated by its growth curves. The mRNA expression levels of NF-κB, Bcl-2/Bax, cyclind1, and VEGF were assessed by semi-quantitative polymerase chain reaction (qPCR). The protein expression of NF-κB, Bcl-2/Bax, cyclind1, and VEGF was detected by immunochemistry staining and western blot. Our data showed that morphine effectively inhibited the tumor growth in the nude mice. Morphine inhibits the expression of NF-κB, Bcl-2, cyclind1, and VEGF while enhancing the expression of Bax in the tumors. Furthermore, the anti-cancer effects of morphine could be reversed by naloxone. The mechanism might be associated with the action of opioid receptors that downregulate the expression of NF-κB leading to the regulation of the downstream target genes (Bcl-2/Bax, cylind1, and VEGF) in the tumors.
Collapse
Affiliation(s)
- Chunlai Li
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yinying Qin
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yage Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
27
|
Yang JF, Shi SN, Xu WH, Qiu YH, Zheng JZ, Yu K, Song XY, Li F, Wang Y, Wang R, Qu YY, Zhang HL, Zhou XQ. Screening, identification and validation of CCND1 and PECAM1/CD31 for predicting prognosis in renal cell carcinoma patients. Aging (Albany NY) 2019; 11:12057-12079. [PMID: 31850854 PMCID: PMC6949065 DOI: 10.18632/aging.102540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common cancers worldwide. Despite intense efforts to elucidate its pathogenesis, the molecular mechanisms and genetic characteristics of this cancer remain unknown. In this study, three expression profile data sets (GSE15641, GSE16441 and GSE66270) were integrated to identify candidate genes that could elucidate functional pathways in ccRCC. Expression data from 63 ccRCC tumors and 54 normal samples were pooled and analyzed. The GSE profiles shared 379 differentially expressed genes (DEGs), including 249 upregulated genes, and 130 downregulated genes. A protein-protein interaction network (PPI) was constructed and analyzed using STRING and Cytoscape. Functional and signaling pathways of the shared DEGs with significant p values were identified. Kaplan-Meier plots of integrated expression scores were used to analyze survival outcomes. These suggested that FN1, ICAM1, CXCR4, TYROBP, EGF, CAV1, CCND1 and PECAM1/CD31 were independent prognostic factors in ccRCC. Finally, to investigate early events in renal cancer, we screened for the hub genes CCND1 and PECAM1/CD31. In summary, integrated bioinformatics analysis identified candidate DEGs and pathways in ccRCC that could improve our understanding of the causes and underlying molecular events of ccRCC. These candidate genes and pathways could be therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Jian-Feng Yang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Shen-Nan Shi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yun-Hua Qiu
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Jin-Zhou Zheng
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Kui Yu
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Xiao-Yun Song
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Feng Li
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Yu Wang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Rui Wang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xi-Qiu Zhou
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| |
Collapse
|
28
|
Moradi Binabaj M, Bahrami A, Khazaei M, Ryzhikov M, Ferns GA, Avan A, Mahdi Hassanian S. The prognostic value of cyclin D1 expression in the survival of cancer patients: A meta-analysis. Gene 2019; 728:144283. [PMID: 31838249 DOI: 10.1016/j.gene.2019.144283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The relationship between the expression of cyclin D1 and cancer prognosis and outcomes in different malignancies has not been fully elucidated. AIMS In the presented meta-analysis, we assessed the association between the expression level of cyclin D1 with overall survival (OS) in several cancers. METHODS Eligible studies were identified using PubMed, EMBase, Scopus, Web of Sciences and Cochrane Library databases. For the prognostic meta-analysis, study-specific hazard ratios (HRs) of tissue cyclin D1 for survival were obtained. Finally we pooled data derived from one hundred and eight studies comprising 19,224 patients with 10 different cancer types. RESULTS In the pooled analysis, high expression of cyclin D1 was significantly related to a poor OS with a pooled HR of 1.11 (95% CI: 1.02-1.20, P = 0.015; random-effects). Sub-group analysis revealed that high expression of cyclin D1 was related to worse OS of head and neck cancers (HR = 2.08, 95% CI: 1.75-2.47; P < 0.001), but not in breast (HR = 1.033, 95% CI: 0.873-1.223, P = 0.702), gastrointestinal (HR = 1.025, 95% CI:0.824-1.275; P = 0.825), bladder (HR = 0.937, CI: 0.844-1.041; P = 0.225) and in lung cancer patients (HR = 1.092, CI: 0.819-1.455; P = 0.549). CONCLUSION Further large, prospective, and well-designed trials are warranted to elucidate the precise clinical importance of cyclin D1 overexpression in the prognosis of cancer patients receiving different treatment regimens.
