1
|
Mohan NH, Pathak P, Buragohain L, Deka J, Bharati J, Das AK, Thomas R, Singh R, Sarma DK, Gupta VK, Das BC. Comparative muscle transcriptome of Mali and Hampshire breeds of pigs: a preliminary study. Anim Biotechnol 2023; 34:3946-3961. [PMID: 37587839 DOI: 10.1080/10495398.2023.2244988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Muscle development is an important priority of pig breeding programs. There is a considerable variation in muscularity between the breeds, but the regulation mechanisms of genes underlying myogenesis are still unclear. Transcriptome data from two breeds of pigs with divergent muscularity (Mali and Hampshire) were integrated with histology, immunofluorescence and meat yield to identify differences in myogenesis during the early growth phase. The muscle transcriptomics analysis revealed 17,721 common, 1413 and 1115 unique transcripts to Hampshire and Mali, respectively. This study identified 908 differentially expressed genes (p < 0.05; log2FC > ±1) in the muscle samples, of which 550 were upregulated and 358 were downregulated in Hampshire pigs, indicating differences in physiological process related to muscle function and development. Expression of genes related to myoblast fusion (MYMK), skeletal muscle satellite cell proliferation (ANGPT1, CDON) and growth factors (HGF, IGF1, IGF2) were higher in Hampshire than Mali, even though transcript levels of several other myogenesis-related genes (MYF6, MYOG, MSTN) were similar. The number of fibers per fascicle and the expression of myogenic marker proteins (MYOD1, MYOG and PAX7) were more in Hampshire as compared to Mali breed of pig, supporting results of transcriptome studies. The results suggest that differences in muscularity between breeds could be related to the regulation of myoblast fusion and myogenic activities. The present study will help to identify genes that could be explored for their utility in the selection of animals with different muscularities.
Collapse
Affiliation(s)
| | | | | | - Juri Deka
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Anil Kumar Das
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | | | - Rajendra Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | | | | |
Collapse
|
2
|
Tyler PM, Bucklin ML, Zhao M, Maher TJ, Rice AJ, Ji W, Warner N, Pan J, Morotti R, McCarthy P, Griffiths A, van Rossum AMC, Hollink IHIM, Dalm VASH, Catanzaro J, Lakhani SA, Muise AM, Lucas CL. Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nat Immunol 2021; 22:1118-1126. [PMID: 34326534 PMCID: PMC8985851 DOI: 10.1038/s41590-021-00984-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Paul M Tyler
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, USA
| | - Molly L Bucklin
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, USA
| | - Mengting Zhao
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy J Maher
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Rice
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Raffaella Morotti
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Paul McCarthy
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Griffiths
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Annemarie M C van Rossum
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Iris H I M Hollink
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jason Catanzaro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Carrie L Lucas
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, USA.
- Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Prosniak M, Kenyon LC, Hooper DC. Glioblastoma Contains Topologically Distinct Proliferative and Metabolically Defined Subpopulations of Nestin- and Glut1-Expressing Cells. J Neuropathol Exp Neurol 2021; 80:674-684. [PMID: 34297838 DOI: 10.1093/jnen/nlab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The difficulty in treatment of glioblastoma is a consequence of its natural infiltrative growth and the existence of a population of therapy-resistant glioma cells that contribute to growth and recurrence. To identify cells more likely to have these properties, we examined the expression in tumor specimens of several protein markers important for glioma progression including the intermediate filament protein, Nestin (NES), a glucose transporter (Glut1/SLC2A1), the glial lineage marker, glial fibrillary acidic protein, and the proliferative indicator, Ki-67. We also examined the expression of von Willebrand factor, a marker for endothelial cells as well as the macrophage/myeloid markers CD163 and CD15. Using a multicolor immunofluorescence and hematoxylin and eosin staining approach with archival formalin-fixed, paraffin embedded tissue from primary, recurrent, and autopsy IDH1 wildtype specimens combined with high-resolution tissue image analysis, we have identified highly proliferative NES(+)/Glut1(-) cells that are preferentially perivascular. In contrast, Glut1(+)/NES(-) cells are distant from blood vessels, show low proliferation, and are preferentially located at the borders of pseudopalisading necrosis. We hypothesize that Glut1(+)/NES(-) cells would be naturally resistant to conventional chemotherapy and radiation due to their low proliferative capacity and may act as a reservoir for tumor recurrence.
