1
|
Armbruster H, Schotte T, Götting I, Overkamp M, Granai M, Volmer LL, Bahlinger V, Matovina S, Koch A, Dannehl D, Engler T, Hartkopf AD, Brucker SY, Bonzheim I, Fend F, Staebler A, Montes-Mojarro I. Aberrant p53 immunostaining patterns in breast carcinoma of no special type strongly correlate with presence and type of TP53 mutations. Virchows Arch 2024; 485:631-642. [PMID: 39191994 PMCID: PMC11522169 DOI: 10.1007/s00428-024-03897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Recent studies have revealed an association between TP53 mutations and endocrine resistance in hormone receptor-positive, HER2-negative breast cancer (HR + HER2 -BC). Aberrant p53 immunostaining (IHC) patterns may provide a surrogate marker for TP53 mutations. Building upon a ternary algorithm of aberrant staining patterns, this study evaluates the reliability of p53 IHC as screening tool for TP53 mutations in BC (NST). Furthermore, it describes the histopathological and molecular characteristics of TP53-mutated cases, along with the mutational status of PIK3CA. This study comprised 131 early-stage, node-negative BCs with available core biopsies and resection specimens. Cases were categorized as follows: HR + HER2 - (85 cases), HER2 + (21 cases) and triple negative (TN, 25 cases). Aberrant IHC staining patterns for p53 were defined as overexpression (OE), complete absence (CA) and cytoplasmic (CY). In addition, targeted sequencing of TP53 and PIK3CA genes was performed. TP53 mutations were identified in 53 of 126 cases (42.1%). Within HR + HER2 - cases, TP53 mutations were found in 17 of 80 cases (21.3%). IHC accurately predicted TP53 mutation in 96.2% of cases with a specificity of 100%. Additionally, there was a significant agreement between missense mutations and OE, as well as between truncating mutations and CA (κ 73% and 76%). CY was observed in two TN cases with truncating mutations within the nuclear localization signalling domain of p53. TP53-mutated cases exhibited higher grade, greater nuclear pleomorphism and higher Ki-67 proliferation index and were associated with the PIK3CA wild-type status (p < 0.001). p53 IHC may provide a useful screening tool for identifying TP53-mutated BC of NST.
Collapse
Affiliation(s)
- Hannes Armbruster
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Tilman Schotte
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Isabell Götting
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Mathis Overkamp
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Massimo Granai
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Lea Louise Volmer
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - Veronika Bahlinger
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Sabine Matovina
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - André Koch
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - Dominik Dannehl
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - Tobias Engler
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - Andreas D Hartkopf
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - Sara Y Brucker
- Department of Woman's Health, Eberhard-Karls-University, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Annette Staebler
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany.
| | - Ivonne Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076, Tübingen, Germany
| |
Collapse
|
2
|
Varzaru VB, Vlad T, Popescu R, Vlad CS, Moatar AE, Cobec IM. Triple-Negative Breast Cancer: Molecular Particularities Still a Challenge. Diagnostics (Basel) 2024; 14:1875. [PMID: 39272660 PMCID: PMC11393996 DOI: 10.3390/diagnostics14171875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Worldwide, breast cancer (BC) is one of the most common cancers in women and is responsible for the highest number of cancer-related deaths among women, with a special clinical behavior and therapy response. Triple-negative breast cancer (TNBC) is seen as a highly invasive BC, characterized by a short survival, higher mortality, recurrence, and metastasis when it is compared to the other BC subtypes. The molecular subtyping of TNBC based on mRNA expression levels does not accurately reflect protein expression levels, which impacts targeted therapy effectiveness and prognostic predictions. Most TNBC cases exhibit a high frequency of homologous recombination (HR) DNA repair deficiency (HRD) signatures and are associated with a complex genomic profile. Biomarker research in TNBC includes investigating genetic mutations, gene expression patterns, immune system-related markers, and other factors that can provide valuable information for diagnosis, treatment selection, and patient outcomes. Additionally, these biomarkers are often crucial in the development of personalized and precision medicine approaches, where treatments are customized to each patient's unique characteristics. This ongoing research is essential for improving the management and outcomes of TNBC, which is a challenging and heterogeneous form of breast cancer. The findings of this research have practical implications for refining treatment strategies, particularly in selecting appropriate systemic therapies and integrating traditional treatment modalities like surgery and radiotherapy into comprehensive care plans for TNBC patients.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tania Vlad
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
3
|
Shukla S, Karbhari A, Rastogi S, Agarwal U, Rai P, Mahajan A. Bench-to-bedside imaging in brain metastases: a road to precision oncology. Clin Radiol 2024; 79:485-500. [PMID: 38637186 DOI: 10.1016/j.crad.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/20/2024]
Abstract
Radiology has seen tremendous evolution in the last few decades. At the same time, oncology has made great strides in diagnosing and treating cancer. Distant metastases of neoplasms are being encountered more often in light of longer patient survival due to better therapeutic strategies and diagnostic methods. Brain metastasis (BM) is a dismal manifestation of systemic cancer. In the present scenario, magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET) are playing a big role in providing molecular information about cancer. Lately, molecular imaging has emerged as a stirring arena of dynamic imaging techniques that have enabled clinicians and scientists to noninvasively visualize and understand biological processes at the cellular and molecular levels. This knowledge has impacted etiopathogenesis, detection, personalized treatment, drug development, and our understanding of carcinogenesis. This article offers insight into the molecular biology underlying brain metastasis, its pathogenesis, imaging protocols, and algorithms. It also discusses disease-specific molecular imaging features, focusing on common tumors that spread to the brain, such as lung, breast, colorectal cancer, melanoma, and renal cell carcinoma. Additionally, it covers various targeted treatment options, criteria for assessing treatment response, and the role of artificial intelligence in diagnosing, managing, and predicting prognosis for patients with brain metastases.
Collapse
Affiliation(s)
- S Shukla
- Department of Radiodiagnosis and Imaging, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Hospital, Varanasi, 221 005, Maharashtra, India; Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Karbhari
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - S Rastogi
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - U Agarwal
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - P Rai
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, L7 8YA Liverpool, UK; Faculty of Health and Life Sciences, University of Liverpool, L7 8TX, Liverpool, UK.
| |
Collapse
|
4
|
Zawadka P, Zielińska W, Gagat M, Izdebska M. Role of Filamin A in Growth and Migration of Breast Cancer-Review. Curr Issues Mol Biol 2024; 46:3408-3423. [PMID: 38666944 PMCID: PMC11049233 DOI: 10.3390/cimb46040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Despite ongoing research in the field of breast cancer, the morbidity rates indicate that the disease remains a significant challenge. While patients with primary tumors have relatively high survival rates, these chances significantly decrease once metastasis begins. Thus, exploring alternative approaches, such as targeting proteins overexpressed in malignancies, remains significant. Filamin A (FLNa), an actin-binding protein (ABP), is involved in various cellular processes, including cell migration, adhesion, proliferation, and DNA repair. Overexpression of the protein was confirmed in samples from patients with numerous oncological diseases such as prostate, lung, gastric, colorectal, and pancreatic cancer, as well as breast cancer. Although most researchers concur on its role in promoting breast cancer progression and aggressiveness, discrepancies exist among studies. Moreover, the precise mechanisms through which FLNa affects cell migration, invasion, and even cancer progression remain unclear, highlighting the need for further research. To evaluate FLNa's potential as a therapeutic target, we have summarized its roles in breast cancer.
Collapse
Affiliation(s)
- Patryk Zawadka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
| |
Collapse
|
5
|
Wang J, Peng Y, Sun H, Aung PP, Resetkova E, Yam C, Sahin AA, Huo L, Ding Q. TRPS1 and GATA3 Expression in Invasive Breast Carcinoma With Apocrine Differentiation. Arch Pathol Lab Med 2024; 148:200-205. [PMID: 37074839 DOI: 10.5858/arpa.2022-0289-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT.— The recently identified immunohistochemical marker TRPS1 is highly sensitive and specific for invasive breast carcinoma, especially triple-negative breast carcinoma. However, TRPS1 expression in special morphologic subtypes of breast cancer is unclear. OBJECTIVE.— To investigate the expression of TRPS1 in invasive breast cancer with apocrine differentiation, in comparison to the expression of GATA3. DESIGN.— A total of 52 invasive breast carcinomas with apocrine differentiation, comprising 41 triple-negative breast carcinomas and 11 estrogen receptor (ER) and progesterone receptor (PR)-negative, human epidermal growth factor receptor 2 (HER2)-positive cases, along with 11 triple-negative breast carcinomas without apocrine differentiation, were evaluated for TRPS1 and GATA3 expression by immunohistochemistry. All tumors were diffusely positive (>90%) for androgen receptor (AR). RESULTS.— Triple-negative breast carcinoma with apocrine differentiation had positive TRPS1 expression in 12% of cases (5 of 41), whereas GATA3 was positive in all cases. Similarly, HER2+/ER- invasive breast carcinoma with apocrine differentiation showed positive TRPS1 in 18% of cases (2 of 11), whereas GATA3 was positive in all cases. In contrast, triple-negative breast carcinoma with strong AR expression but without apocrine differentiation showed both TRPS1 and GATA3 expression in 100% (11 of 11) of cases. CONCLUSIONS.— Most ER-/PR-/AR+ invasive breast carcinomas with apocrine differentiation are TRPS1 negative and GATA3 positive, regardless of HER2 status. Therefore, TRPS1 negativity does not exclude breast origin in tumors with apocrine differentiation. A panel of TRPS1 and GATA3 immunostains can be helpful when the tissue origin of such tumors is clinically relevant.
Collapse
Affiliation(s)
- Jing Wang
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Yan Peng
- the Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Peng)
| | - Hongxia Sun
- the Department of Pathology and Laboratory Medicine, The University of Texas McGovern Medical School, Houston (Sun)
| | - Phyu P Aung
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Erika Resetkova
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Clinton Yam
- the Department of Breast Medical Oncology (Yam), The University of Texas MD Anderson Cancer Center, Houston
| | - Aysegul A Sahin
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Lei Huo
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Qingqing Ding
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
6
|
Abstract
Breast carcinomas classified based on traditional morphologic assessment provide useful prognostic information. Although morphology is still the gold standard of classification, recent advances in molecular technologies have enabled the classification of these tumors into four distinct subtypes based on its intrinsic molecular profile that provide both predictive and prognostic information. This article describes the association between the different molecular subtypes with the histologic subtypes of breast cancer and illustrates how these subtypes may affect the appearance of tumors on imaging studies.
Collapse
Affiliation(s)
- Madhuchhanda Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, B1761 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Amy M Fowler
- Department of Radiology, Section of Breast Imaging and Intervention, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Gary A Ulaner
- Hoag Family Cancer Institute, 16105 Sand Canyon Avenue, Ste 215, Irvine, CA 92618, USA; Department of Radiology, Department of Translational Genomics, University of Southern California, Los Angeles, CA 90007, USA
| | - Aparna Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, B1781 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
7
|
Nourbakhsh M, Saksager A, Tom N, Chen XS, Colaprico A, Olsen C, Tiberti M, Papaleo E. A workflow to study mechanistic indicators for driver gene prediction with Moonlight. Brief Bioinform 2023; 24:bbad274. [PMID: 37551622 PMCID: PMC10516357 DOI: 10.1093/bib/bbad274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Prediction of driver genes (tumor suppressors and oncogenes) is an essential step in understanding cancer development and discovering potential novel treatments. We recently proposed Moonlight as a bioinformatics framework to predict driver genes and analyze them in a system-biology-oriented manner based on -omics integration. Moonlight uses gene expression as a primary data source and combines it with patterns related to cancer hallmarks and regulatory networks to identify oncogenic mediators. Once the oncogenic mediators are identified, it is important to include extra levels of evidence, called mechanistic indicators, to identify driver genes and to link the observed gene expression changes to the underlying alteration that promotes them. Such a mechanistic indicator could be for example a mutation in the regulatory regions for the candidate gene. Here, we developed new functionalities and released Moonlight2 to provide the user with a mutation-based mechanistic indicator as a second layer of evidence. These functionalities analyze mutations in a cancer cohort to classify them into driver and passenger mutations. Those oncogenic mediators with at least one driver mutation are retained as the final set of driver genes. We applied Moonlight2 to the basal-like breast cancer subtype, lung adenocarcinoma and thyroid carcinoma using data from The Cancer Genome Atlas. For example, in basal-like breast cancer, we found four oncogenes (COPZ2, SF3B4, KRTCAP2 and POLR2J) and nine tumor suppressor genes (KIR2DL4, KIF26B, ARL15, ARHGAP25, EMCN, GMFG, TPK1, NR5A2 and TEK) containing a driver mutation in their promoter region, possibly explaining their deregulation. Moonlight2R is available at https://github.com/ELELAB/Moonlight2R.