Collapse
Affiliation(s)
- Maryam Moradi Binabaj
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Li XJ, Li ZF, Xu YY, Han Z, Liu ZJ. microRNA-374 inhibits proliferation and promotes apoptosis of mouse melanoma cells by inactivating the Wnt signalling pathway through its effect on tyrosinase. J Cell Mol Med 2019; 23:4991-5005. [PMID: 31207106 PMCID: PMC6653165 DOI: 10.1111/jcmm.14348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023] Open
Abstract
Melanoma is one of the most malignant skin tumours with constantly increasing incidence worldwide. Previous studies have demonstrated that microRNA‐374 (miR‐374) is a novel biomarker for cancer therapy. Therefore, this study explores whether miR‐374 targeting tyrosinase (TYR) affects melanoma and its underlying mechanism. We constructed subcutaneous melanoma models to carry out the following experiments. The cells were transfected with a series of miR‐374 mimics, miR‐374 inhibitors or siRNA against TYR. Dual luciferase reporter gene assay was used for the verification of the targeting relationship between miR‐374 and TYR. Reverse transcription quantitative polymerase chain reaction and western blot analysis were conducted to determine the expression of miR‐374, TYR, β‐catenin, B‐cell leukaemia 2 (Bcl‐2), Bcl‐2 associated X protein (Bax), Low‐density lipoprotein receptor‐related protein 6 (LRP6), Leucine‐rich repeat G protein‐coupled receptor 5 (LGR5) and CyclinD1. Cell proliferation, migration, invasion, cell cycle distribution and apoptosis were evaluated using cell counting kit‐8 assay, scratch test, transwell assay and flow cytometry respectively. TYR was proved as a putative target of miR‐374 as the evidenced by the result. It was observed that up‐regulated miR‐374 or down‐regulated TYR increased expression of Bax and decreased expressions of TYR, β‐catenin, LRP6, Bcl‐2, CyclinD1 and LGR5, along with diminished cell proliferation, migration, invasion and enhanced apoptosis. Meanwhile, cells with miR‐374 inhibitors showed an opposite trend. These findings indicated that up‐regulated miR‐374 could inhibit the expression of TYR to suppress cell proliferation, migration, invasion and promote cell apoptosis in melanoma cells by inhibiting the Wnt signalling pathway.
Collapse
Affiliation(s)
- Xiao-Jing Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, P. R. China
| | - Zhi-Feng Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, P. R. China
| | - Yan-Yan Xu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, P. R. China
| | - Zhao Han
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, P. R. China
| | - Zhi-Jun Liu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, P. R. China
| |
Collapse
|
30
|
Tian ZH, Yuan C, Yang K, Gao XL. Systematic identification of key genes and pathways in clear cell renal cell carcinoma on bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:89. [PMID: 31019939 DOI: 10.21037/atm.2019.01.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common subtype of adult renal neoplasm and has a poor prognosis owing to a limited understanding of the disease mechanisms. The aim of this study was to explore and identify the key genes and signaling pathways in ccRCC. Methods The GSE36895 gene expression profiles were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were then screened using software packages in R. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, a protein-protein interaction (PPI) network of DEGs was constructed with Cytoscape software, and submodules were subsequently analyzed using the MCODE plug-in. Results Twenty-nine ccRCC samples and 23 normal samples were incorporated into this study, and a total of 468 DEGs were filtered, consisting of 180 upregulated genes and 288 downregulated genes. The upregulated DEGs were significantly enriched in the immune response, response to wounding, inflammatory response, and response to hypoxia, whereas downregulated genes were mainly enriched in ion transport, anion transport, and monovalent inorganic cation transport biological processes (BPs). According to Molecular Complex Detection analysis in PPI, C1QA, C1QB, C1QC, CCND1 and EGF had higher degrees of connectivity and could participate in the majority of important pathways, such as cytokine-cytokine receptor interactions, the chemokine signaling pathway, and the complement and coagulation cascade pathways. Conclusions Our study suggests that C1QA, C1QB, C1QC, CCND1 and EGF may play key roles in the progression of ccRCC, which will be useful for future studies on the underlying mechanisms of ccRCC.
Collapse
Affiliation(s)
- Zhao-Hui Tian
- Medical Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Xing-Liang Gao
- Department of Lung Disease and Diabetes, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China.,Enshi Clinical College of Wuhan University, Enshi 445000, China.,Enshi Prefecture Central Hospital Affiliated to Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
31
|
Sjödahl G, Eriksson P, Lövgren K, Marzouka NAD, Bernardo C, Nordentoft I, Dyrskjøt L, Liedberg F, Höglund M. Discordant molecular subtype classification in the basal-squamous subtype of bladder tumors and matched lymph-node metastases. Mod Pathol 2018; 31:1869-1881. [PMID: 29967424 DOI: 10.1038/s41379-018-0096-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 02/02/2023]
Abstract
Molecular subtypes of muscle-invasive bladder tumors have emerged as a promising research tool with potential to stratify patients for neoadjuvant treatment. Prior to radical cystectomy, the utility of molecular classification and biomarkers depend on concordance between tissue from transurethrally resected specimens and disseminated disease. We assess the concordance of molecular subtypes and a large number of potential biomarkers in 67 pairs of muscle-invasive bladder tumors and synchronous lymph-node metastases. Tissue cores were stained for 29 immunohistochemistry markers and immunohistochemistry-based molecular subtype classification was performed. Molecular subtype was determined by mRNA profiling for 57 bladder tumors and 28 matched lymph-node metastases. Full section immunohistochemistry was performed to assess intra-tumor subtype heterogeneity in discordant cases, and exome sequencing was performed for 20 sample pairs. Discordant subtype classification between the bladder tumor and lymph-node metastasis was generally rare (12/67, 18%), but most (7/12, 58%) involved the Basal/Squamous-like subtype. Discordant Basal/Squamous-like tumors showed either Urothelial-like or Genomically Unstable, luminal-like phenotype in the lymph-node metastasis. Full section immunohistochemistry revealed intra-tumor subtype heterogeneity for six discordant cases including four involving the Basal/Squamous-like subtype. Subtype concordance for non- Basal/Squamous-like tumors was 91%. RNA-based classification agreed with immunohistochemistry classification but quantitative assessment is necessary to avoid false detection of subtype shifts. Most high confidence cancer mutations were shared between samples (n = 93, 78%), and bladder tumor private mutations (n = 20, 17%) were more frequent than those private to the lymph-node metastasis (n = 7, 6%). We conclude that bladder tumors and lymph-node metastases have overall similar molecular subtype, biomarker expression, and cancer mutations. The main exception was tumors of the Basal/Squamous-like subtype where most cases showed discordant classification, some with evidence of intra-tumor heterogeneity. The data are of relevance for neoadjuvant treatment stratification and raises questions on the dynamics of molecular subtypes during bladder cancer progression.