Collapse
Affiliation(s)
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
4
|
Jeucken KCM, Koning JJ, van Hamburg JP, Mebius RE, Tas SW. A Straightforward Method for 3D Visualization of B Cell Clusters and High Endothelial Venules in Lymph Nodes Highlights Differential Roles of TNFRI and -II. Front Immunol 2021; 12:699336. [PMID: 34234786 PMCID: PMC8255985 DOI: 10.3389/fimmu.2021.699336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Whole mount tissue immunolabeling and imaging of complete organs has tremendous benefits in characterizing organ morphology. Here, we present a straightforward method for immunostaining, clearing and imaging of whole murine peripheral lymph nodes (PLNs) for detailed analysis of their architecture and discuss all procedures in detail in a step-by-step approach. Given the importance of tumor necrosis factor receptor (TNFR) signaling in development of PLNs we used TNFRI-/- and TNFRII-/- mice models as proof-of-concept for this technique by visualizing and analyzing structural changes in PLN B cell clusters and high endothelial venules (HEVs). Samples were subjected to de- and rehydration with methanol, labeled with antibodies for B cells, T cells and high endothelial venules (HEVs) and optically cleared using benzyl alcohol-benzyl benzoate. Imaging was done using LaVision light sheet microscope and analysis with Imaris software. Using these techniques, we confirmed previous findings that TNFRI signaling is essential for formation of individual B cell clusters. In addition, Our data suggest that TNFRII signaling is also to some extent involved in this process as TNFRII-/- PLNs had a B cell cluster morphology reminiscent of TNFRI-/- PLNs. Moreover, visualization and objective quantification of the complete PLN high endothelial vasculature unveiled reduced volume, length and branching points of HEVs in TNFRI-/- PLNs, revealing an earlier unrecognized contribution of TNFRI signaling in HEV morphology. Together, these results underline the potential of whole mount tissue staining and advanced imaging techniques to unravel even subtle changes in lymphoid tissue architecture.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
6
|
Sesorova IS, Dimov ID, Kashin AD, Sesorov VV, Karelina NR, Zdorikova MA, Beznoussenko GV, Mirоnоv AA. Cellular and sub-cellular mechanisms of lipid transport from gut to lymph. Tissue Cell 2021; 72:101529. [PMID: 33915359 DOI: 10.1016/j.tice.2021.101529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Although the general structure of the barrier between the gut and the blood is well known, many details are still missing. Here, we analyse the literature and our own data related to lipid transcytosis through adult mammalian enterocytes, and their absorption into lymph at the tissue level of the intestine. After starvation, the Golgi complex (GC) of enterocytes is in a resting state. The addition of lipids in the form of chyme leads to the initial appearance of pre-chylomicrons (ChMs) in the tubules of the smooth endoplasmic reticulum, which are attached at the basolateral plasma membrane, immediately below the 'belt' of the adhesive junctions. Then pre-ChMs move into the cisternae of the rough endoplasmic reticulum and then into the expansion of the perforated Golgi cisternae. Next, they pass through the GC, and are concentrated in the distensions of the perforated cisternae on the trans-side of the GC. The arrival of pre-ChMs at the GC leads to the transition of the GC to a state of active transport, with formation of intercisternal connections, attachment of cis-most and trans-most perforated cisternae to the medial Golgi cisternae, and disappearance of COPI vesicles. Post-Golgi carriers then deliver ChMs to the basolateral plasma membrane, fuse with it, and secret ChMs into the intercellular space between enterocytes at the level of their interdigitating contacts. Finally, ChMs are squeezed out into the interstitium through pores in the basal membrane, most likely due to the function of the actin-myosin 'cuff' around the interdigitating contacts. These pores appear to be formed by protrusions of the dendritic cells and the enterocytes per se. ChMs are absorbed from the interstitium into the lymphatic capillaries through the special oblique contacts between endothelial cells, which function as valves through the contraction-relaxation of bundles of smooth muscle cells in the interstitium. Lipid overloading of enterocytes results in accumulation of cytoplasmic lipid droplets, an increase in diameter of ChMs, inhibition of intra-Golgi transport, and fusion of ChMs in the interstitium. Here, we summarise and analyse recent findings, and discuss their functional implications.