Collapse
Affiliation(s)
- Mona Nourbakhsh
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Astrid Saksager
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Nikola Tom
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Xi Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Catharina Olsen
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Reproduction and Genetics
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore), VUB-ULB, Brussels 1090, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels 1050, Belgium
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
8
|
Michlewska S, Wójkowska D, Watala C, Skiba E, Ortega P, de la Mata FJ, Bryszewska M, Ionov M. Ruthenium metallodendrimer against triple-negative breast cancer in mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102703. [PMID: 37591367 DOI: 10.1016/j.nano.2023.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Dagmara Wójkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
9
|
Kim JY, Park S, Cho EY, Lee JE, Jung HH, Chae BJ, Kim SW, Nam SJ, Cho SY, Park YH, Ahn JS, Lee S, Im YH. Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer. Exp Mol Med 2023; 55:1451-1461. [PMID: 37394589 PMCID: PMC10394068 DOI: 10.1038/s12276-023-01030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Apocrine carcinoma is a rare breast cancer subtype. As such, the genomic characteristics of apocrine carcinoma with triple negative immunohistochemical results (TNAC), which has been treated as triple negative breast cancer (TNBC), have not been revealed. In this study, we evaluated the genomic characteristics of TNAC compared to TNBC with low Ki-67 (LK-TNBC). In the genetic analysis of 73 TNACs and 32 LK-TNBCs, the most frequently mutated driver gene in TNAC was TP53 (16/56, 28.6%), followed by PIK3CA (9/56, 16.1%), ZNF717 (8/56, 14.3%), and PIK3R1 (6/56, 10.71%). Mutational signature analysis showed enrichment of defective DNA mismatch repair (MMR)-related signatures (SBS6 and SBS21) and the SBS5 signature in TNAC, whereas an APOBEC activity-associated mutational signature (SBS13) was more prominent in LK-TNBC (Student's t test, p < 0.05). In intrinsic subtyping, 38.4% of TNACs were classified as luminal A, 27.4% as luminal B, 26.0% as HER2-enriched (HER2-E), 2.7% as basal, and 5.5% as normal-like. The basal subtype was the most dominant subtype (43.8%) in LK-TNBC (p < 0.001), followed by luminal B (21.9%), HER2-E (21.9%), and luminal A (12.5%). In the survival analysis, TNAC had a five-year disease-free survival (DFS) rate of 92.2% compared to 59.1% for LK-TNBC (P = 0.001) and a five-year overall survival (OS) rate of 95.3% compared to 74.6% for LK-TNBC (P = 0.0099). TNAC has different genetic characteristics and better survival outcomes than LK-TNBC. In particular, normal-like and luminal A subtypes in TNAC have much better DFS and OS than other intrinsic subtypes. Our findings are expected to impact medical practice for patients diagnosed with TNAC.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea.
| | - Sabin Park
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Yoon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hae Hyun Jung
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Soo Youn Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea.
| |
Collapse
|
10
|
Tierno D, Grassi G, Scomersi S, Bortul M, Generali D, Zanconati F, Scaggiante B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int J Mol Sci 2023; 24:ijms24119688. [PMID: 37298642 DOI: 10.3390/ijms24119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The poor survival of triple-negative breast cancer (TNBC) is due to its aggressive behavior, large heterogeneity, and high risk of recurrence. A comprehensive molecular investigation of this type of breast cancer using high-throughput next-generation sequencing (NGS) methods may help to elucidate its potential progression and discover biomarkers related to patient survival. In this review, the NGS applications in TNBC research are described. Many NGS studies point to TP53 mutations, immunocheckpoint response genes, and aberrations in the PIK3CA and DNA repair pathways as recurrent pathogenic alterations in TNBC. Beyond their diagnostic and predictive/prognostic value, these findings suggest potential personalized treatments in PD -L1-positive TNBC or in TNBC with a homologous recombination deficit. Moreover, the comprehensive sequencing of large genomes with NGS has enabled the identification of novel markers with clinical value in TNBC, such as AURKA, MYC, and JARID2 mutations. In addition, NGS investigations to explore ethnicity-specific alterations have pointed to EZH2 overexpression, BRCA1 alterations, and a BRCA2-delaAAGA mutation as possible molecular signatures of African and African American TNBC. Finally, the development of long-read sequencing methods and their combination with optimized short-read techniques promise to improve the efficiency of NGS approaches for future massive clinical use.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Serena Scomersi
- Breast Unit-Azienda Sanitaria Universitaria Integrata Giuliano Isontina ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Azienda Socio-Sanitaria Territoriale di Cremona-ASST, Breast Cancer Unit and Translational Research Unit, 26100 Cremona, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
11
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Triple-Negative Apocrine Carcinomas: Toward a Unified Group With Shared Molecular Features and Clinical Behavior. Mod Pathol 2023; 36:100125. [PMID: 36870308 DOI: 10.1016/j.modpat.2023.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Triple-negative apocrine carcinomas (TNACs) are rare breast tumors with limited studies evaluating their molecular characteristics and clinical behavior. We performed a histologic, immunohistochemical, genetic, and clinicopathologic assessment of 42 invasive TNACs (1 with a focal spindle cell component) from 41 patients, 2 pure apocrine ductal carcinomas in situ (A-DCIS), and 1 A-DCIS associated with spindle cell metaplastic carcinoma (SCMBC). All TNACs had characteristic apocrine morphology and expressed androgen receptor (42/42), gross cystic disease fluid protein 15 (24/24), and CK5/6 (16/16). GATA3 was positive in most cases (16/18, 89%), and SOX10 was negative (0/22). TRPS1 was weakly expressed in a minority of tumors (3/14, 21%). Most TNACs had low Ki67 proliferation (≤10% in 67%, 26/39), with a median index of 10%. Levels of tumor infiltrating lymphocytes were low (≤10% in 93%, 39/42, and 15% in 7%, 3/42). Eighteen percent of TNACs presented with axillary nodal metastasis (7/38). No patients treated with neoadjuvant chemotherapy achieved pathologic complete response (0%, 0/10). Nearly all patients with TNAC (97%, n = 32) were without evidence of disease at the time of study (mean follow-up of 62 months). Seventeen invasive TNACs and 10 A-DCIS (7 with paired invasive TNAC) were profiled by targeted capture-based next-generation DNA sequencing. Pathogenic mutations in phosphatidylinositol 3-kinase pathway genes PIK3CA (53%) and/or PIK3R1 (53%) were identified in all TNACs (100%), including 4 (24%) with comutated PTEN. Ras-MAPK pathway genes, including NF1 (24%), and TP53 were mutated in 6 tumors each (35%). All A-DCIS shared mutations, such as phosphatidylinositol 3-kinase aberrations and copy number alterations with paired invasive TNACs or SCMBC, and a subset of invasive carcinomas showed additional mutations in tumor suppressors (NF1, TP53, ARID2, and CDKN2A). Divergent genetic profiles between A-DCIS and invasive carcinoma were identified in 1 case. In summary, our findings support TNAC as a morphologically, immunohistochemically, and genetically homogeneous subgroup of triple-negative breast carcinomas and suggest overall favorable clinical behavior.
Collapse
|
13
|
Tsang JY, Tse GM. Update on triple-negative breast cancers - highlighting subtyping update and treatment implication. Histopathology 2023; 82:17-35. [PMID: 36468263 DOI: 10.1111/his.14784] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) remains a major challenge in breast cancer management. Continuing research in the past years aimed at understanding the biology of this tumour and developing more effective therapeutic options. It is now clear that TNBC is vastly heterogeneous with diverse histological, molecular, immunological profiles and clinical differences. Current evidence suggested the existence of at least four predominant subtypes based on expression profiling across studies. These subtypes exhibited specific genomic alterations and tumour microenvironment. Subtype-specific therapeutic strategies were identified. Recognising these subtypes allows not only an improved prognostication but also a better treatment decision. Herein, we provide an overview of the recent findings on TNBC heterogeneity at different levels and corresponding subtyping. The characteristic of subtypes and the implication of these subtypings in therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
14
|
Zhang X. Molecular Classification of Breast Cancer: Relevance and Challenges. Arch Pathol Lab Med 2023; 147:46-51. [PMID: 36136295 DOI: 10.5858/arpa.2022-0070-ra] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Abstract
CONTEXT.— Appropriate patient management requires precise and meaningful tumor classification. Breast cancer classification continues to evolve from traditional morphologic evaluation to more sophisticated systems with the integration of new knowledge from research being translated into practice. Breast cancer is heterogeneous at the molecular level, with diversified patterns of gene expression, which is presumably responsible for the difference in tumor behavior and prognosis. Since the beginning of this century, new molecular technology has been gradually applied to breast cancer research on issues pertinent to prognosis (prognostic signature) and therapeutic prediction (predictive signature), and much progress has been made. OBJECTIVE.— To summarize the current state and the prospective future of molecular classification of breast cancer. DATA SOURCES.— Sources include recent medical literature on molecular classification of breast cancer. CONCLUSIONS.— Identification of intrinsic tumor subtypes has set a foundation for refining the breast cancer molecular classification. Studies have explored the genetic features within the intrinsic cancer subtypes and have identified novel molecular targets that led to the innovation of clinical assays to predict a patient's prognosis and to provide specific guidelines for therapeutic decisions. With the development and implication of these molecular tools, we have remarkably advanced our knowledge and enhanced our power to provide optimal management to patients. However, challenges still exist. Besides accurate prediction of prognosis, we are still in urgent need of more molecular predictors for tumor response to therapeutic regimes. Further exploration along this path will be critical for improving a patient's prognosis.
Collapse
Affiliation(s)
- Xinmin Zhang
- From the Department of Pathology, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
15
|
Park JH, Kwon MJ, Seo J, Kim HY, Min SK, Kim LS. Somatic Mutations of TP53 Identified by Targeted Next-Generation Sequencing Are Poor Prognostic Factors for Primary Operable Breast Cancer: A Single-Center Study. J Breast Cancer 2022; 25:379-386. [PMID: 36265889 PMCID: PMC9629967 DOI: 10.4048/jbc.2022.25.e41] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022] Open
Abstract
Few studies have reported on the clinical utility of targeted next-generation sequencing (NGS) for breast cancer in Korea. We retrospectively reviewed the targeted NGS data of 219 patients with breast cancer who underwent surgical resection between August 2018 and April 2021. Here, we described the mutational profiles of breast cancer and examined their prognostic implications. The most frequently mutated gene was PIK3CA (n = 97/219, 44.3%), followed by TP53 (n = 79/219, 36.1%), AKT1 (n = 23/219, 10.5%), and GATA3 (n = 20/219, 9.1%). TP53 mutations were associated with aggressive histologic features. We followed up for 31 (range, 1-39) months and observed 11 (5.0%) recurrences: nine were TP53 mutant and two were TP53 wild-type. Multivariable analysis revealed that TP53 mutation was an independent prognostic factor for recurrence (p = 0.012). Although no drug is currently available for TP53 mutations, it is valuable to know the mutational status of TP53 for the precise management of breast cancer.