Collapse
Affiliation(s)
- Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Lund University, Lund, Sweden. .,Department of Urology, Skåne University Hospital, Malmö, Sweden.
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristina Lövgren
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Nour-Al-Dain Marzouka
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carina Bernardo
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Iver Nordentoft
- Department of Molecular Medicine (MOMA), Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Fredrik Liedberg
- Division of Urological Research, Department of Translational Medicine, Lund University, Lund, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Zhang X, Zhao Y, Wang C, Ju H, Liu W, Zhang X, Miao S, Wang L, Sun Q, Song W. Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels. Cell Commun Signal 2018; 16:65. [PMID: 30286765 PMCID: PMC6172813 DOI: 10.1186/s12964-018-0267-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background Our previous work revealed that rhomboid domain-containing protein 1 (RHBDD1) participates in the modulation of cell growth and apoptosis in colorectal cancer cells. This study aimed to investigate the function of RHBDD1 in regulating breast cancer progression and its underlying molecular basis. Methods Immunohistochemistry was performed to evaluate RHBDD1 expression in 116 breast cancer tissue and 39 adjacent normal tissue and expression of RHBDD1, phospho-Akt (p-Akt) and cyclin-dependent kinase 2 (CDK2) in the same 84 breast cancer specimens. RHBDD1-knock-out cells were established using breast cancer cell lines. In vitro studies were carried out to estimate the function of RHBDD1 in cell proliferation, migration and invasion. Fluorescence microscopy assay and flow cytometric analysis were used to measure apoptosis and cell cycle regulation. RNA sequencing and western blot analysis were used to investigate the molecular mechanisms of RHBDD1. Results RHBDD1 was highly up-regulated in breast cancer tissue compared with that in normal tissue and associated with pathological tumor (pT) stage, pathological tumor-node-metastasis (pTNM) stage and estrogen receptor (ER) expression. RHBDD1 up-regulation was associated with poor prognosis in several subtypes of breast cancer. Deletion of RHBDD1 promoted apoptosis and suppressed proliferation, migration and invasion in breast cancer cells. RHBDD1 deletion suppressed Akt activation and decreased CDK2 protein level via proteasome pathway, thus inhibited cell cycle progression and G1/S phase transition. Moreover, the protein level of RHBDD1, p-Akt and CDK2 was significantly positively correlated in breast cancer tissue. Conclusions Our study reveals that RHBDD1 promotes breast cancer progression by regulating p-Akt and CDK2 protein levels, and might be a potential biomarker and prognostic indicator for breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12964-018-0267-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.,Weifang Medical University, Weifang, 261000, China
| | - Yuechao Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hongge Ju
- Department of Pathology, Baotou Medical College, Baotou, 014040, China.,Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Wenjie Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
33
|
Zhao W, Hu JX, Hao RM, Zhang Q, Guo JQ, Li YJ, Xie N, Liu LY, Wang PY, Zhang C, Xie SY. Induction of microRNA‑let‑7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol Rep 2018; 40:1843-1854. [PMID: 30066899 PMCID: PMC6111629 DOI: 10.3892/or.2018.6593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most common cause of cancer‑associated mortality. MicroRNAs (miRNAs), as oncogenes or tumor suppressor genes, serve crucial roles not only in tumorigenesis, but also in tumor invasion and metastasis. Although miRNA‑let‑7a (let‑7a) has been reported to suppress cell growth in multiple cancer types, the biological mechanisms of let‑7a in lung adenocarcinoma are yet to be fully elucidated. In the present study, the molecular roles of let‑7a in lung adenocarcinoma were investigated by detecting its expression in lung adenocarcinoma tissues and exploring its roles in the regulation of lung cancer cell proliferation. Let‑7a expression was identified to be downregulated in lung adenocarcinoma tissues compared with normal tissues. Overexpression of let‑7a effectively suppressed cancer cell proliferation, migration and invasion in H1299 and A549 cells. Let‑7a also induced cell apoptosis and cell cycle arrest. Furthermore, let‑7a significantly inhibited cell growth by directly regulating cyclin D1 signals. This novel regulatory mechanism of let‑7a in lung adenocarcinoma provides possible avenues for future targeted therapies of lung cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jin-Xia Hu
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Rui-Min Hao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Qian Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jun-Qi Guo
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, Shandong 264000, P.R. China
| | - Lu-Ying Liu
- Department of Pathology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Can Zhang
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| |
Collapse
|
34
|
Abstract
OBJECTIVE To identify novel clinically relevant genes in papillary thyroid carcinoma from public databases. METHODS Four original microarray datasets, GSE3678, GSE3467, GSE33630 and GSE58545, were downloaded. Differentially expressed genes (DEGs) were filtered from integrated data. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, followed by protein-protein interaction (PPI) network construction. The CentiScape pug-in was performed to scale degree. The genes at the top of the degree distribution (≥ 95% percentile) in the significantly perturbed networks were defined as central genes. UALCAN and The Cancer Genome Atlas Clinical Explorer were used to verify clinically relevant genes and perform survival analysis. RESULT 225 commonly changed DEGs (111 up-regulated and 114 down-regulated) were identified. The DEGs were classified into three groups by GO terms. KEGG pathway enrichment analysis showed DEGs mainly enriched in the PI3K-Akt signaling pathway, pathways in cancer, focal adhesion and proteoglycans in cancer. DEGs' protein-protein interaction (PPI) network complex was developed; six central genes (BCL2, CCND1, FN1, IRS1, COL1A1, CXCL12) were identified. Among them, BCL2, CCND1 and COL1A1 were identified as clinically relevant genes. CONCLUSION BCL2, CCND1 and COL1A1 may be key genes for papillary thyroid carcinoma. Further molecular biological experiments are required to confirm the function of the identified genes.