Collapse
Affiliation(s)
- Irina S Sesorova
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | - Ivan D Dimov
- Department of Anatomy, Ivanovo State Medical Academy, Ivanovo, Russia
| | - Alexandre D Kashin
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | - Vitaly V Sesorov
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | | | - Maria A Zdorikova
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | | | | |
Collapse
|
7
|
Wang L, Aschenbrenner D, Zeng Z, Cao X, Mayr D, Mehta M, Capitani M, Warner N, Pan J, Wang L, Li Q, Zuo T, Cohen-Kedar S, Lu J, Ardy RC, Mulder DJ, Dissanayake D, Peng K, Huang Z, Li X, Wang Y, Wang X, Li S, Bullers S, Gammage AN, Warnatz K, Schiefer AI, Krivan G, Goda V, Kahr WHA, Lemaire M, Lu CY, Siddiqui I, Surette MG, Kotlarz D, Engelhardt KR, Griffin HR, Rottapel R, Decaluwe H, Laxer RM, Proietti M, Hambleton S, Elcombe S, Guo CH, Grimbacher B, Dotan I, Ng SC, Freeman SA, Snapper SB, Klein C, Boztug K, Huang Y, Li D, Uhlig HH, Muise AM. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice. Nat Genet 2021; 53:500-510. [PMID: 33782605 PMCID: PMC8245161 DOI: 10.1038/s41588-021-00803-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Spleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function. A knock-in (SYK-Ser544Tyr) mouse model of a patient variant (p.Ser550Tyr) recapitulated aspects of the human disease that could be partially treated with a SYK inhibitor or transplantation of bone marrow from wild-type mice. Our studies demonstrate that SYK gain-of-function variants result in a potentially treatable form of inflammatory disease.
Collapse
Affiliation(s)
- Lin Wang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Zhiyang Zeng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiya Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Meera Mehta
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Melania Capitani
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Li
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Tao Zuo
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Sarit Cohen-Kedar
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Jiawei Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Daniel J Mulder
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dilan Dissanayake
- Division of Rheumatology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kaiyue Peng
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Zhiheng Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoqin Li
- Department of Gastroenterology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yuesheng Wang
- Department of Gastroenterology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaobing Wang
- Neonate Department, Sanmenxia Central Hospital, Sanmenxia, China
| | - Shuchao Li
- Department of Pediatrics, Lushi County Renmin Hospital, Sanmenxia, China
| | - Samuel Bullers
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anís N Gammage
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Ana-Iris Schiefer
- Department of Clinical Pathology, Medical University Vienna, Vienna, Austria
| | - Gergely Krivan
- National Institute of Hematology and Infectious Diseases, Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest, Budapest, Hungary
| | - Vera Goda
- National Institute of Hematology and Infectious Diseases, Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest, Budapest, Hungary
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mathieu Lemaire
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Nephrology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chien-Yi Lu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Division of Pathology, Department of Pediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Surette
- Department of Medicine, Farncombe Family Digestion Health Institute, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen R Griffin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hélène Decaluwe
- Division of Immunology and Rheumatology, Department of Pediatrics, Sainte-Justine University Hospital, Montreal, Quebec, Canada
- Cytokine and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Ronald M Laxer
- Division of Rheumatology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sophie Hambleton
- Faculty of Medical Sciences, 100KGP England, Newcastle University, Newcastle upon Tyne, UK
| | - Suzanne Elcombe
- Department of Immunology, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Cong-Hui Guo
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Siew C Ng
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Spencer A Freeman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children's Hospital of Fudan University, Shanghai, China.