Collapse
Affiliation(s)
- Jung Ho Park
- Division of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jinwon Seo
- Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Ho Young Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Soo Kee Min
- Department of Pathology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Lee Su Kim
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| |
Collapse
|
16
|
Nero C, Boldrini L, Lenkowicz J, Giudice MT, Piermattei A, Inzani F, Pasciuto T, Minucci A, Fagotti A, Zannoni G, Valentini V, Scambia G. Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. Int J Mol Sci 2022; 23:ijms231911326. [PMID: 36232628 PMCID: PMC9570450 DOI: 10.3390/ijms231911326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
BRCA 1/2 genes mutation status can already determine the therapeutic algorithm of high grade serous ovarian cancer patients. Nevertheless, its assessment is not sufficient to identify all patients with genomic instability, since BRCA 1/2 mutations are only the most well-known mechanisms of homologous recombination deficiency (HR-d) pathway, and patients displaying HR-d behave similarly to BRCA mutated patients. HRd assessment can be challenging and is progressively overcoming BRCA testing not only for prognostic information but more importantly for drugs prescriptions. However, HR testing is not already integrated in clinical practice, it is quite expensive and it is not refundable in many countries. Selecting patients who are more likely to benefit from this assessment (BRCA 1/2 WT patients) at an early stage of the diagnostic process, would allow an optimization of genomic profiling resources. In this study, we sought to explore whether somatic BRCA1/2 genes status can be predicted using computational pathology from standard hematoxylin and eosin histology. In detail, we adopted a publicly available, deep-learning-based weakly supervised method that uses attention-based learning to automatically identify sub regions of high diagnostic value to accurately classify the whole slide (CLAM). The same model was also tested for progression free survival (PFS) prediction. The model was tested on a cohort of 664 (training set: n = 464, testing set: n = 132) ovarian cancer patients, of whom 233 (35.1%) had a somatic BRCA 1/2 mutation. An area under the curve of 0.7 and 0.55 was achieved in the training and testing set respectively. The model was then further refined by manually identifying areas of interest in half of the cases. 198 images were used for training (126/72) and 87 images for validation (55/32). The model reached a zero classification error on the training set, but the performance was 0.59 in terms of validation ROC AUC, with a 0.57 validation accuracy. Finally, when applied to predict PFS, the model achieved an AUC of 0.71, with a negative predictive value of 0.69, and a positive predictive value of 0.75. Based on these analyses, we have planned further steps of development such as proving a reference classification performance, exploring the hyperparameters space for training optimization, eventually tweaking the learning algorithms and the neural networks architecture for better suiting this specific task. These actions may allow the model to improve performances for all the considered outcomes.
Collapse
Affiliation(s)
- Camilla Nero
- Fondazione Policlinico Agostino Gemelli, IRCCS, Gynecology and Obstetrics, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-30154979
| | - Luca Boldrini
- Fondazione Policlinico Agostino Gemelli, IRCCS, Radiomics Core Facility, 00168 Rome, Italy
| | - Jacopo Lenkowicz
- Fondazione Policlinico Agostino Gemelli, IRCCS, Radiomics Core Facility, 00168 Rome, Italy
| | - Maria Teresa Giudice
- Fondazione Policlinico Agostino Gemelli, IRCCS, Gynecology and Obstetrics, 00168 Rome, Italy
| | - Alessia Piermattei
- Fondazione Policlinico Agostino Gemelli, IRCCS, Pathology, 00168 Rome, Italy
| | - Frediano Inzani
- Fondazione Policlinico Agostino Gemelli, IRCCS, Pathology, 00168 Rome, Italy
| | - Tina Pasciuto
- Fondazione Policlinico Agostino Gemelli, IRCCS, Data Collection Core Facility, 00168 Rome, Italy
| | - Angelo Minucci
- Fondazione Policlinico Agostino Gemelli, IRCCS, Genomics Core Facility, 00168 Rome, Italy
| | - Anna Fagotti
- Fondazione Policlinico Agostino Gemelli, IRCCS, Gynecology and Obstetrics, 00168 Rome, Italy
| | - Gianfranco Zannoni
- Fondazione Policlinico Agostino Gemelli, IRCCS, Pathology, 00168 Rome, Italy
| | - Vincenzo Valentini
- Fondazione Policlinico Agostino Gemelli, IRCCS, Radiation Oncology, 00168 Rome, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Agostino Gemelli, IRCCS, Gynecology and Obstetrics, 00168 Rome, Italy
| |
Collapse
|
17
|
Perry G, Dadiani M, Kahana‐Edwin S, Pavlovski A, Markus B, Hornung G, Balint‐Lahat N, Yosepovich A, Hout‐Siloni G, Jacob‐Hirsch J, Sklair‐Levy M, Friedman E, Barshack I, Kaufman B, Gal‐Yam EN, Paluch‐Shimon S. Divergence of mutational signatures in association with breast cancer subtype. Mol Carcinog 2022; 61:1056-1070. [DOI: 10.1002/mc.23461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Gili Perry
- Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Maya Dadiani
- Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
- The Nehemia Rubin Excellence in Biomedical Research – The TELEM Program, supported by the Aaron Gutwirth Fund Tel‐Hashomer Israel
| | | | - Anya Pavlovski
- Pathology Institute, Sheba Medical Center Tel‐Hashomer Israel
| | - Barak Markus
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science Rehovot Israel
| | - Gil Hornung
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science Rehovot Israel
| | | | - Ady Yosepovich
- Pathology Institute, Sheba Medical Center Tel‐Hashomer Israel
| | - Goni Hout‐Siloni
- Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | | | - Miri Sklair‐Levy
- Department of Diagnostic Radiology Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Eitan Friedman
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit Tel‐Hashomer Israel
| | - Iris Barshack
- Pathology Institute, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Bella Kaufman
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Breast Oncology Institute, Sheba Medical Center Tel‐Hashomer Israel
| | - Einav Nili Gal‐Yam
- Breast Oncology Institute, Sheba Medical Center Tel‐Hashomer Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Chaim Sheba Medical Center Ramat Gan Israel
| | - Shani Paluch‐Shimon
- Breast Oncology Institute, Sheba Medical Center Tel‐Hashomer Israel
- Sharett Institute of Oncology Hadassah University Hospital and Faculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
18
|
Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. J Exp Clin Cancer Res 2022; 41:265. [PMID: 36050786 PMCID: PMC9434975 DOI: 10.1186/s13046-022-02476-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAs the field of translational ‘omics has progressed, refined classifiers at both genomic and proteomic levels have emerged to decipher the heterogeneity of breast cancer in a clinically-applicable way. The integration of ‘omics knowledge at the DNA, RNA and protein levels is further expanding biologic understanding of breast cancer and opportunities for customized treatment, a particularly pressing need in clinically triple negative tumors. For this group of aggressive breast cancers, work from multiple groups has now validated at least four major biologically and clinically distinct omics-based subtypes. While to date most clinical trial designs have considered triple negative breast cancers as a single group, with an expanding arsenal of targeted therapies applicable to distinct biological pathways, survival benefits may be best realized by designing and analyzing clinical trials in the context of major molecular subtypes. While RNA-based classifiers are the most developed, proteomic classifiers proposed for triple negative breast cancer based on new technologies have the potential to more directly identify the most clinically-relevant biomarkers and therapeutic targets. Phospho-proteomic data further identify targetable signalling pathways in a unique subtype-specific manner. Single cell profiling of the tumor microenvironment represents a promising way to allow a better characterization of the heterogeneity of triple negative breast cancer which could be integrated in a spatially resolved context to build an ecosystem-based patient classification. Multi-omic data further allows in silico analysis of genetic and pharmacologic screens to map therapeutic vulnerabilities in a subtype-specific context. This review describes current knowledge about molecular subtyping of triple negative breast cancer, recent advances in omics-based genomics and proteomics diagnostics addressing the diversity of this disease, key advances made through single cell analysis approaches, and developments in treatments including targeted therapeutics being tested in major clinical trials.
Collapse
|
19
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
20
|
Huang KS, Wang YT, Byadgi O, Huang TY, Tai MH, Shaw JF, Yang CH. Screening of Specific and Common Pathways in Breast Cancer Cell Lines MCF-7 and MDA-MB-231 Treated with Chlorophyllides Composites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123950. [PMID: 35745070 PMCID: PMC9229827 DOI: 10.3390/molecules27123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Our previous findings have shown that the chlorophyllides composites have anticancer activities to breast cancer cell lines (MCF-7 and MDA-MB-231). In the present study, microarray gene expression profiling was utilized to investigate the chlorophyllides anticancer mechanism on the breast cancer cells lines. Results showed that chlorophyllides composites induced upregulation of 43 and 56 differentially expressed genes (DEG) in MCF-7 and MDA-MB-231 cells, respectively. In both cell lines, chlorophyllides composites modulated the expression of annexin A4 (ANXA4), chemokine C-C motif receptor 1 (CCR1), stromal interaction molecule 2 (STIM2), ethanolamine kinase 1 (ETNK1) and member of RAS oncogene family (RAP2B). Further, the KEGG annotation revealed that chlorophyllides composites modulated DEGs that are associated with the endocrine system in MCF-7 cells and with the nervous system in MDA-MB-231 cells, respectively. The expression levels of 9 genes were validated by quantitative reverse transcription PCR (RT-qPCR). The expression of CCR1, STIM2, ETNK1, MAGl1 and TOP2A were upregulated in both chlorophyllides composites treated-MCF-7 and MDA-MB-231 cells. The different expression of NLRC5, SLC7A7 and PKN1 provided valuable information for future investigation and development of novel cancer therapy.
Collapse
Affiliation(s)
- Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, No. 8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan;
| | - Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, No. 8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan; (Y.-T.W.); (T.-Y.H.); (M.-H.T.)
| | - Omkar Byadgi
- International College, International Program in Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan;
| | - Ting-Yu Huang
- Department of Biological Science and Technology, I-Shou University, No. 8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan; (Y.-T.W.); (T.-Y.H.); (M.-H.T.)
| | - Mi-Hsueh Tai
- Department of Biological Science and Technology, I-Shou University, No. 8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan; (Y.-T.W.); (T.-Y.H.); (M.-H.T.)
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, No. 8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan; (Y.-T.W.); (T.-Y.H.); (M.-H.T.)
- Correspondence: (J.-F.S.); (C.-H.Y.); Tel.: +886-7-6151100 (ext. 7310) (J.-F.S.); +886-7-6151100 (ext. 7312) (C.-H.Y.); Fax: +886-7-6151959 (J.-F.S. & C.-H.Y.)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, No. 8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan; (Y.-T.W.); (T.-Y.H.); (M.-H.T.)