Collapse
Affiliation(s)
- W Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China.
| | - F Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
35
|
The molecular limitations of biomarker research in bladder cancer. World J Urol 2018; 37:837-848. [PMID: 30171455 DOI: 10.1007/s00345-018-2462-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Urothelial carcinoma of the bladder (UCB) is a common malignancy with limited systemic treatment options in advanced stages. Despite recent advances in immunotherapy, the majority of patients do not respond to these treatments. There is an unmet need for developing robust biomarkers to inform treatment decisions and identify patients who are likely to respond. METHODS A MEDLINE/PubMed literature search was performed, focusing on tissue-based and circulating biomarkers, and their potential in muscle-invasive UCB. RESULTS UCB is a heterogeneous disease that consists of several clonal and subclonal populations, each with a mix of truncal and private genomic alterations. This inter- and intra-tumoral heterogeneous landscape results in the development of treatment resistance. Tumor heterogeneity also constitutes a barrier to the development of robust markers of response and resistance to chemotherapy and immunotherapy. Defects in DNA repair genes and a high tumor mutational burden independently confer sensitivity to cisplatin-based chemotherapy and checkpoint inhibitors. Oncogenic alterations such as FGFR3 mutations and fusions are associated with response to FGFR3 inhibitors. Several emerging potential biomarkers, including gene expression-based molecular subtypes, T-cell receptor clonality, and tissue- or blood-based immune-gene profiling, require prospective testing and validation. Tissue-based biomarkers such as PD-L1 immunohistochemistry have several limitations due to discordance in assay methodology and trial designs. Novel liquid-biopsy techniques are promising as potential biomarkers. CONCLUSIONS Validated biomarkers that capture the complexity of the biology of both the tumor and the tumor microenvironment are needed in muscle-invasive UCB. Standardization of methods is critical to developing reliable biomarkers to guide clinical management.
Collapse
|
36
|
Lu Z, Xu A, Yuan X, Chen K, Wang L, Guo T. Anticancer effect of resibufogenin on gastric carcinoma cells through the phosphoinositide 3-kinase/protein kinase B/glycogen synthase kinase 3β signaling pathway. Oncol Lett 2018; 16:3297-3302. [PMID: 30127928 DOI: 10.3892/ol.2018.8979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/24/2017] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to investigate the anticancer effect of resibufogenin in gastric carcinoma cells through the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase 3β (GSK3β) signaling pathway. MGC-803 cells were treated with 0, 1, 2, 4 and 8 µM resibufogenin for 12, 24 and 48 h. Cell viability and apoptosis were measured using an MTT assay and annexin V staining. Caspase-3 and caspase-8 activity were identified using caspase-3 and caspase-8 activity kits and a variety of protein expression [B cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), cyclin D1, cyclin E, PI3K, phosphorylated AKT, phosphorylated GSK3β and β-catenin] were quantified using western blot analysis. It was revealed that resibufogenin effectively inhibited cell proliferation, and induced apoptosis and caspase-3 and caspase-8 activity in MGC-803 cells. Furthermore, treatment with resibufogenin effectively increased Bax/Bcl-2 expression, and suppressed cyclin D1, cyclin E, PI3K, phosphorylated AKT, phosphorylated GSK3β and β-catenin protein expression in MGC-803 cells. These results suggest that the anticancer effect of resibufogenin induces gastric carcinoma cell death through the PI3K/AKT/GSK3β signaling pathway, offering a novel view of the mechanism by which resibufogenin functions as an agent to treat gastric carcinoma.