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Bosa L, Batura V, Colavito D, Fiedler K, Gaio P, Guo C, Li Q, Marzollo A, Mescoli C, Nambu R, Pan J, Perilongo G, Warner N, Zhang S, Kotlarz D, Klein C, Snapper SB, Walters TD, Leon A, Griffiths AM, Cananzi M, Muise AM. Novel CARMIL2 loss-of-function variants are associated with pediatric inflammatory bowel disease. Sci Rep 2021; 11:5945. [PMID: 33723309 PMCID: PMC7960730 DOI: 10.1038/s41598-021-85399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
CARMIL2 is required for CD28-mediated co-stimulation of NF-κB signaling in T cells and its deficiency has been associated with primary immunodeficiency and, recently, very early onset inflammatory bowel disease (IBD). Here we describe the identification of novel biallelic CARMIL2 variants in three patients presenting with pediatric-onset IBD and in one with autoimmune polyendocrine syndrome (APS). None manifested overt clinical signs of immunodeficiency before their diagnosis. The first patient presented with very early onset IBD. His brother was found homozygous for the same CARMIL2 null variant and diagnosed with APS. Two other IBD patients were found homozygous for a nonsense and a missense CARMIL2 variant, respectively, and they both experienced a complicated postoperative course marked by severe infections. Immunostaining of bowel biopsies showed reduced CARMIL2 expression in all the three patients with IBD. Western blot and immunofluorescence of transfected cells revealed an altered expression pattern of the missense variant. Our work expands the genotypic and phenotypic spectrum of CARMIL2 deficiency, which can present with either IBD or APS, aside from classic immunodeficiency manifestations. CARMIL2 should be included in the diagnostic work-up of patients with suspected monogenic IBD.
Collapse
Affiliation(s)
- Luca Bosa
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Vritika Batura
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Davide Colavito
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paola Gaio
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Conghui Guo
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Qi Li
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, 35128, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, 35127, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, Padova University Hospital, 35128, Padua, Italy
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama, Saitama, 330-8777, Japan
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Shiqi Zhang
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Mara Cananzi
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.
| |
Collapse
|
9
|
The E3 ubiquitin ligase UBR5 interacts with TTC7A and may be associated with very early onset inflammatory bowel disease. Sci Rep 2020; 10:18648. [PMID: 33122718 PMCID: PMC7596066 DOI: 10.1038/s41598-020-73482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Very early onset inflammatory bowel disease (VEOIBD) denotes children with onset of IBD before six years of age. A number of monogenic disorders are associated with VEOIBD including tetratricopeptide repeat domain 7A (TTC7A) deficiency. TTC7A-deficiency is characterized by apoptotic colitis in milder cases with severe intestinal atresia and immunodeficiency in cases with complete loss of protein. We used whole exome sequencing in a VEOIBD patient presenting with colitis characterized by colonic apoptosis and no identified known VEOIBD variants, to identify compound heterozygous deleterious variants in the Ubiquitin protein ligase E3 component N-recognin 5 (UBR5) gene. Functional studies demonstrated that UBR5 co-immunoprecipitates with the TTC7A and the UBR5 variants had reduced interaction between UBR5 and TTC7A. Together this implicates UBR5 in regulating TTC7A signaling in VEOIBD patients with apoptotic colitis.
Collapse
|
10
|
Walters DK, Jelinek DF. Multiplex Immunofluorescence of Bone Marrow Core Biopsies: Visualizing the Bone Marrow Immune Contexture. J Histochem Cytochem 2019; 68:99-112. [PMID: 31855110 DOI: 10.1369/0022155419896802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to visualize and quantify the spatial arrangement and geographic proximity of immune cells with tumor cells provides valuable insight into the complex mechanisms underlying cancer biology and progression. Multiplexing, which involves immunofluorescence labeling and the visualization of multiple epitopes within formalin-fixed paraffin embedded tissue sections, is a methodology that is being increasingly employed. Despite the power of immunofluorescence multiplex analysis, application of this technology to bone marrow core biopsies has not yet been realized. Given our specific long term goal to identify immune cells in proximity to bone marrow malignant plasma cells in multiple myeloma patients, we describe in this study adaptation of multiplex immunofluorescence analysis to this tissue. We first identified a blocking strategy that quenched autofluorescence. We next employed a multiplex strategy that uses a simple stripping solution to remove primary and secondary antibodies prior to subsequent rounds of staining. This method was found to be highly efficient and did not significantly alter antigenicity or tissue integrity. Our studies illustrate for the first time that immunofluorescence multiplexing is achievable in bone marrow core biopsies and will provide a novel opportunity to analyze the role of the immune contexture in disease progression of the monoclonal gammopathies.
