1
|
Kuo MY, Dai WC, Chang JL, Chang JS, Lee TM, Chang CC. Fucoxanthin induces human melanoma cytotoxicity by thwarting the JAK2/STAT3/BCL-xL signaling axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3356-3366. [PMID: 38444163 DOI: 10.1002/tox.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.
Collapse
Affiliation(s)
- Min-Yung Kuo
- Pediatric Surgery Division, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Li Chang
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Ryoo GH, Kim GJ, Han AR, Jin CH, Lee H, Nam JW, Choi H, Jung CH. Antimetastatic activity of seongsanamide B in γ-irradiated human lung cancer. Heliyon 2023; 9:e20179. [PMID: 37809399 PMCID: PMC10559954 DOI: 10.1016/j.heliyon.2023.e20179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.
Collapse
Affiliation(s)
- Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Hunmin Lee
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, 54810, South Korea
| |
Collapse
|
4
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF. A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 2023; 18:1219-1243. [PMID: 36937550 PMCID: PMC10016366 DOI: 10.2147/ijn.s385166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2023] Open
Abstract
Background Thalidomide (THD) and its analogues were recently reported as a promising treatment for different types of solid tumors due to their antiangiogenic effect. Methods In this work, we synthesized a novel THD analogue (TA), and its chemistry was confirmed with different techniques such as IR, mass spectroscopy, elemental analysis as well as 1H and 13C NMR. To increase solubility and anticancer efficacy, a new oil in water (O/W) nanoemulsion (NE) was used in the formulation of the analogue. The novel formula's surface charge, size, stability, FTIR, FE-TEM, in vitro drug release and physical characteristics were investigated. Furthermore, molecular docking studies were conducted to predict the possible binding modes and molecular interactions behind the inhibitory activities of the THD and TA. Results TA showed a significant cytotoxic activity with IC50 ranging from 0.326 to 43.26 µmol/mL when evaluated against cancerous cells such as MCF-7, HepG2, Caco-2, LNCaP and RKO cell lines. The loaded analogue showed more potential cytotoxicity against MDA-MB-231 and MCF-7-ADR cell lines with IC50 values of 0.0293 and 0.0208 nmol/mL, respectively. Moreover, flow cytometry of cell cycle analysis and apoptosis were performed showing a suppression in the expression levels of TGF-β, MCL-1, VEGF, TNF-α, STAT3 and IL-6 in the MDA-MB-231 cell line. Conclusion The novel NE formula dramatically reduced the anticancer dosage of TA from micromolar efficiency to nanomolar efficiency. This indicates that the synthesized analogue exhibited high potency in the NE formulation and proved its efficacy against triple-negative breast cancer cell line.
Collapse
Affiliation(s)
- Noran M Tawfik
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohammed S Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Sameh Samir Iskandar
- Fellow and Head of Surgical Oncology Department, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif F Hammad
- PharmD Programs, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Rosa N, Speelman-Rooms F, Parys JB, Bultynck G. Modulation of Ca 2+ signaling by antiapoptotic Bcl-2 versus Bcl-xL: From molecular mechanisms to relevance for cancer cell survival. Biochim Biophys Acta Rev Cancer 2022; 1877:188791. [PMID: 36162541 DOI: 10.1016/j.bbcan.2022.188791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Members of the Bcl-2-protein family are key controllers of apoptotic cell death. The family is divided into antiapoptotic (including Bcl-2 itself, Bcl-xL, Mcl-1, etc.) and proapoptotic members (Bax, Bak, Bim, Bim, Puma, Noxa, Bad, etc.). These proteins are well known for their canonical role in the mitochondria, where they control mitochondrial outer membrane permeabilization and subsequent apoptosis. However, several proteins are recognized as modulators of intracellular Ca2+ signals that originate from the endoplasmic reticulum (ER), the major intracellular Ca2+-storage organelle. More than 25 years ago, Bcl-2, the founding member of the family, was reported to control apoptosis through Ca2+ signaling. Further work elucidated that Bcl-2 directly targets and inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), thereby suppressing proapoptotic Ca2+ signaling. In addition to Bcl-2, Bcl-xL was also shown to impact cell survival by sensitizing IP3R function, thereby promoting prosurvival oscillatory Ca2+ release. However, new work challenges this model and demonstrates that Bcl-2 and Bcl-xL can both function as inhibitors of IP3Rs. This suggests that, depending on the cell context, Bcl-xL could support very distinct Ca2+ patterns. This not only raises several questions but also opens new possibilities for the treatment of Bcl-xL-dependent cancers. In this review, we will discuss the similarities and divergences between Bcl-2 and Bcl-xL regarding Ca2+ homeostasis and IP3R modulation from both a molecular and a functional point of view, with particular emphasis on cancer cell death resistance mechanisms.