- Pharmacy Department, E-Da Hospital, No. 1, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei City 106214, Taiwan
- Correspondence: (J.-F.S.); (C.-H.Y.); Tel.: +886-7-6151100 (ext. 7310) (J.-F.S.); +886-7-6151100 (ext. 7312) (C.-H.Y.); Fax: +886-7-6151959 (J.-F.S. & C.-H.Y.)
| |
Collapse
|
21
|
Hernandez-Prera JC, Saeed-Vafa D, Heidarian A, Gewandter K, Otto K, Wenig BM. Sclerosing Polycystic Adenoma: Conclusive Clinical and Molecular Evidence of Its Neoplastic Nature. Head Neck Pathol 2022; 16:416-426. [PMID: 34410594 PMCID: PMC9187789 DOI: 10.1007/s12105-021-01374-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
Sclerosing polycystic adenosis, initially considered a non-neoplastic salivary gland lesion and classified as such in the 2017 WHO Classification of Head and Neck Tumors, has been the subject of controversy regarding its possible neoplastic nature. The reporting of recurrent PI3K pathway alteration represents evidence to support these lesions as being neoplastic and more appropriately referred to as sclerosing polycystic adenoma (SPA). Herein, we provide additional evidence that supports the classification of SPA as a true neoplasm. Eight cases of SPA were identified in our database and consultation files. All cases were subjected to PTEN immunohistochemistry (IHC) and next-generation sequencing (NGS). In addition, one patient underwent genetic counseling and germline testing. The cases included 5 men and 3 women with a mean age of 41 years (range 11-78) and all tumors arose in the parotid gland. One patient had multiple recurrences over a period of 2 years. Morphologically the tumors were circumscribed and characterized by an admixture of acini, ducts and cysts embedded in a fibrotic/sclerotic stroma. The cells lining the ducts and cysts showed variable granular, vacuolated, foamy and apocrine cytoplasmic features, as well as acinar cells contained intracytoplasmic brightly eosinophilic granules. The apocrine intraductal proliferations showed mild to moderate atypia in 6 cases. One case showed overt malignant morphology that ranged from intraductal carcinoma to invasive salivary duct carcinoma. Seven cases tested for PTEN IHC showed loss of nuclear expression in the acinar and ductal cells with retained PTEN expression in the myoepithelial cell and stroma. NGS detected PIK3CA or PIK3R1 genetic alterations in 7 cases, including a novel TFG-PIK3CA fusion. Coexisting PTEN mutations were seen in 4 cases, including in a patient with clinical stigmata of Cowden syndrome and confirmed by germline genetic testing. Our findings herein documented including recurrence of tumor, malignant transformation, high prevalence of PI3K pathway oncogenic alterations and the possible heretofore undescribed association with Cowden syndrome add support to classifying SPA as true neoplasms justifying their designation as adenoma, rather than adenosis.
Collapse
Affiliation(s)
- Juan C Hernandez-Prera
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Daryoush Saeed-Vafa
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Amin Heidarian
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Kristen Otto
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
22
|
Neumann-Mufweba A, Kimani S, Khan SF, Chibale K, Prince S. The diaryl-imidazopyridazine anti-plasmodial compound, MMV652103, exhibits anti-breast cancer activity. EXCLI JOURNAL 2022; 21:656-679. [PMID: 35651652 PMCID: PMC9149975 DOI: 10.17179/excli2021-4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/24/2022] [Indexed: 11/12/2022]
Abstract
Breast cancer is the most common malignancy in women worldwide and it remains a global health burden, in part, due to poor response and tolerance to current therapeutics. Drug repurposing, which seeks to identify new indications for existing and investigational drugs, has become an exciting strategy to address these challenges. Here we describe the anti-breast cancer activity of a diaryl-imidazopyridazine compound, MMV652103, which was previously identified for its anti-plasmodial activity. We demonstrate that MMV652103 potently inhibits the oncogenic PI4KB and PIK3C2G lipid kinases, is selectively cytotoxic to MCF7 and T47D estrogen receptor positive breast cancer cells and inhibits their ability to survive and migrate. The underlying mechanisms involved included the induction of reactive oxygen species and activation of the DNA damage and p38 MAPK stress signaling pathways. This was associated with a G1 cell cycle arrest and an increase in levels of the cyclin-dependent kinase inhibitor p21 and activation of apoptotic and autophagic cell death pathways. Lastly, MMV652103 significantly reduced the weight and metastases of MCF7 induced tumors in an in vivo chick embryo model and displayed a favorable safety profile. These findings position MMV652103 as a promising chemotherapeutic in the treatment of oestrogen receptor positive breast cancers.
Collapse
Affiliation(s)
- Alexis Neumann-Mufweba
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Serah Kimani
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Saif Feroz Khan
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
23
|
Xu J, Liu Y, Liu S, Ou W, White A, Stewart S, Tkaczuk KH, Ellis LM, Wan J, Lu X, He X. Metformin Bicarbonate-Mediated Efficient RNAi for Precise Targeting of TP53 Deficiency in Colon and Rectal Cancers. NANO TODAY 2022; 43:101406. [PMID: 35251293 PMCID: PMC8896823 DOI: 10.1016/j.nantod.2022.101406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Colon and rectal cancers are the leading causes of cancer-related deaths in the United States and effective targeted therapies are in need for treating them. Our genomic analyses show hemizygous deletion of TP53, an important tumor suppressor gene, is highly frequent in both cancers, and the 5-year survival of patients with the more prevalent colon cancer is significantly reduced in the patients with the cancer harboring such deletion, although such reduction is not observed for rectal cancer. Unfortunately, direct targeting TP53 has been unsuccessful for cancer therapy. Interestingly, POLR2A, a gene essential for cell survival and proliferation, is almost always deleted together with TP53 in colon and rectal cancers. Therefore, RNA interference (RNAi) with small interfering RNAs (siRNAs) to precisely target/inhibit POLR2A may be an effective strategy for selectively killing cancer cells with TP53 deficiency. However, the difficulty of delivering siRNAs specifically into the cytosol where they perform their function, is a major barrier for siRNA-based therapies. Here, metformin bicarbonate (MetC) is synthesized to develop pH-responsive MetC-nanoparticles with a unique "bomb" for effective cytosolic delivery of POLR2A siRNA, which greatly facilitates its endo/lysosomal escape into the cytosol and augments its therapeutic efficacy of cancer harboring TP53 deficiency. Moreover, the MetC-based nanoparticles without functional siRNA show notable therapeutic effect with no evident toxicity or immunogenicity.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yunhua Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sheng Liu
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Katherine H.R. Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Lee M. Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jun Wan
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Lee S, Yul Kim H, Joo Jung Y, Shin Jung C, Im D, Yeon Kim J, Min Lee S, Hwan Oh S. Comparison of mutational profiles between triple-negative and hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancers in T2N0-1M0 stage: Implications of TP53 and PIK3CA mutations in Korean early-stage breast cancers. Curr Probl Cancer 2022; 46:100843. [DOI: 10.1016/j.currproblcancer.2022.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/03/2022]
|
25
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
26
|
An Update on the Molecular and Clinical Characteristics of Apocrine Carcinoma of the Breast. Clin Breast Cancer 2021; 22:e576-e585. [PMID: 35027319 DOI: 10.1016/j.clbc.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Apocrine carcinoma of the breast is a rare malignancy. According to 2019 WHO classification, apocrine cellular features and a characteristic steroid receptor profile (Estrogen receptor (ER)-negative and androgen receptor (AR)-positive) define apocrine carcinoma. Her-2/neu protein expression is reported in ∼30-50% of apocrine carcinomas, while NGS analysis showed frequent PIK3CA/PTEN/AKT and TP53 mutations Followed by deregulation in the mitogen-activated protein kinase pathway components (mutations of KRAS, NRAS, BRAF). A recent miRNA study indicates various miRNAs (downregulated hsa-miR-145-5p and upregulated 14 miRNAs such as hsa-miR-182-5p, hsa-miR-3135b, and hsa-miR-4417) may target the commonly altered pathways in apocrine carcinomas such as ERBB2/HER2 and mitogen-activated protein kinase signaling pathway. Although AR expression is a hallmark of apocrine carcinoma, little is known regarding the efficacy/resistance to antiandrogens. Success of bicalutamide, a non-steroidal anti-androgen, was reported in a case of Her2-negative apocrine carcinoma. Two recent studies, however, described presence of anti-androgen resistance biomarkers (a splice variant ARv7 and AR/NCOA2 co-amplification) in a subset of AR+ apocrine carcinomas, cautioning the use of anti-androgens in AR+ triple-negative breast carcinomas. Apocrine carcinomas rarely show biomarkers predictive of response to immune checkpoint inhibitors (PD-L1 expression, MSI-H status, and TMB-high). Therefore, a comprehensive cancer profiling of apocrine carcinomas is necessary to identify potential therapeutic targets for a truly individualized treatment approach.
Collapse
|
27
|
Li Y, Dong W, Zhang P, Zhang T, Ma L, Qu M, Ma X, Zhou X, He Q. Comprehensive Analysis of Regulatory Factors and Immune-Associated Patterns to Decipher Common and BRCA1/2 Mutation-Type-Specific Critical Regulation in Breast Cancer. Front Cell Dev Biol 2021; 9:750897. [PMID: 34733851 PMCID: PMC8558486 DOI: 10.3389/fcell.2021.750897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: BRCA1/2 mutations are closely related to high lifetime risk of breast cancer (BC). The objective of this study was to identify the genes, regulators, and immune-associated patterns underlying disease pathology in BC with BRCA1/2 somatic mutations and their associations with clinical traits. Methods: RNA sequencing data and clinical information from The Cancer Genome Atlas (TCGA; N = 36 BRCA1-mutant BC; N = 49 BRCA2-mutant BC; and N = 117 BRCA1/2-wild-type BC samples) were used for discovery, which included consensus network analysis, function enrichment, and analysis of hub genes; other TCGA data (N = 117 triple-negative BC) and two Gene Expression Omnibus database expression profiles were used as validation cohorts. Results: Consensus network analysis helped to identify specific co-expressed modules that showed positive correlations with tumor stage, number of positive lymph nodes, and margin status in BRCA1/2-mutant BC but lacking correlations in BRCA1/2-wild-type BC. Functional enrichment suggested potential mechanisms in BRCA1/2 carriers that could regulate the cell cycle, immune response, cellular metabolic processes, and cell migration, via enriched pathways including p53 and JAK-STAT signaling. Consensus network analysis identified the specific and common carcinogenic mechanisms involving BRCA mutations. Regulators cross-linking these modules include E2F or IRF transcription factor family, associated with cell cycle or immune response regulation module, respectively. Eight hub genes, including ISG15, BUB1, and TTK, were upregulated in several BRCA1/2-mutant BC datasets and showed prognostic value in BC. Furthermore, their genetic expression was related to higher levels of immune infiltration in BRCA1/2-mutant BC, which manifested as recruitment of T helper cells (Th1 cells), follicular helper T cells, and regulatory T cells, and T cell exhaustion. Moreover, important indicators for evaluation of BC immunotherapy, tumor mutational burden and neoantigen load also positively correlated with expression of some hub genes. Conclusion: We constructed a BRCA1/2 mutation-type-specific co-expressed gene network with related transcription factors and immune-associated patterns that could regulate and influence tumor metastasis and immune microenvironment, providing novel insights into the pathological process of this disease and the corresponding BRCA mutations.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Dong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengqian Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Quinn CM, D’Arcy C, Wells C. Apocrine lesions of the breast. Virchows Arch 2021; 480:177-189. [PMID: 34537861 PMCID: PMC8983539 DOI: 10.1007/s00428-021-03185-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Apocrine change is recognised in benign, atypical and malignant lesions of the breast. Apocrine metaplasia, a frequent finding in the breast of women over the age of 25 years, is most commonly seen in benign cysts with a simple or papillary configuration. Apocrine change is also recognised in other benign lesions including sclerosing adenosis, now known as apocrine adenosis. Apocrine atypia usually refers to cytological atypia in which there is at least threefold variation in nuclear size but architectural atypia may also occur. The distinction between atypical apocrine hyperplasia and non-high-grade apocrine ductal carcinoma in situ may be difficult due to the relative rarity of these entities and the lack of validated diagnostic criteria. Lobular carcinoma in situ (LCIS) with apocrine change is considered to be a variant of pleomorphic LCIS. An apocrine variant of encapsulated papillary carcinoma is also recognised. Apocrine change is described in invasive carcinoma, including no special type, lobular, micropapillary and mucinous variants. The recent WHO 2019 update recognises 'carcinoma with apocrine differentiation' as a special type breast carcinoma based on the presence of apocrine morphology in at least 90% of the tumour. Tumours with apocrine morphology are usually but not always hormone receptor negative. Human epidermal growth factor receptor 2 (HER-2) status is variable. Molecular studies have identified breast tumours with apocrine features and high expression of androgen receptor mRNA including 'luminal androgen receptor tumours' and 'molecular apocrine tumours'. The term 'pure apocrine carcinoma' has been proposed to describe an invasive carcinoma with apocrine morphology that is oestrogen and progesterone receptor negative and androgen receptor positive. HER-2 status may be positive or negative. This article reviews the pathology of benign, atypical and malignant apocrine lesions of the breast, with emphasis on diagnostic criteria including an approach to evaluation of apocrine lesions on needle core biopsy, and recent advances in our understanding of invasive apocrine carcinoma.