Collapse
Affiliation(s)
- Denise K Walters
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| | - Diane F Jelinek
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| |
Collapse
|
11
|
Expression Analysis of ATP-Binding Cassette Transporters ABCB11 and ABCB4 in Primary Sclerosing Cholangitis and Variety of Pediatric and Adult Cholestatic and Noncholestatic Liver Diseases. Can J Gastroenterol Hepatol 2019; 2019:1085717. [PMID: 31886153 PMCID: PMC6925824 DOI: 10.1155/2019/1085717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are the members of the efflux pumps that are responsible for the removal of cytotoxic substances by active transport. ABCB11, the bile salt efflux pump of hepatocytes, coordinates cellular excretion of numerous conjugated bile salts into the bile canaliculi, whereas ABCB4 acts as an ATP-dependent floppase translocating phosphatidylcholine from the inner to the outer leaflet of the bile canalicular membrane. Loss of functional ABCB11 and ABCB4 proteins causes early-onset refractory cholestasis or cholangiopathy. In this study, we investigated the expression and localization pattern of ABCB11 and ABCB4 using immunohistochemistry and RNA profiling in liver samples from patients with different types and stages of chronic cholestatic liver disease, with emphasis on primary sclerosing cholangitis (PSC), compared to a variety of cholestatic and noncholestatic hepatopathies. Therefore, ABCB11 and ABCB4 expressions were investigated on formalin-fixed and paraffin-embedded (FFPE) material in a patient cohort of total 43 patients with or without cholestatic liver diseases, on protein level using immunohistochemistry and on RNA level using nanoString technology. Intriguingly, our results demonstrated increased expression of ABCB11 and ABCB4 on protein as well as RNA level in PSC, and the expression pattern correlated with disease progression. We concluded from our study that patients with PSC demonstrate altered expression levels and pattern of ABCB11 and ABCB4 which correlated with disease progression; thereby, ABCB11 and ABCB4 analysis may be a useful tool for assessment of disease stages in PSC.
Collapse
|
12
|
Immunofluorescence Labeling of Nuclear Receptor Expression in Formalin-Fixed, Paraffin-Embedded Tissue. Methods Mol Biol 2019. [PMID: 31041741 DOI: 10.1007/978-1-4939-9195-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunofluorescent staining (IF) uses antigen-antibody complexes tagged with fluorochromes to observe the expression of proteins within a tissue sample. Multiple groups have described optimized methods to visualize several proteins simultaneously within the same tissue section using immunofluorescence in both mouse and human FFPE tissues. Our group routinely uses an optimized protocol described here to examine nuclear receptor expression in experimental samples from conditional knockout in vivo studies.
Collapse
|
13
|
Parra-Medina R, Polo JF. Inmunofluorescencia en tejidos fijados y preservados en parafina (IF-P). Una mirada desde la patología quirúrgica. REPERTORIO DE MEDICINA Y CIRUGÍA 2017. [DOI: 10.1016/j.reper.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Gleisner MA, Navarrete M, Hofmann F, Salazar-Onfray F, Tittarelli A. Mind the Gaps in Tumor Immunity: Impact of Connexin-Mediated Intercellular Connections. Front Immunol 2017; 8:1067. [PMID: 28919895 PMCID: PMC5585150 DOI: 10.3389/fimmu.2017.01067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin (Cx)-formed plasma membrane channels that allow for the passage of small molecules between adjacent cells, and are involved in several physiopathological processes, including immune responses against cancer. In general, tumor cells are poorly coupled through GJs, mainly due to low Cx expression or reduced channel activity, suggesting that Cxs may have tumor suppressor roles. However, more recent data indicate that Cxs and/or GJICs may also in some cases promote tumor progression. This dual role of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not only interconnect cells from the same type, such as cancer cells, but also promote the intercellular communication of tumor cells with different types of cells from their microenvironment, and such diverse intercellular interactions have distinctive impact on tumor development. For example, whereas GJ-mediated interactions among tumor cells and microglia have been implicated in promotion of tumor growth, tumor cells delivery to dendritic cells of antigenic peptides through GJs have been associated with enhanced immune-mediated tumor elimination. In this review, we provide an updated overview on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect of GJs occurring among tumor and immune cells. Accumulated data suggest that GJICs may act as tumor suppressors or enhancers depending on whether tumor cells interact predominantly with antitumor immune cells or with stromal cells. The complex modulation of immune-tumor cell GJICs should be taken into consideration in order to potentiate current cancer immunotherapies.