Collapse
Affiliation(s)
- Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kaiwei Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Likun Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
37
|
Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, Liu H, Wang Y, Yan L, Chen S, Yang Q, Chen C. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018; 23:molecules23071578. [PMID: 29966245 PMCID: PMC6099699 DOI: 10.3390/molecules23071578] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Curcumin (Cur) has been widely used in medicine, due to its antibacterial, anti-inflammatory, antioxidant, and antitumor effects. However, its clinic application is limited by its instability and poor solubility. In the present wok, curcumin was loaded into solid lipid nanoparticles (SLNs), in order to improve the therapeutic efficacy for breast cancer. The results measured using transmission electron microscopy (TEM) indicated that Cur-SLNs have a well-defined spherical shape; the size was about 40 nm with a negative surface charge. The drug loading and encapsulation efficiency in SLNs reached 23.38% and 72.47%, respectively. The Cur-SLNs showed a stronger cytotoxicity against SKBR3 cells. In vitro cellular uptake study demonstrated a high uptake efficiency of the Cur-SLNs by SKBR3 cells. Moreover, Cur-SLNs induced higher apoptosis in SKBR3 cells, compared to cells treated by free drug. In addition, Western blot analysis revealed that Cur-SLNs could promote the ratio of Bax/Bcl-2, but decreased the expression of cyclin D1 and CDK4. These results suggested that Cur-SLNs could be a potential useful chemotherapeutic formulation for breast cancer therapy.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Tiantian Chen
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Henan Xu
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Baihui Ren
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Xiaodan Cheng
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Rongrong Qi
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Haibo Liu
- Department of Public Foundation, Bengbu Medical College, Bengbu 233030, China.
| | - Yueyue Wang
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Lei Yan
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Sulian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|
38
|
Chen C, Wang K, Wang Q, Wang X. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. ACTA ACUST UNITED AC 2018; 51:e7080. [PMID: 29694502 PMCID: PMC5937721 DOI: 10.1590/1414-431x20187080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men. Irradiation is one of the available options for treatment of PCa, however, approximately 10-45% of PCa are resistant to irradiation. We aimed to explore the role of long non-coding RNA highly upregulated in liver cancer (HULC) in the sensitivity of PCa cells to irradiation. Survival rate, cell apoptosis, cycle, expressions of related proteins, and caspase-3 activity were assessed to explore the effects of HULC on sensitivity of PCa cells to irradiation. Expression of HULC in DU-145, PC3, LNCaP, and RWPE-1 cells was determined and the influence of HULC on DU-145 cells was explored. Then, PC3 cells aberrantly expressing HULC were implanted into NOD-SCID mice for tumor xenograft study. Changes of autophagy after aberrant expression of HULC in vivo and in vitro were tested. Furthermore, the interacted protein of HULC and involved signaling pathway were investigated. In PC3 and LNCaP cells under irradiation, survival rate and cell cycle were decreased and apoptosis was increased by HULC knockdown. HULC knockdown arrested PC3 cells at G0/G1 phase. DU-145 was sensitive to irradiation, and resistance to irradiation of DU-145 cells was enhanced by HULC overexpression. Moreover, HULC knockdown enhanced the sensitivity of PC3 xenografts to irradiation. HULC knockdown promoted autophagy through interaction with Beclin-1 and inhibition of mTOR, resulting in increased apoptosis. HULC knockdown improved sensitivity of PCa cells to irradiation both in vivo and in vitro. HULC suppressed Beclin-1 phosphorylation, thereby reduced autophagy, involving the mTOR pathway.
Collapse
Affiliation(s)
- Changxuan Chen
- Tengzhou Central People's Hospital, Department of Urology, Jining Medical College, Tengzhou, China
| | - Kaizhen Wang
- Tengzhou Central People's Hospital, Department of Urology, Jining Medical College, Tengzhou, China
| | - Qian Wang
- Tengzhou Central People's Hospital, Department of Traumatology, Jining Medical College, Tengzhou, China
| | - Xin Wang
- Tengzhou Central People's Hospital, Department of Urology, Jining Medical College, Tengzhou, China
| |
Collapse
|
39
|
Fatai AA, Gamieldien J. A 35-gene signature discriminates between rapidly- and slowly-progressing glioblastoma multiforme and predicts survival in known subtypes of the cancer. BMC Cancer 2018; 18:377. [PMID: 29614978 PMCID: PMC5883543 DOI: 10.1186/s12885-018-4103-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gene expression can be employed for the discovery of prognostic gene or multigene signatures cancer. In this study, we assessed the prognostic value of a 35-gene expression signature selected by pathway and machine learning based methods in adjuvant therapy-linked glioblastoma multiforme (GBM) patients from the Cancer Genome Atlas. METHODS Genes with high expression variance was subjected to pathway enrichment analysis and those having roles in chemoradioresistance pathways were used in expression-based feature selection. A modified Support Vector Machine Recursive Feature Elimination algorithm was employed to select a subset of these genes that discriminated between rapidly-progressing and slowly-progressing patients. RESULTS Survival analysis on TCGA samples not used in feature selection and samples from four GBM subclasses, as well as from an entirely independent study, showed that the 35-gene signature discriminated between the survival groups in all cases (p<0.05) and could accurately predict survival irrespective of the subtype. In a multivariate analysis, the signature predicted progression-free and overall survival independently of other factors considered. CONCLUSION We propose that the performance of the signature makes it an attractive candidate for further studies to assess its utility as a clinical prognostic and predictive biomarker in GBM patients. Additionally, the signature genes may also be useful therapeutic targets to improve both progression-free and overall survival in GBM patients.