Collapse
Affiliation(s)
- Cecily M. Quinn
- Irish National Breast Screening Programme and Department of Histopathology, St. Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Clare D’Arcy
- Irish National Breast Screening Programme and Department of Histopathology, St. Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | | |
Collapse
|
29
|
Hałasa M, Łuszczki JJ, Dmoszyńska-Graniczka M, Baran M, Okoń E, Stepulak A, Wawruszak A. Antagonistic Interaction between Histone Deacetylase Inhibitor: Cambinol and Cisplatin-An Isobolographic Analysis in Breast Cancer In Vitro Models. Int J Mol Sci 2021; 22:ijms22168573. [PMID: 34445277 PMCID: PMC8395248 DOI: 10.3390/ijms22168573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the leading cause of death in women all over the world. Currently, combined chemotherapy with two or more agents is considered a promising anti-cancer tool to achieve better therapeutic response and to reduce therapy-related side effects. In our study, we demonstrated an antagonistic effect of cytostatic agent-cisplatin (CDDP) and histone deacetylase inhibitor: cambinol (CAM) for breast cancer cell lines with different phenotypes: estrogen receptor positive (MCF7, T47D) and triple negative (MDA-MB-231, MDA-MB-468). The type of pharmacological interaction was assessed by an isobolographic analysis. Our results showed that both agents used separately induced cell apoptosis; however, applying them in combination ameliorated antiproliferative effect for all BC cell lines indicating antagonistic interaction. Cell cycle analysis showed that CAM abolished cell cycle arrest in S phase, which was induced by CDDP. Additionally, CAM increased cell proliferation compared to CDDP used alone. Our data indicate that CAM and CDDP used in combination produce antagonistic interaction, which could inhibit anti-cancer treatment efficacy, showing importance of preclinical testing.
Collapse
Affiliation(s)
- Marta Hałasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.H.); (M.D.-G.); (M.B.); (E.O.); (A.S.)
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University, Jaczewskiego 8 Street, 20-090 Lublin, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.H.); (M.D.-G.); (M.B.); (E.O.); (A.S.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.H.); (M.D.-G.); (M.B.); (E.O.); (A.S.)
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.H.); (M.D.-G.); (M.B.); (E.O.); (A.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.H.); (M.D.-G.); (M.B.); (E.O.); (A.S.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.H.); (M.D.-G.); (M.B.); (E.O.); (A.S.)
- Correspondence:
| |
Collapse
|
30
|
Das V, Kaishap PP, Duarah G, Chikkaputtaiah C, Deka Boruah HP, Pal M. Cytotoxic and apoptosis-inducing effects of novel 8-amido isocoumarin derivatives against breast cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1437-1449. [PMID: 33649978 DOI: 10.1007/s00210-021-02063-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Isocoumarin is a lactone, a type of natural organic compound that is used as synthetic intermediates of several natural products and pharmaceutical compounds explored for their potential therapeutic applications like antifungal, antimicrobial, anti-inflammatory, and anticancer activities. In our previous work, we were the first group to report the use of amide C-N bond of isatins as the oxidizing directing group for the synthesis of 8-amido isocoumarin derivatives. Whereas in our present work, we have screened the cytotoxic effects of novel 8-amido isocoumarin derivatives (S1-S10) in human breast cancer MCF-7 and MDA-MB-231 cells. Our novel results revealed that N-(3-(4-methoxyphenyl)-1-oxo-4-(4-propylphenyl)-1H-isochromen-8yl)acetamide (S1) and N-(4-(3,5-difluorophenyl)-1-oxo-3-(p-tolyl)-1H-isochromen-8-yl) acetamide (S2) are the two potent compounds among the rest synthesized isocoumarin derivatives that are cytotoxic against MCF-7 and MDA-MB-231 cells, whereas less toxic to the non-tumorigenic IOSE-364 cells. Flow cytometry studies have confirmed the induction of apoptotic effects of compounds by Annexin V/PI double staining. We also observed the cytotoxic effects of S1 and S2, as evaluated by DAPI-PI immunostaining and H&E staining. The morphological alterations consistent with apoptotic blebs were observed in both cancer cells treated with compounds assessed by scanning electron microscopy. Overall, this present study strongly demonstrates that 8-amido isocoumarin derivatives have potent cytotoxic and apoptotic effects in breast cancer cells.
Collapse
Affiliation(s)
- Vishal Das
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research, Headquarters, CSIR-HRDC Campus , Sector 19, Kamla Nehru Nagar ,Ghaziabaad-201002, India
| | - Partha Pratim Kaishap
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Department of Pharmaceutical Science, Assam University, Silchar, Assam, 788011, India
| | - Gauri Duarah
- Academy of Scientific and Innovative Research, Headquarters, CSIR-HRDC Campus , Sector 19, Kamla Nehru Nagar ,Ghaziabaad-201002, India
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research, Headquarters, CSIR-HRDC Campus , Sector 19, Kamla Nehru Nagar ,Ghaziabaad-201002, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research, Headquarters, CSIR-HRDC Campus , Sector 19, Kamla Nehru Nagar ,Ghaziabaad-201002, India
- Government Model College, Kaziranga, Golaghat, Assam, 785609, India
| | - Mintu Pal
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research, Headquarters, CSIR-HRDC Campus , Sector 19, Kamla Nehru Nagar ,Ghaziabaad-201002, India.
- Guest Faculty, National Institute of Technology (NIT), Yupia, Papum Pare, Arunachal Pradesh, 791112, India.
| |
Collapse
|
31
|
Dameri M, Ferrando L, Cirmena G, Vernieri C, Pruneri G, Ballestrero A, Zoppoli G. Multi-Gene Testing Overview with a Clinical Perspective in Metastatic Triple-Negative Breast Cancer. Int J Mol Sci 2021; 22:7154. [PMID: 34281208 PMCID: PMC8268401 DOI: 10.3390/ijms22137154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) is the technology of choice for the routine screening of tumor samples in clinical practice. In this setting, the targeted sequencing of a restricted number of clinically relevant genes represents the most practical option when looking for genetic variants associated with cancer, as well as for the choice of targeted treatments. In this review, we analyze available NGS platforms and clinical applications of multi-gene testing in breast cancer, with a focus on metastatic triple-negative breast cancer (mTNBC). We make an overview of the clinical utility of multi-gene testing in mTNBC, and then, as immunotherapy is emerging as a possible targeted therapy for mTNBC, we also briefly report on the results of the latest clinical trials involving immune checkpoint inhibitors (ICIs) and TNBC, where NGS could play a role for the potential predictive utility of homologous recombination repair deficiency (HRD) and tumor mutational burden (TMB).
Collapse
Affiliation(s)
- Martina Dameri
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
| | - Lorenzo Ferrando
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
| | - Gabriella Cirmena
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- IFOM, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- School of Medicine, University of Milan, 20122 Milan, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
32
|
Koleckova M, Ehrmann J, Bouchal J, Janikova M, Brisudova A, Srovnal J, Staffova K, Svoboda M, Slaby O, Radova L, Vomackova K, Melichar B, Veverkova L, Kolar Z. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Sci Rep 2021; 11:5145. [PMID: 33664322 PMCID: PMC7933252 DOI: 10.1038/s41598-021-84350-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancers (TNBC) are a morphologically and genetically heterogeneous group of breast cancers with uncertain prediction of biological behavior and response to therapy. Epithelial to mesenchymal transition (EMT) is a dynamic process characterized by loss of typical epithelial phenotype and acquisition of mesenchymal characteristics. Aberrant activation of EMT can aggravate the prognosis of patients with cancer, however, the mechanisms of EMT and role of microRNAs (miRNAs) in EMT activation is still unclear. The aim of our study was to analyze miRNA expression within areas of TNBCs with cellular morphology that may be related to the EMT process and discuss possible associations. Out of all 3953 re-examined breast cancers, 460 breast cancers were diagnosed as TNBC (11.64%). With regard to complete tumor morphology preservation, the tissue samples obtained from core—cut biopsies and influenced by previous neoadjuvant therapy were excluded. We assembled a set of selected 25 cases to determine miRNA expression levels in relation to present focal spindle cell and apocrine cell morphology within individual TNBCs. We used descriptive (histological typing and morphology), morphometric, molecular (microdissection of tumor and non-tumor morphologies, RNA isolation and purification, microchip analysis) and bioinformatic analysis (including pathway analysis). The results were verified by quantitative real-time PCR (RT-qPCR) on an extended set of 70 TNBCs. The majority of TNBCs were represented by high—grade invasive carcinomas of no special type (NST) with medullary features characterized by well-circumscribed tumors with central necrosis or fibrosis and frequent tendency to spindle-cell and/or apocrine cell transformation. Apocrine and spindle cell transformation showed a specific miRNA expression profile in comparison to other tumor parts, in situ carcinoma or non-tumor structures, particularly down-regulated expression of hsa-miRNA-143-3p and hsa-miRNA-205-5p and up-regulated expression of hsa-miR-22-3p, hsa-miRNA-185-5p, and hsa-miR-4443. Apocrine cell tumor morphology further revealed decreased expression of hsa-miR-145-5p and increased expression of additional 14 miRNAs (e.g. hsa-miR-182-5p, hsa-miR-3135b and hsa-miR-4417). Pathway analysis for target genes of these miRNAs revealed several shared biological processes (i.e. Wnt signaling, ErbB signaling, MAPK signaling, endocytosis and axon guidance), which may in part contribute to the EMT and tumor progression. We provide the first miRNA expression profiling of specific tissue morphologies in TNBC. Our results demonstrate a specific miRNA expression profile of apocrine and spindle cell morphology which can exhibit a certain similarity with the EMT process and may also be relevant for prognosis and therapy resistance of TNBC.
Collapse
Affiliation(s)
- Marketa Koleckova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic. .,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic.
| | - Maria Janikova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Aneta Brisudova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Marek Svoboda
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Katherine Vomackova
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Lucia Veverkova
- Department of Radiology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Zdenek Kolar
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic. .,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
33
|
Kołodziej P, Nicoś M, Krawczyk PA, Bogucki J, Karczmarczyk A, Zalewski D, Kubrak T, Kołodziej E, Makuch-Kocka A, Madej-Czerwonka B, Płachno BJ, Kocki J, Bogucka-Kocka A. The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer-A Preliminary Study. Int J Mol Sci 2021; 22:2061. [PMID: 33669698 PMCID: PMC7922286 DOI: 10.3390/ijms22042061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
There is an urgent need to seek new molecular biomarkers helpful in diagnosing and treating breast cancer. In this elaboration, we performed a molecular analysis of mutations and expression of genes within the PI3K/Akt/mTOR pathway in patients with ductal breast cancer of various malignancy levels. We recognized significant correlations between the expression levels of the studied genes. We also performed a bioinformatics analysis of the data available on the international database TCGA and compared them with our own research. Studies on mutations and expression of genes were conducted using High-Resolution Melt PCR (HRM-PCR), Allele-Specific-quantitative PCR (ASP-qPCR), Real-Time PCR molecular methods in a group of women with ductal breast cancer. Bioinformatics analysis was carried out using web source Ualcan and bc-GenExMiner. In the studied group of women, it was observed that the prevalence of mutations in the studied PIK3CA and AKT1 genes was 29.63%. It was stated that the average expression level of the PIK3CA, PIK3R1, PTEN genes in the group of breast cancer patients is lower in comparison to the control group, while the average expression level of the AKT1 and mTOR genes in the studied group was higher in comparison to the control group. It was also indicated that in the group of patients with mutations in the area of the PIK3CA and AKT1 genes, the PIK3CA gene expression level is statistically significantly lower than in the group without mutations. According to our knowledge, we demonstrate, for the first time, that there is a very strong positive correlation between the levels of AKT1 and mTOR gene expression in the case of patients with mutations and without mutations.