Collapse
Affiliation(s)
- María Alejandra Gleisner
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Francisca Hofmann
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Gru AA. Introduction to inflammatory dermatoses: Histological clues for the practicing pathologist. Semin Diagn Pathol 2017; 34:210-219. [DOI: 10.1053/j.semdp.2016.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Fabbri R, Vicenti R, Macciocca M, Martino NA, Dell'Aquila ME, Pasquinelli G, Morselli-Labate AM, Seracchioli R, Paradisi R. Morphological, ultrastructural and functional imaging of frozen/thawed and vitrified/warmed human ovarian tissue retrieved from oncological patients. Hum Reprod 2016; 31:1838-49. [PMID: 27282911 DOI: 10.1093/humrep/dew134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Which is the best method for human ovarian tissue cryopreservation: slow freezing/rapid thawing (SF/RT) or vitrification/warming (V/W)? SUMMARY ANSWER The conventional SF/RT protocol used in this study seems to better preserve the morpho-functional status of human cryopreserved ovarian tissue than the used open carrier V/W protocol. WHAT IS KNOWN ALREADY Cryopreservation of human ovarian tissue is generally performed using the SF/RT method. However, reduction in the follicular pool and stroma damage are often observed. An emerging alternative procedure is represented by V/W which seems to allow the maintenance of the morphological integrity of the stroma. STUDY DESIGN, SIZE, DURATION This is a retrospective cohort study including six patients affected by oncological diseases and enrolled from January to December 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was laparoscopically harvested from the right and left ovaries and was cryopreserved using a routinary SF/RT protocol or a V/W method, involving tissue incubation in two solutions (containing propylene glycol, ethylene glycol and sucrose at different concentrations) and vitrification in an open system. For each patient, three pieces from each ovary were collected at the time of laparoscopy (fresh tissue) and after storage (SF/RT or V/W) and processed for light microscopy (LM) and transmission electron microscopy (TEM), to assess the morphological and ultrastructural features of follicles and stroma, and for laser scanning confocal microscopy (LSCM), to determine the functional energetic/redox stroma status. The preservation status of SF/RT and V/W ovarian tissues was compared with that of fresh ones, as well as between them. MAIN RESULTS AND THE ROLE OF CHANCE By LM and TEM, SF/RT and V/W samples showed cryodamage of small entity. Interstitial oedema and increased stromal cell vacuolization and chromatin clumping were observed in SF/RT samples; in contrast, V/W samples showed oocyte nuclei with slightly thickened chromatin and irregular shapes. The functional imaging analysis by LSCM revealed that the mitochondrial activity and intracellular reactive oxygen species levels were reduced both in SF/RT and in V/W samples compared with fresh samples. The study also showed progressive dysfunction of the mitochondrial activity going from the outer to the inner serial section of the ovarian cortex. The reduction of mitochondrial activity of V/W samples compared with fresh samples was significantly higher in the inner section than in the outer section. LIMITATIONS, REASONS FOR CAUTION The results report the bioenergetic and oxidative status assessment of fresh and cryopreserved human ovarian tissue by LSCM, a technique recently applied to tissue samples. The use of LSCM on human ovarian tissues after SF/RT or V/W is a new application that requires validation. The procedures for mitochondrial staining with functional probes and fixing are not yet standardized. Xenografting of the cryopreserved ovarian tissue in severe combined immunodeficient mice and in vitro culture have not yet been performed. WIDER IMPLICATIONS OF THE FINDINGS The identification of a cryopreservation method able to maintain the morpho-functional integrity of the ovarian tissue and a number of follicles comparable with those observed in fresh tissue might optimize results in clinical practice, in terms of recovery, duration of ovarian function and increased delivery outcomes after replanting. The SF/RT protocol allowed better morpho-functional tissue integrity than the V/W procedure. STUDY FUNDING/COMPETING INTERESTS Funding was provided by Fondazione del Monte di Bologna e Ravenna, Italy. Dr N.A.M. was granted by the project ONEV MIUR PONa3 00134-n.254/R&C 18 5 2011 and the project GR-2011-02351396 (Ministry of Health, Young Researchers Grant 2011/2012). There are no competing interests. TRIAL REGISTRATION NUMBER Clinical trial 74/2001/0 (approved:13 2 2002): 'Pilot study on cryopreservation of human ovarian tissue: morphological and immunohistochemical analysis before and after cryopreservation'.