Collapse
Affiliation(s)
- Azeez A Fatai
- South African Bioinformatics Institute and SAMRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, 7535, Western Cape, 7530, South Africa
| | - Junaid Gamieldien
- South African Bioinformatics Institute and SAMRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, 7535, Western Cape, 7530, South Africa.
| |
Collapse
|
40
|
Ilijazi D, Abufaraj M, Hassler MR, Ertl IE, D'Andrea D, Shariat SF. Waiting in the wings: the emerging role of molecular biomarkers in bladder cancer. Expert Rev Mol Diagn 2018. [PMID: 29542328 DOI: 10.1080/14737159.2018.1453808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Bladder cancer (BCa) is the fifth most frequently diagnosed cancer worldwide and is, in fact, the most expensive cancer on a per-patient to treat basis. There is a critical need to implement new tests into clinical practice to improve the quality of clinical care, decrease unnecessary invasive therapies and ultimately save costs. Currently, no molecular or genetic biomarker has been widely integrated into daily clinical practice. However, major milestones have been achieved in our understanding of the molecular alterations in BCa that will provide the basis for integrating molecular and genetic biomarkers into clinical decision making to guide management. Clinical implementation of such novel molecular and genetic concepts is the cornerstone in an effort to usher the age of precision medicine into patient care. Areas covered: In this review, the authors discuss the emerging role of molecular biomarkers in patients receiving BCG immunotherapy as well as neoadjuvant and adjuvant chemotherapy in BCa. Expert commentary: Molecular predictive and prognostic biomarkers in BCa are promising diagnostic options that will pave the way for molecular-based personalized medicine.
Collapse
Affiliation(s)
- Dafina Ilijazi
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - Mohammad Abufaraj
- a Department of Urology , Medical University of Vienna , Vienna , Austria.,b Department of Special Surgery , Jordan University Hospital, The University of Jordan , Amman , Jordan
| | - Melanie R Hassler
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - Iris E Ertl
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - David D'Andrea
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - Shahrokh F Shariat
- a Department of Urology , Medical University of Vienna , Vienna , Austria.,c Karl Landsteiner Institute of Urology and Andrology , Vienna , Austria.,d Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA.,e Department of Urology , Weill Cornell Medical College, New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
41
|
Abstract
Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Fu X, Li S, Zhou S, Wu Q, Jin F, Shi J. Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. Altern Ther Health Med 2018; 18:34. [PMID: 29378551 PMCID: PMC5789743 DOI: 10.1186/s12906-018-2095-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
Background Icariin (ICA), a major ingredient of Epimediumbrevicornum, has various pharmacological activities including central nervous system protective functions such as the improvement of learning and memory function in mice models of Alzheimer’s disease. It has been reported that ICA can promote regeneration of peripheral nerve and functional recovery. The purpose of this study was to investigate the potentiating effect of ICA on the proliferation of rat hippocampal neural stem cells, and explore the possible mechanism involved. Methods Primary neural stem cells were prepared from the hippocampus of newly born SD rats, and cells were cultured in special stem cell culture medium. Neural stem cells were confirmed by immunofluorescence detection of nestin, NSE and GFAP expression. The effect of ICA on the growth and proliferation of the neural stem cells was evaluated by 5-ethynyl-2-deoxyuridine (EdU) labeling of proliferating cells, and photomicrographic images of the cultured neural stem cells. Further, the mechanism of ICA-induced cell proliferation of neural stem cells was investigated by analyzing the gene and protein expression of cell cycle related genes cyclin D1 and p21. Results The present study showed that icariin promotes the growth and proliferation of neural stem cells from rat hippocampus in a dose-dependent manner. Incubation of cells with icariin resulted in significant increase in the number of stem cell spheres as well as the increased incorporation of EdU when compared with cells exposed to control vehicle. In addition, it was found that icariin-induced effect on neural stem cells is associated with increased mRNA and protein expression of cell cycle genes cyclin D1 and p21. Conclusions This study evidently demonstrates the potentiating effect of ICA on neural stem cell growth and proliferation, which might be mediated through regulation of cell cycle gene and protein expression promoting cell cycle progression. Electronic supplementary material The online version of this article (10.1186/s12906-018-2095-y) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Xu W, Xia H, Liu W, Zheng W, Hua L. Exploration of genetics commonness between bladder cancer and breast cancer based on a silcio analysis on disease subtypes. Technol Health Care 2018; 26:361-377. [PMID: 29758961 PMCID: PMC6027900 DOI: 10.3233/thc-174699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Muscle-invasive bladder cancers (MIBCs) are heterogeneous cancers and can be grouped into basal-like and luminal subtypes that are highly reminiscent of those found in breast cancer. Like basal-like breast cancers, basal-like MIBCs are associated with advanced stage and metastatic disease. However, the biological and clinical significance of molecular subtypes of MIBCs remain unclear. Therefore, we implemented a serious of bioinformatics methods to explore genetic similarities between bladder and breast cancers. METHODS AND RESULTS In the current study, by the application of multiple levels data analysis including random forest analysis, PPI and transcription factor regulation network construction, Gene Ontology (GO) and KEGG pathway enrichment analysis, we explored the genetics commonness between MIBC and breast cancers from the molecular heterogeneity based on the disease subtypes. CONCLUSIONS Our study identified some basal-related and luminal-related genes shared by two cancers. These studies can help shed light on the potential relationships between MIBC and breast cancer as a whole.