Collapse
Affiliation(s)
- Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (M.N.); (P.A.K.)
| | - Paweł A. Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (M.N.); (P.A.K.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Karczmarczyk
- Department of Experimental Haematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszów, Poland;
| | - Elżbieta Kołodziej
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (E.K.); (J.K.)
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Barbara Madej-Czerwonka
- Department of Breast Surgery, District Specialist Hospital of Stefan Cardinal Wyszynski in Lublin, 20-718 Lublin, Poland;
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (E.K.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
34
|
Clinicopathological Correlates of γδ T Cell Infiltration in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13040765. [PMID: 33673133 PMCID: PMC7918092 DOI: 10.3390/cancers13040765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prognostic impact of the different tumor-infiltrating lymphocyte (TIL) subpopulations remains debated in solid cancers. We investigated the clinicopathological correlates and prognostic impact of TILs, particularly of γδ T cells, in 162 triple-negative breast cancer (TNBC) patients. A high γδ T cell density was significantly associated with younger age, higher tumor histological grade, adjuvant chemotherapy, BRCA1 promoter methylation, TIL density, and PD-L1 and PD-1 expression. In multivariate analyses, γδ T cell infiltration was an independent prognostic factor. However, this prognostic impact varied according to the tumor PIK3CA mutational status. High γδ T cell infiltration was associated with better survival in patients with PIK3CA wild-type tumors, without significant difference in the PIK3CA-mutated tumor subgroup. Altogether, these data suggest that high γδ T cell infiltrate is correlated with immune infiltration and might represent a prognostic tool in TNBC patients. Abstract The prognostic impact of the different tumor-infiltrating lymphocyte (TIL) subpopulations in solid cancers is still debated. Here, we investigated the clinicopathological correlates and prognostic impact of TILs, particularly of γδ T cells, in 162 patients with triple-negative breast cancer (TNBC). A high γδ T cell density (>6.625 γδ T cells/mm2) was associated with younger age (p = 0.008), higher tumor histological grade (p = 0.002), adjuvant chemotherapy (p = 0.010), BRCA1 promoter methylation (p = 0.010), TIL density (p < 0.001), and PD-L1 (p < 0.001) and PD-1 expression (p = 0.040). In multivariate analyses, γδ T cell infiltration (cutoff = 6.625 γδ T cells/mm2) was an independent prognostic factor (5-year relapse-free survival: 63.3% vs. 89.8%, p = 0.027; 5-year overall survival: 73.8% vs. 89.9%, p = 0.031, for low vs. high infiltration). This prognostic impact varied according to the tumor PIK3CA mutational status. High γδ T cell infiltration was associated with better survival in patients with PIK3CA wild-type tumors, but the difference was not significant in the subgroup with PIK3CA-mutated tumors. Altogether, these data suggest that high γδ T cell infiltrate is correlated with immune infiltration and might represent a candidate prognostic tool in patients with TNBC.
Collapse
|
35
|
Invasive apocrine carcinoma of the breast: clinicopathologic features and comprehensive genomic profiling of 18 pure triple-negative apocrine carcinomas. Mod Pathol 2020; 33:2473-2482. [PMID: 32504034 DOI: 10.1038/s41379-020-0589-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
Pure invasive apocrine carcinoma is a rare type of primary breast cancer, constituting ~1% of all breast cancers. Since most pure invasive apocrine carcinomas are triple negative, the lack of targeted therapies for triple-negative breast cancer has fostered efforts to discover actionable molecular targets in these tumors. In this study, we analyzed the clinicopathologic characteristics and comprehensive genomic profiling of 18 patients with pure triple-negative apocrine carcinomas (TNACs) using a 324-gene panel assay (FoundationOne CDx). The median age of these patients was 55.5 years, and the postmenopausal status rate was 77.8%. In total, 83.3% of patients were diagnosed with histological grade II, and 16.7% were diagnosed with grade III. The majority of patients presented at an early tumor-node-metastasis (TNM) stage (I: 38.9%; II: 50.0%; and III: 11.1%). The mean Ki-67 index was 9.7%, and the percent of PD-L1 positivity was 11.7%. With a median follow-up period of 76.5 months, one patient died, and two experienced distant metastases. There were 61 clinically relevant genomic alterations among all 18 pure TNACs, and the mean tumor mutation burden (TMB) was 3 Mut/Mb. The top ranked altered genes were PIK3CA (72.2%), PTEN (33.3%) and TP53 (27.8%). There were four novel mutations found in PTEN and an actionable rearrangement involving FGFR2-TACC2 that has not been reported in breast cancer before. In total, 88.9%, 50%, 44.4%, and 16.7% of TNACs had at least one clinically relevant genomic alteration in genes involved in the PI3K/mTOR, cell cycle, RAS/RAF/MEK and growth factor receptor-related pathways, respectively. All patients had at least one clinically relevant genomic alteration, and 94.4% had at least one actionable alteration. To the best of our knowledge, this study is the largest genomic sequencing cohort of pure TNACs. Incorporation of comprehensive genomic profiling into TNACs might shed light on potential therapeutic opportunities for both targeted drugs and immune checkpoint inhibitors.
Collapse
|
36
|
Arciero CA, Diehl AH, Liu Y, Sun Q, Gillespie T, Li X, Subhedar P. Triple-negative apocrine carcinoma: A rare pathologic subtype with a better prognosis than other triple-negative breast cancers. J Surg Oncol 2020; 122:1232-1239. [PMID: 32668059 PMCID: PMC10637266 DOI: 10.1002/jso.26129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND METHODS Apocrine adenocarcinoma is a rare subtype of breast cancer. We sought to compare the characteristics and survival of patients diagnosed with triple-negative apocrine adenocarcinoma to those of patients diagnosed with triple-negative invasive ductal carcinoma. Utilizing data from the National Cancer Database between 2004 and 2013, 70 524 eligible female patients with triple-negative breast cancer were identified including 566 patients with apocrine adenocarcinomas and 69 958 patients with invasive ductal carcinoma. Descriptive statistics for each variable were reported. A comparison of each covariate between the study cohorts was assessed in univariate and multivariate analysis. Cox proportional models were used to calculate hazard ratios. Additionally, the propensity score matching method was implemented to reduce treatment selection bias. RESULTS Patients with triple-negative apocrine tumors were more likely to be older, Caucasian, and have smaller, moderately to well-differentiated tumors. Multivariable analysis noted a significantly improved survival for patients with triple-negative apocrine carcinoma (TNAC) vs triple-negative invasive ductal carcinoma (TNBC) (hazard ratio [HR] 0.65 [95% confidence interval [CI] [0.53-0.81], P = 0 < .001). Propensity score matching analysis confirmed a significant difference in overall survival for patients with TNAC in comparison to TNBC (HR 0.79 [95% CI [0.63-1.00], P = .05). DISCUSSION Triple-negative apocrine adenocarcinomas have a modestly improved long-term survival when compared with triple-negative invasive ductal cancers.
Collapse
Affiliation(s)
- Cletus A Arciero
- Department of Surgery, Division of Surgical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Glenn Family Breast Center, Winship Cancer Institute, Atlanta, Georgia
| | | | - Yuan Liu
- Department of Surgery, Division of Surgical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Qin Sun
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Theresa Gillespie
- Department of Surgery, Division of Surgical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Glenn Family Breast Center, Winship Cancer Institute, Atlanta, Georgia
| | - Xiaoxian Li
- Glenn Family Breast Center, Winship Cancer Institute, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Preeti Subhedar
- Department of Surgery, Division of Surgical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Glenn Family Breast Center, Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|
37
|
Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. World J Gastroenterol 2020; 26:6207-6223. [PMID: 33177794 PMCID: PMC7596644 DOI: 10.3748/wjg.v26.i40.6207] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identifying genetic mutations in cancer patients have been increasingly important because distinctive mutational patterns can be very informative to determine the optimal therapeutic strategy. Recent studies have shown that deep learning-based molecular cancer subtyping can be performed directly from the standard hematoxylin and eosin (H&E) sections in diverse tumors including colorectal cancers (CRCs). Since H&E-stained tissue slides are ubiquitously available, mutation prediction with the pathology images from cancers can be a time- and cost-effective complementary method for personalized treatment. AIM To predict the frequently occurring actionable mutations from the H&E-stained CRC whole-slide images (WSIs) with deep learning-based classifiers. METHODS A total of 629 CRC patients from The Cancer Genome Atlas (TCGA-COAD and TCGA-READ) and 142 CRC patients from Seoul St. Mary Hospital (SMH) were included. Based on the mutation frequency in TCGA and SMH datasets, we chose APC, KRAS, PIK3CA, SMAD4, and TP53 genes for the study. The classifiers were trained with 360 × 360 pixel patches of tissue images. The receiver operating characteristic (ROC) curves and area under the curves (AUCs) for all the classifiers were presented. RESULTS The AUCs for ROC curves ranged from 0.693 to 0.809 for the TCGA frozen WSIs and from 0.645 to 0.783 for the TCGA formalin-fixed paraffin-embedded WSIs. The prediction performance can be enhanced with the expansion of datasets. When the classifiers were trained with both TCGA and SMH data, the prediction performance was improved. CONCLUSION APC, KRAS, PIK3CA, SMAD4, and TP53 mutations can be predicted from H&E pathology images using deep learning-based classifiers, demonstrating the potential for deep learning-based mutation prediction in the CRC tissue slides.