Collapse
Affiliation(s)
- R Fabbri
- Gynecology and Pathophysiology of Human Reproductive Unit, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - R Vicenti
- Gynecology and Pathophysiology of Human Reproductive Unit, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - M Macciocca
- Gynecology and Pathophysiology of Human Reproductive Unit, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - N A Martino
- Department of Biosciences, Biotechnologies and Biopharmaceutics (DBBB), University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010 Valenzano, Bari, Italy Experimental Zooprophylactic Institute of Puglia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - M E Dell'Aquila
- Department of Biosciences, Biotechnologies and Biopharmaceutics (DBBB), University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - G Pasquinelli
- Surgical Pathology, Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - A M Morselli-Labate
- Gynecology and Pathophysiology of Human Reproductive Unit, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - R Seracchioli
- Gynecology and Pathophysiology of Human Reproductive Unit, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - R Paradisi
- Gynecology and Pathophysiology of Human Reproductive Unit, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
17
|
Pan J, Bishop T, Ratcliffe PJ, Yeger H, Cutz E. Hyperplasia and hypertrophy of pulmonary neuroepithelial bodies, presumed airway hypoxia sensors, in hypoxia-inducible factor prolyl hydroxylase-deficient mice. HYPOXIA (AUCKLAND, N.Z.) 2016; 4:69-80. [PMID: 27800509 PMCID: PMC5085281 DOI: 10.2147/hp.s103957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary neuroepithelial bodies (NEBs), presumed polymodal airway sensors, consist of innervated clusters of amine (serotonin) and peptide-producing cells. While NEB responses to acute hypoxia are mediated by a membrane-bound O2 sensor complex, responses to sustained and/or chronic hypoxia involve a prolyl hydroxylase (PHD)-hypoxia-inducible factor-dependent mechanism. We have previously reported hyperplasia of NEBs in the lungs of Phd1-/- mice associated with enhanced serotonin secretion. Here we use a novel multilabel immunofluorescence method to assess NEB distribution, frequency, and size, together with the number and size of NEB cell nuclei, and to colocalize multiple cytoplasmic and nuclear epitopes in the lungs of Phd1-/-, Phd2+/-, and Phd3-/- mice and compare them with wild-type controls. To define the mechanisms of NEB cell hyperplasia, we used antibodies against Mash1 and Prox1 (neurogenic genes involved in NEB cell differentiation/maturation), hypoxia-inducible factor-1alpha, and the cell proliferation marker Ki67. Morphometric analysis of (% total lung area) immunostaining for synaptophysin (% synaptophysin), a cytoplasmic marker of NEB cells, was significantly increased in Phd1-/- and Phd3-/- mice compared to wild-type mice. In addition, NEB size and the number and size of NEB nuclei were also significantly increased, indicating that deficiency of Phds is associated with striking hyperplasia and hypertrophy of NEBs. In Phd2+/- mice, while mean % synaptophysin was comparable to wild-type controls, the NEB size was moderately increased, suggesting an effect even in heterozygotes. NEBs in all Phd-deficient mice showed increased expression of Mash1, Prox1, Ki67, and hypoxia-inducible factor-1alpha, in keeping with enhanced differentiation from precursor cells and a minor component of cell proliferation. Since the loss of PHD activity mimics chronic hypoxia, our data provide critical information on the potential role of PHDs in the pathobiology and mechanisms of NEB cell hyperplasia that is relevant to a number of pediatric lung disorders.
Collapse
Affiliation(s)
- Jie Pan
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tammie Bishop
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Peter J Ratcliffe
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Herman Yeger
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ernest Cutz
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|