Collapse
Affiliation(s)
- Wenbin Xu
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Hong Xia
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Wei Liu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Weiying Zheng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Lin Hua
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| |
Collapse
|
44
|
Yuan H, Yu S, Cui Y, Men C, Yang D, Gao Z, Zhu Z, Wu J. Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway. J Cell Mol Med 2017. [PMID: 28631286 PMCID: PMC5706513 DOI: 10.1111/jcmm.13229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Hejia Yuan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shengqiang Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Changping Men
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Diandong Yang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhenli Gao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
45
|
Jiang L, Zhao Z, Zheng L, Xue L, Zhan Q, Song Y. Downregulation of miR-503 Promotes ESCC Cell Proliferation, Migration, and Invasion by Targeting Cyclin D1. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:208-217. [PMID: 28602785 PMCID: PMC5487524 DOI: 10.1016/j.gpb.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of microRNAs has been demonstrated in cancer initiation and progression. Despite the reported function of miR-503 in several human cancers, its detailed anti-oncogenic role and clinical significance in ESCC remain undefined. In this study, we examined miR-503 expression by qPCR and found the downregulation of miR-503 expression in ESCC tissue relative to adjacent normal tissues. Further investigation in the effect of miR-503 on ESCC cell proliferation, migration, and invasion showed that enhanced expression of miR-503 inhibited ESCC aggressive phenotype and overexpression of CCND1 reversed the effect of miR-503-mediated ESCC cell aggressive phenotype. Our study further identified CCND1 as the target gene of miR-503. Thus, miR-503 functions as a tumor suppressor and has an important role in ESCC by targeting CCND1.
Collapse
Affiliation(s)
- Lanfang Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
46
|
Shivakumar M, Lee Y, Bang L, Garg T, Sohn KA, Kim D. Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. BMC Med Genomics 2017; 10:30. [PMID: 28589857 PMCID: PMC5461531 DOI: 10.1186/s12920-017-0269-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background One of the fundamental challenges in cancer is to detect the regulators of gene expression changes during cancer progression. Through transcriptional silencing of critical cancer-related genes, epigenetic change such as DNA methylation plays a crucial role in cancer. In addition, miRNA, another major component of epigenome, is also a regulator at the post-transcriptional levels that modulate transcriptome changes. However, a mechanistic role of synergistic interactions between DNA methylation and miRNA as epigenetic regulators on transcriptomic changes and its association with clinical outcomes such as survival have remained largely unexplored in cancer. Methods In this study, we propose an integrative framework to identify epigenetic interactions between methylation and miRNA associated with transcriptomic changes. To test the utility of the proposed framework, the bladder cancer data set, including DNA methylation, miRNA expression, and gene expression data, from The Cancer Genome Atlas (TCGA) was analyzed for this study. Results First, we found 120 genes associated with interactions between the two epigenomic components. Then, 11 significant epigenetic interactions between miRNA and methylation, which target E2F3, CCND1, UTP6, CDADC1, SLC35E3, METRNL, TPCN2, NACC2, VGLL4, and PTEN, were found to be associated with survival. To this end, exploration of TCGA bladder cancer data identified epigenetic interactions that are associated with survival as potential prognostic markers in bladder cancer. Conclusions Given the importance and prevalence of these interactions of epigenetic events in bladder cancer it is timely to understand further how different epigenetic components interact and influence each other. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0269-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manu Shivakumar
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - Tullika Garg
- Mowad Urology Department, Geisinger Health System, Danville, PA, USA
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, South Korea.
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
47
|
Chen C, Wang Y, Wang S, Liu Y, Zhang J, Xu Y, Zhang Z, Bao W, Wu S. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1. Int J Oncol 2017; 50:942-952. [PMID: 28098854 DOI: 10.3892/ijo.2017.3849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
Abstract
A recent study reported that histone lysine specific demethylase 1 (LSD1, KDM1A) is overexpressed in endometrioid endometrial carcinoma (EEC) and associated with tumor progression as well as poor prognosis. However, the physiological function and mechanism of LSD1 in endometrial cancer (EC) remains largely unknown. In this study, we demonstrate that β-estradiol (E2) treatment increased LSD1 expression via the GPR30/PI3K/AKT pathway in endometrial cancer cells. Both siGPR30 and the PI3K inhibitor LY294002 block this effect. RNAi-mediated silencing of LSD1 abolished estrogen-driven endometrial cancer cell (ECC) proliferation, and induced G1 cell arrest and apoptosis. Mechanistically, we find that LSD1 silencing results in PI3K/AKT signal inactivation, but without the elevation of PTEN expression as expected. This is because the inhibition of LSD1 induces dimethylation of lysine 9 on histone H3 (H3K9m2) accumulation at the promoter region of cyclin D1. Interfering with cyclin D1 leads to PI3K/AKT signal suppression. Re-overexpression of cyclin D1 in LSD1-knockdown ECCs reverses the LSD1 inhibitory action. Our finding connects estrogen signaling with epigenetic regulation in EEC and provides novel experimental support for LSD1 as a potential target for endometrial cancer therapeutics.