Collapse
Affiliation(s)
- Hyun-Jong Jang
- Department of Physiology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - J Kang
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - In Hye Song
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
38
|
Hasan S. An Overview of Promising Biomarkers in Cancer Screening and Detection. Curr Cancer Drug Targets 2020; 20:831-852. [PMID: 32838718 DOI: 10.2174/1568009620666200824102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
Applications of biomarkers have been proved in oncology screening, diagnosis, predicting response to treatment as well as monitoring the progress of the disease. Considering the crucial role played by them during different disease stages, it is extremely important to evaluate, validate, and assess them to incorporate them into routine clinical care. In this review, the role of few most promising and successfully used biomarkers in cancer detection, i.e. PD-L1, E-Cadherin, TP53, Exosomes, cfDNA, EGFR, mTOR with regard to their structure, mode of action, and reports signifying their pathological significance, are addressed. Also, an overview of some successfully used biomarkers for cancer medicine has been presented. The study also summarizes biomarker-driven personalized cancer therapy i.e., approved targets and indications, as per the US FDA. The review also highlights the increasingly prominent role of biomarkers in drug development at all stages, with particular reference to clinical trials. The increasing utility of biomarkers in clinical trials is clearly evident from the trend shown, wherein ~55 percent of all oncology clinical trials in 2019 were seen to involve biomarkers, as opposed to ~ 15 percent in 2001, which clearly proves the essence and applicability of biomarkers for synergizing clinical information with tumor progression. Still, there are significant challenges in the implementation of these possibilities with strong evidence in cost-- effective manner.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow, India
| |
Collapse
|
39
|
Li S. LncRNA DLG1-AS1 Promotes Cancer Cell Proliferation in Triple Negative Breast Cancer by Downregulating miR-203. J Breast Cancer 2020; 23:343-354. [PMID: 32908786 PMCID: PMC7462810 DOI: 10.4048/jbc.2020.23.e46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The oncogenic role of long non-coding RNA (lncRNA) DLG1-AS1 has been studied in cervical cancer, but its involvement in triple negative breast cancer (TNBC) is unknown. Here, we aimed to investigate the possible role and underlying mechanism of DLG1-AS1 in TNBC. Methods The differential expression of DLG1-AS1 and miR-203 in TNBC tissues and cells was determined using quantitative polymerase chain reaction assays. Correlations between DLG1-AS1 and miR-203 expression across TNBC tissues and non-tumor tissues were analyzed using Spearman rank correlation test. The effects of DLG1-AS1 and miR-203 overexpression, and DLG1-AS1 knockdown on the metastasis of BT-549 and MDA-MB-157 cells were evaluated using a transwell assay. The effects of DLG1-AS1 and miR-203 overexpression on the proliferation of BT-549 and MDA-MB-157 cells were evaluated using Cell Counting Kit-8 and cell colony formation assays. Results We found that DLG1-AS1 was upregulated whereas miR-203 was downregulated in tumor tissues of patients and in TNBC cells compared to the adjacent healthy tissues of patients with TNBC and in normal breast MCF-10A cells, respectively. Further, DLG1-AS1 and miR-203 were inversely correlated in tumor tissues. DLG1-AS1 overexpression mediated downregulation of miR-203, whereas miR-203 overexpression had no significant effects on DLG1-AS1 expression. DLG1-AS1 expression was increased, whereas miR-203 levels were decreased with advancing clinical stages. TNBC cell migration was promoted by DLG1-AS1 overexpression and inhibited by miR-203 overexpression or DLG1-AS1 knockdown. Moreover, TNBC cell proliferation was promoted by DLG1-AS1 overexpression and inhibited by miR-203 overexpression. Further, miR-203 overexpression reduced the effects of DLG1-AS1 overexpression. Conclusion These results indicate that DLG1-AS1 may promote cancer cell proliferation in TNBC by downregulating the tumor suppressor miR-203.
Collapse
Affiliation(s)
- Shuyan Li
- Department of Breast Surgery, Yantai Mountain Hospital, Yantai, P.R. China
| |
Collapse
|
40
|
Nassar A, Abouelhoda M, Mansour O, Loutfy SA, Hafez MM, Gomaa M, Bahnassy A, El-Din Youssef AS, Lotfy MM, Ismail H, Ahmed OS, Abou-Bakr AAE, Zekri ARN. Targeted next generation sequencing identifies somatic mutations in a cohort of Egyptian breast cancer patients. J Adv Res 2020; 24:149-157. [PMID: 32322420 PMCID: PMC7167517 DOI: 10.1016/j.jare.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) incidence is progressively increasing in Egypt. However, there is insufficient knowledge of the acquired somatic mutations in Egyptian BC patients which limit our understanding of its progression. To the best of our knowledge, this is the first Egyptian cohort to sequence a multiple-gene panel of cancer related genes on BC patients. Four hundred and nine cancer related genes were sequenced in 46 fresh breast tumors of Egyptian BC patients to identify somatic mutations and their frequencies. TP53 and PIK3CA were the most top two frequently mutated genes. We detected 15 different somatic mutations in TP53 and 8 different ones in PIK3CA, each in 27 samples (58.7%). According to Clinvar database; we found 19 pathogenic somatic mutations: 7 in Tp53, 5 in PIK3CA, and single variants of VHL, STK11, AKT1, KRAS, IDH2, PTEN and ERBB2. We also identified 5 variants with uncertain significance (4 in TP53 and 1 in CEBPA) and 4 variants with conflicting interpretations of pathogenicity (2 in TP53 and 1 in each of APC and JAK3). Moreover, one drug response variant (p.P72R) in TP53 was detected in 8 samples. Furthermore, four novel variants were identified in JAK2, MTOR, KIT and EPHB. Further analysis, by Ingenuity Variant Analysis software (IVA), showed that PI3K/AKT signaling is altered in greater than 50% of Egyptian BC patients which implicates PI3K/AKT signaling as a therapeutic target. In this cohort, we shed the light on the most frequently detected somatic mutations and the most altered pathway in Egyptian BC patients.
Collapse
Affiliation(s)
- Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Osman Mansour
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samah A. Loutfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed M. Hafez
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - M. Gomaa
- Radiology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abeer Bahnassy
- Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hoda Ismail
- Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Abdel-Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
41
|
Jouali F, El Ansari FZ, Marchoudi N, Barakat A, Zmaimita H, Samlali H, Fekkak J. EGFR, BRCA1, BRCA2 and TP53 genetic profile in Moroccan triple negative breast cancer cases. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2020; 11:16-25. [PMID: 32714499 PMCID: PMC7373717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Triple negative breast cancer account for 10% to 20% of all newly diagnosed breast cancer cases, this subtype is well known for its lack of estrogen, progesterone and HER2 expression unlike the other subtypes of breast cancer that usually express at least one of the three. The absence of a specific biomarker for TNBC has made his treatment very challenging and his death rates very high compared to the other subtypes. Therefore, in morocco, many studies have been conducted in the hope of finding a specific biomarker for TNBC, but none of these studies has analyzed the EGFR protein expression and its gene molecular profile and correlated the EGFR analyses results with the genetic profile of other genes. In this study, we analyzed EGFR protein expression and the molecular profile of EGFR, BRCA1, BRCA2 and TP53 genes in 47 TNBC patients. We conducted a retrospective study of 47 Moroccan patients diagnosed with triple negative breast cancer between early 2013 and 2016. In this study, we have analyzed the EGFR. Protein expression, for all the 47 TNBC patients using pharmDx Kit. Then we used the Ion Personal Genome Machine (PGM) and Ion Ampliseq BRCA1/2 panel and hotspot Cancer panel to analyze the molecular profile of BRCA1/2 genes and the hotspot regions of TP53 and EGFR genes. The statistical analysis was performed using IBM SPSS Statistics ver. From the 47 analyzed patients using EGFR pharmDx Kit only 16 (34%) had EGFR overexpression while 31 (66%), patients were normal, moreover, From the 47 TNBC patients, only 39 underwent Mutational analysis of EGFR, BRCA1/2, and TP53 genes. One patient harbored a BRCA1 mutation c.798_799delTT (p.Ser267Lys). While for TP53 gene, 16 patients out of 39 (41%) presented hotspot mutations, seven of them harbored c.743G>A (p.Arg248Gln) mutation, six patients harbored exon 6 mutations from which five harbored the mutation c.659A>G (p.Tyr220Cys) and one the mutation c.817C>T (p.Arg273Cys), and finally, three patients harbored the mutation c.524G>A (p.Arg175His). Regarding BRCA2 and EGFR sequencing results, no mutations or other genetic alterations were detected in 39 patients that were successfully sequenced. Statistical analysis revealed the absence of any correlations.
Collapse
Affiliation(s)
- Farah Jouali
- Anoual Laboratory of Radio-Immuno AnalysisCasablanca 20360, Morocco
| | - Fatima Zahra El Ansari
- Anoual Laboratory of Radio-Immuno AnalysisCasablanca 20360, Morocco
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek EssaâdiTangier 90000, Morocco
| | - Nabila Marchoudi
- Anoual Laboratory of Radio-Immuno AnalysisCasablanca 20360, Morocco
| | - Amina Barakat
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek EssaâdiTangier 90000, Morocco
| | | | | | - Jamal Fekkak
- Anoual Laboratory of Radio-Immuno AnalysisCasablanca 20360, Morocco
| |
Collapse
|
42
|
Freitag CE, Mei P, Wei L, Parwani AV, Li Z. Genetic alterations and their association with clinicopathologic characteristics in advanced breast carcinomas: focusing on clinically actionable genetic alterations. Hum Pathol 2020; 102:94-103. [PMID: 32445652 DOI: 10.1016/j.humpath.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Breast carcinomas (BCs) are genetically heterogeneous and associated with numerous mutations which can be used to predict outcomes and initiate targeted therapies. We investigated clinicopathologic characteristics associated with gene mutations detected using the FoundationOne CDx assay in a cohort of 223 clinically advanced BCs (66 locally recurrent and 157 metastatic) from our institution. One hundred fifty unique mutations were identified (total 1008) in the cohort, with the most prevalent (>10%) including TP53 (53.8%), PIK3CA (35%), MYC (22%), CCND1 (19.7%), FGF19 (19.7%), FGF4 (16.6%), FGF3 (16.1%), ZNF703 (14.8%), ESR1 (13.9%), FGFR1 (13.5%), PTEN (12.1%), and CDH1 (10.8%). ERBB2 genetic alteration was most common in human epidermal growth factor receptor 2 (HER2)-positive BCs, and GATA3 and ESR1 mutations were only identified in hormone receptor-positive BC. Mutations enriched in triple-negative BCs (TNBCs) included TP53, PTEN, RB1, and CDKN2A/B. CDH1 mutation was predominantly found in lobular carcinomas, and PIK3CA mutation was also enriched. Mutations enriched in metaplastic carcinomas with heterologous mesenchymal differentiation included TP53, PTEN, MCL1, CDKN2A/B, and NOTCH2. An increase in mutations of CCND1, FGF19, FGF4, FGF3, ESR1, and EMSY was identified in metastatic BCs compared with locally recurrent BCs. Overall, PIK3CA was the most frequent clinically actionable genetic alteration (35%), followed by MYC (22%), CCND1 (19.7%), and FGF3/FGF4/FGFR1 (16%). In conclusion, our study provides genetic insight into the biology of advanced BCs and summarizes their most frequent clinically actionable genetic alterations, generating useful genomic information for potential improvement of patient management.
Collapse
Affiliation(s)
- Cody Eric Freitag
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ping Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lai Wei
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
43
|
Hassan MA, Al-Sakkaf K, Shait Mohammed MR, Dallol A, Al-Maghrabi J, Aldahlawi A, Ashoor S, Maamra M, Ragoussis J, Wu W, Khan MI, Al-Malki AL, Choudhry H. Integration of Transcriptome and Metabolome Provides Unique Insights to Pathways Associated With Obese Breast Cancer Patients. Front Oncol 2020; 10:804. [PMID: 32509585 PMCID: PMC7248369 DOI: 10.3389/fonc.2020.00804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Information regarding transcriptome and metabolome has significantly contributed to identifying potential therapeutic targets for the management of a variety of cancers. Obesity has profound effects on both cancer cell transcriptome and metabolome that can affect the outcome of cancer therapy. The information regarding the potential effects of obesity on breast cancer (BC) transcriptome, metabolome, and its integration to identify novel pathways related to disease progression are still elusive. We assessed the whole blood transcriptome and serum metabolome, as circulating metabolites, of obese BC patients compared them with non-obese BC patients. In these patients' samples, 186 significant differentially expressed genes (DEGs) were identified, comprising 156 upregulated and 30 downregulated. The expressions of these gene were confirmed by qRT-PCR. Furthermore, 96 deregulated metabolites were identified as untargeted metabolomics in the same group of patients. These detected DEGs and deregulated metabolites enriched in many cellular pathways. Further investigation, by integration analysis between transcriptomics and metabolomics data at the pathway levels, revealed seven unique enriched pathways in obese BC patients when compared with non-obese BC patients, which may provide resistance for BC cells to dodge the circulating immune cells in the blood. In conclusion, this study provides information on the unique pathways altered at transcriptome and metabolome levels in obese BC patients that could provide an important tool for researchers and contribute further to knowledge on the molecular interaction between obesity and BC. Further studies are needed to confirm this and to elucidate the exact underlying mechanism for the effects of obesity on the BC initiation or/and progression.