Collapse
Affiliation(s)
- Chunqin Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shiyu Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Yuyao Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
48
|
Lin Z, Sheng H, You C, Cai M, Zhang Y, Yu LS, Yu X, Lin J, Zhang N. Inhibition of the CyclinD1 promoter in response to sonic hedgehog signaling pathway transduction is mediated by Gli1. Exp Ther Med 2016; 13:307-314. [PMID: 28123507 PMCID: PMC5244851 DOI: 10.3892/etm.2016.3969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in children. Accumulating evidence suggests a major role for the activation of the sonic hedgehog (SHH) signaling pathway in the development of MB cells; however, the mechanisms underlying the effect of this pathway on tumor survival and growth remain poorly understood. The Gli family zinc finger 1 (Gli1) transcription factor is considered as a mediator of the SHH signaling pathway in MB cells. Therefore, the present study investigated whether the SHH signaling pathway promotes the apoptosis of MB cells via downregulation of Gli1. GANT61, a novel Gli1 inhibitor, is known to have an in vitro activity against tumors. In the current study, Daoy cells were treated with different concentrations of GANT61 for 24 h, and the effect on cell proliferation was assayed by cell counting kit-8 assay. In addition, the cell cycle progression and apoptosis were assayed by flow cytometry analysis and hematoxylin-eosin (HE) staining. The effects of GANT61 treatment on SHH signaling pathway at the mRNA level were assayed by polymerase chain reaction (PCR). To further elucidate the inhibitory effects of GANT61 on the expression of Gli1 and CyclinD1, their protein levels were examined by western blot and immunofluorescence. The results indicated that GANT61 significantly inhibited the proliferation of Daoy cells in a dose-dependent manner, compared with the control group (P<0.05). HE staining revealed that cells had increasingly abnormal protuberance with increasing GANT61 concentration. Flow cytometry analysis also demonstrated that GANT61 induced G1/S arrest and apoptosis of Daoy cells in a dose-dependent manner (P<0.05). Gli1 and CyclinD1 mRNA expression levels were downregulated by GANT61 treatment (P<0.05); similarly, their protein levels were downregulated by GANT61 treatment in a dose-dependent manner (P<0.05). In conclusion, Gli1 expression was significantly associated with CyclinD1 expression in MB. These data demonstrated that Gli1 is an important mediator of the SHH pathway activity in MB, and may be a novel agent for use in combined chemotherapeutic regimens.
Collapse
Affiliation(s)
- Zhongxiao Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chaoguo You
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ming Cai
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yiping Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li Sheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoming Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
49
|
Geng H, Zhao L, Liang Z, Zhang Z, Xie D, Bi L, Wang Y, Zhang T, Cheng L, Yu D, Zhong C. Cigarette smoke extract-induced proliferation of normal human urothelial cells via the MAPK/AP-1 pathway. Oncol Lett 2016; 13:469-475. [PMID: 28123584 DOI: 10.3892/ol.2016.5407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
Bladder cancer (BC) is universally acknowledged as a significant public health issue, worldwide. Numerous studies have demonstrated that cigarette smoke is the primary risk factor for BC. However, the mechanism of cigarette smoke-induced BC has not been fully elucidated. Sustained epithelial cell hyperplasia has been identified as a preneoplastic lesion during the formation of BC. The aim of the present study was to investigate whether exposure to cigarette smoke extract (CSE) induced proliferation in normal human urothelial SV-HUC-1 cells. Furthermore, the role of the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway in the CSE-induced proliferation of SV-HUC-1 cells was also investigated. The present study revealed that the expression of phosphorylated-extracellular signal regulated protein kinase (ERK)1/2, Jun N-terminal kinase (JNK) and p38 was significantly increased following exposure to CSE in SV-HUC-1 cells. Furthermore, CSE increased the expression of the proliferation markers, cyclin D1 and proliferating cell nuclear antigen. By contrast, CSE attenuated the expression of p21. In addition, the inhibitors of ERK1/2 and JNK reversed the aforementioned effects of CSE. However, p38 inhibition did not reverse CSE-induced proliferation. In conclusion, the results of the present study demonstrated that exposure to CSE induced proliferation in normal human urothelial cells. Furthermore, the results also indicated that the ERK1/2 and JNK pathways are important for the regulation of proliferation via the AP-1 proteins.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Zhao
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhaofeng Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhiqiang Zhang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dongdong Xie
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Zhang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Cheng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
50
|
Chen X, Gu P, Xie R, Han J, Liu H, Wang B, Xie W, Xie W, Zhong G, Chen C, Xie S, Jiang N, Lin T, Huang J. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J Cell Mol Med 2016; 21:1266-1279. [PMID: 27862976 PMCID: PMC5487918 DOI: 10.1111/jcmm.12999] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/27/2016] [Indexed: 12/01/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an essential RNA- and DNA-binding protein that regulates diverse biological events, especially DNA transcription. hnRNPK overexpression is related to tumorigenesis in several cancers. However, both the expression patterns and biological mechanisms of hnRNPK in bladder cancer are unclear. We investigated hnRNPK expression by immunohistochemistry in 188 patients with bladder cancer, and found that hnRNPK expression levels were significantly increased in bladder cancer tissues and that high-hnRNPK expression was closely correlated with poor prognosis. Loss- and gain-of-function assays demonstrated that hnRNPK promoted proliferation, anti-apoptosis, and chemoresistance in bladder cancer cells in vitro, and hnRNPK knockdown suppressed tumorigenicity in vivo. Mechanistically, hnRNPK regulated various functions in bladder cancer by directly mediating cyclin D1, G0/G1 switch 2 (G0S2), XIAP-associated factor 1, and ERCC excision repair 4, endonuclease catalytic subunit (ERCC4) transcription. In conclusion, we discovered that hnRNPK plays an important role in bladder cancer, suggesting that it is a potential prognostic marker and a promising target for treating bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|