Collapse
Affiliation(s)
- Mohammed A Hassan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | - Kaltoom Al-Sakkaf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ashraf Dallol
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan Ashoor
- Department of Radiology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mabrouka Maamra
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression. Oncogene 2020; 39:4118-4131. [PMID: 32235890 PMCID: PMC7220851 DOI: 10.1038/s41388-020-1279-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The genetically heterogeneous triple-negative breast cancer (TNBC) continues to be an intractable disease, due to lack of effective targeted therapies. Gene amplification is a major event in tumorigenesis. Genes with amplification-dependent expression are being explored as therapeutic targets for cancer treatment. In this study, we have applied Analytical Multi-scale Identification of Recurring Events analysis and transcript quantification in the TNBC genome across 222 TNBC tumors and identified 138 candidate genes with positive correlation in copy number gain (CNG) and gene expression. siRNA-based loss-of-function screen of the candidate genes has validated EGFR, MYC, ASAP1, IRF2BP2, and CCT5 genes as drivers promoting proliferation in different TNBC cells. MYC, ASAP1, IRF2BP2, and CCT5 display frequent CNG and concurrent expression over 2173 breast cancer tumors (cBioPortal dataset). More frequently are MYC and ASAP1 amplified in TNBC tumors (>30%, n = 320). In particular, high expression of ASAP1, the ADP-ribosylation factor GTPase-activating protein, is significantly related to poor metastatic relapse-free survival of TNBC patients (n = 257, bc-GenExMiner). Furthermore, we have revealed that silencing of ASAP1 modulates numerous cytokine and apoptosis signaling components, such as IL1B, TRAF1, AIFM2, and MAP3K11 that are clinically relevant to survival outcomes of TNBC patients. ASAP1 has been reported to promote invasion and metastasis in various cancer cells. Our findings that ASAP1 is an amplification-dependent TNBC driver gene promoting TNBC cell proliferation, functioning upstream apoptosis components, and correlating to clinical outcomes of TNBC patients, support ASAP1 as a potential actionable target for TNBC treatment.
Collapse
|
45
|
Mutation of the PTCH1 gene predicts recurrence of breast cancer. Sci Rep 2019; 9:16359. [PMID: 31704974 PMCID: PMC6841698 DOI: 10.1038/s41598-019-52617-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer in women, and some patients develop recurrence after standard therapy. Effective predictors are urgently needed to detect recurrence earlier. The activation of Hedgehog signaling in breast cancer is correlated with poor prognosis. PTCH1 is an essential membrane receptor of Hedgehog. However, there are few reports about mutations in Hedgehog genes in breast cancer. We conducted a comprehensive study via an experimental and bioinformatics approach to detect mutated genes in breast cancer. Twenty-two breast cancer patients who developed recurrence within 24 months postoperatively were enrolled with 22 control cancer patients. Targeted deep sequencing was performed to assess the mutations among individuals with breast cancer using a panel of 143 cancer-associated genes. Bioinformatics and public databases were used to predict the protein functions of the mutated genes. Mutations were identified in 44 breast cancer specimens, and the most frequently mutated genes were BRCA2, APC, ATM, BRCA1, NF1, TET2, TSC1, TSC2, NOTCH1, MSH2, PTCH1, TP53, PIK3CA, FBXW7, and RB1. Mutation of these genes was correlated with protein phosphorylation and autophosphorylation, such as peptidyl-tyrosine and protein kinase C phosphorylation. Among these highly mutated genes, mutations of PTCH1 were associated with poor prognosis and increased recurrence of breast cancer, especially mutations in exons 22 and 23. The public sequencing data from the COSMIC database were exploited to predict the functions of the mutations. Our findings suggest that mutation of PTCH1 is correlated with early recurrence of breast cancer patients and will become a powerful predictor for recurrence of breast cancer.
Collapse
|
46
|
Wang J, Xi C, Yang X, Lu X, Yu K, Zhang Y, Gao R. LncRNA WT1-AS Inhibits Triple-Negative Breast Cancer Cell Migration and Invasion by Downregulating Transforming Growth Factor β1. Cancer Biother Radiopharm 2019; 34:671-675. [PMID: 31621381 DOI: 10.1089/cbr.2019.2925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Long noncoding RNA WT1-AS has been demonstrated as a potential tumor suppressor in gastric cancer. However, the functions of WT1-AS in other types of cancer remain unclear. Our study was therefore performed to explore the role of WT1-AS in triple-negative breast cancer (TNBC). Materials and Methods: Tissue specimens were obtained from 62 TNBC patients included in this study. A TNBC cell line BT-549 was used as the cell model of TNBC. Gene expression was detected by qPCR and Western blot. Overexpression experiments were used to analyze gene interactions. Transwell assays were used to explore the effects of transfections on cell invasion and migration. Results: We found that WT1-AS was downregulated in TNBC tissues than in nontumor tissues and decreased with increase in clinical stages. Transforming growth factor β1 (TGF-β1) was upregulated in TNBC tissues and inversely correlated with WT1-AS. TGF-β1 overexpression did not significantly affect WT1-AS in BT-549 cells, but WT1-AS negatively regulated the expression of TGF-β1. WT1-AS overexpression caused inhibited migration and invasion of TNBC cells. TGF-β1 overexpression showed opposite functions and reduced the effects of WT1-AS overexpression. Conclusion: WT1-AS may downregulate TGF-β to inhibit the migration and invasion of TNBC cells.
Collapse
Affiliation(s)
- Jiangfen Wang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan City, P.R. China
| | - Chunfang Xi
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan City, P.R. China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan City, P.R. China
| | - Xiaoting Lu
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan City, P.R. China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai City, P.R. China
| | - Yafen Zhang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan City, P.R. China
| | - Runfang Gao
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan City, P.R. China
| |
Collapse
|
47
|
Beca F, Lee SSK, Pareja F, Da Cruz Paula A, Selenica P, Ferrando L, Gularte-Mérida R, Wen HY, Zhang H, Guerini-Rocco E, Rakha EA, Weigelt B, Reis-Filho JS. Whole-exome sequencing and RNA sequencing analyses of acinic cell carcinomas of the breast. Histopathology 2019; 75:931-937. [PMID: 31361912 DOI: 10.1111/his.13962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022]
Abstract
AIMS Acinic cell carcinoma (ACC) of the breast is a rare histological form of triple-negative breast cancer (TNBC). Despite its unique histology, targeted sequencing analysis has failed to identify recurrent genetic alterations other than those found in common forms of TNBC. Here we subjected three breast ACCs to whole-exome and RNA sequencing to determine whether they would harbour a pathognomonic genetic alteration. METHODS AND RESULTS DNA and RNA samples from three breast ACCs were subjected to whole-exome sequencing and RNA-sequencing, respectively. Somatic mutations, copy number alterations, mutational signatures and fusion genes were determined with state-of-the-art bioinformatics methods. Our analyses revealed TP53 hotspot mutations associated with loss of heterozygosity of the wild-type allele in two cases. Mutations affecting homologous recombination DNA repair-related genes were found in two cases, and an MLH1 pathogenic germline variant was found in one case. In addition, copy number analysis revealed the presence of a somatic BRCA1 homozygous deletion and focal amplification of 12q14.3-12q21.1, encompassing MDM2, HMGA2, FRS2, and PTPRB. No oncogenic in-frame fusion transcript was identified in the three breast ACCs analysed. CONCLUSIONS No pathognomonic genetic alterations were detected in the breast ACCs analysed. These tumours have somatic genetic alterations similar to those of common forms of TNBC, and may show homologous recombination deficiency or microsatellite instability. These findings provide further insights into why breast ACCs, which are usually clinically indolent, may evolve into or in parallel with high-grade TNBC.
Collapse
Affiliation(s)
- Francisco Beca
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Simon S K Lee
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Ferrando
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Rodrigo Gularte-Mérida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elena Guerini-Rocco
- Unit of Histopathology and Molecular Diagnostics, Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Emad A Rakha
- Department of Pathology, University of Nottingham, Nottingham, UK
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
48
|
Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells 2019; 8:cells8040375. [PMID: 31027259 PMCID: PMC6523618 DOI: 10.3390/cells8040375] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials. The contribution of the Hh pathway in BC tumorigenesis and progression, its prognostic role, and its value as a therapeutic target vary according to the molecular, clinical, and histopathological characteristics of the BC patients. The evidence presented here highlights the relevance of the Hh signaling in BC, and suggest that this pathway is key for BC progression and metastasis.
Collapse
|
49
|
Xu J, Liu Y, Li Y, Wang H, Stewart S, Van der Jeught K, Agarwal P, Zhang Y, Liu S, Zhao G, Wan J, Lu X, He X. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. NATURE NANOTECHNOLOGY 2019; 14:388-397. [PMID: 30804480 PMCID: PMC6449187 DOI: 10.1038/s41565-019-0381-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/17/2019] [Indexed: 05/06/2023]
Abstract
TP53 is the most frequently mutated or deleted gene in triple negative breast cancer (TNBC). Both the loss of TP53 and the lack of targeted therapy are significantly correlated with poor clinical outcomes, making TNBC the only type of breast cancer that has no approved targeted therapies. Through in silico analysis, we identified POLR2A in the TP53-neighbouring region as a collateral vulnerability target in TNBC tumours, suggesting that its inhibition via small interfering RNA (siRNA) may be an amenable approach for TNBC targeted treatment. To enhance bioavailability and improve endo/lysosomal escape of siRNA, we designed pH-activated nanoparticles for augmented cytosolic delivery of POLR2A siRNA (siPol2). Suppression of POLR2A expression with the siPol2-laden nanoparticles leads to enhanced growth reduction of tumours characterized by hemizygous POLR2A loss. These results demonstrate the potential of the pH-responsive nanoparticle and the precise POLR2A targeted therapy in TNBC harbouring the common TP53 genomic alteration.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Comprehensive Cancer Centre, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yunhua Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hai Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Comprehensive Cancer Centre, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yuntian Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Electronics Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gang Zhao
- Department of Electronics Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin and Bren Simon Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Comprehensive Cancer Centre, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Centre, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
50
|
Bandyopadhyay S, Bluth MH, Ali-Fehmi R. Breast Carcinoma: Updates in Molecular Profiling 2018. Clin Lab Med 2019; 38:401-420. [PMID: 29776638 DOI: 10.1016/j.cll.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most significant contribution of molecular subtyping of breast carcinomas has been the identification of estrogen-positive and estrogen-negative tumor subtypes. Knowledge of genetic alterations in these tumors will help clinicians identify novel therapeutic targets. Understanding the progression pathways involved in the transition of in situ carcinoma to invasive carcinoma might lead to efficient risk stratification in these patients. The Cancer Genome Analysis Network has collected genomic and epigenomic data to provide comprehensive information regarding carcinogenesis and pathway interactions. Such information improves understanding of the disease process and also provides more accurate information toward identifying targetable mutations for treatment.
Collapse
Affiliation(s)
- Sudeshna Bandyopadhyay
- Department of Pathology, Detroit Medical Center, Harper University Hospital 3990 John R, Detroit, MI 48201, USA.
| | - Martin H Bluth
- Department of Pathology, Wayne State University, School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; Pathology Laboratories, Michigan Surgical Hospital, 21230 Dequindre Road, Warren, MI 48091, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Detroit Medical Center, Harper University Hospital 3990 John R, Detroit, MI 48201, USA
| |
Collapse
|