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Ma J, Shi Q, Guo S, Xu P, Yi X, Yang Y, Zhang W, Liu Y, Liu L, Yue Q, Zhao T, Gao T, Guo W, Li C. Long Non-Coding RNA CD27-AS1-208 Facilitates Melanoma Progression by Activating STAT3 Pathway. Front Oncol 2022; 11:818178. [PMID: 35096622 PMCID: PMC8791859 DOI: 10.3389/fonc.2021.818178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Melanoma is the most lethal skin cancer that originates from epidermal melanocytes. Recently, long non-coding RNAs (lncRNAs) are emerging as critical regulators of cancer pathogenesis and potential therapeutic targets. However, the expression profile of lncRNAs and their role in melanoma progression have not been thoroughly investigated. Herein, we firstly obtained the expression profile of lncRNAs in primary melanomas using microarray analysis and unveiled the differentially-expressed lncRNAs compared with nevus. Subsequently, a series of bioinformatics analysis showed the great involvement of dysregulated lncRNAs in melanoma biology and immune response. Further, we identified lncRNA CD27-AS1-208 as a novel nuclear-localized factor with prominent facilitative role in melanoma cell proliferation, invasion and migration. Mechanistically, CD27-AS1-208 could directly interact with STAT3 and contribute to melanoma progression in a STAT3-dependent manner. Ultimately, the role of CD27-AS1-208 in melanoma progression in vivo was also investigated. Collectively, the present study offers us a new horizon to better understand the role of lncRNAs in melanoma pathogenesis and demonstrates that CD27-AS1-208 up-regulation contributes to melanoma progression by activating STAT3 pathway. Targeting CD27-AS1-208 in melanoma cells can be exploited as a potential therapeutic approach that needs forward validation in clinical trials in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
8
|
Kim K, Hwangbo S, Kim H, Kim YB, No JH, Suh DH, Park T. Clinicopathologic and protein markers distinguishing the “polymerase epsilon exonuclease” from the “copy number low” subtype of endometrial cancer. J Gynecol Oncol 2022; 33:e27. [PMID: 35128857 PMCID: PMC9024182 DOI: 10.3802/jgo.2022.33.e27] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/20/2021] [Accepted: 12/26/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The need to perform genetic sequencing to diagnose the polymerase epsilon exonuclease (POLE) subtype of endometrial cancer (EC) hinders the adoption of molecular classification. We investigated clinicopathologic and protein markers that distinguish the POLE from the copy number (CN)-low subtype in EC. Methods Ninety-one samples (15 POLE, 76 CN-low) were selected from The Cancer Genome Atlas EC dataset. Clinicopathologic and normalized reverse phase protein array expression data were analyzed for associations with the subtypes. A logistic model including selected markers was constructed by stepwise selection using area under the curve (AUC) from 5-fold cross-validation (CV). The selected markers were validated using immunohistochemistry (IHC) in a separate cohort. Results Body mass index (BMI) and tumor grade were significantly associated with the POLE subtype. With BMI and tumor grade as covariates, 5 proteins were associated with the EC subtypes. The stepwise selection method identified BMI, cyclin B1, caspase 8, and X-box binding protein 1 (XBP1) as markers distinguishing the POLE from the CN-low subtype. The mean of CV AUC, sensitivity, specificity, and balanced accuracy of the selected model were 0.97, 0.91, 0.87, and 0.89, respectively. IHC validation showed that cyclin B1 expression was significantly higher in the POLE than in the CN-low subtype and receiver operating characteristic curve of cyclin B1 expression in IHC revealed AUC of 0.683. Conclusion BMI and expression of cyclin B1, caspase 8, and XBP1 are candidate markers distinguishing the POLE from the CN-low subtype. Cyclin B1 IHC may replace POLE sequencing in molecular classification of EC. Body mass index and cyclin B1, caspase 8, and X-box binding protein 1 are candidate markers distinguishing between the polymerase epsilon exonuclease (POLE) and copy number (CN)-low subtypes of endometrial cancer. Cyclin B1 immunohistochemistry expression was significantly higher in the POLE than in the CN-low subtype and may substitute POLE sequencing.
Collapse
Affiliation(s)
- Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Suhyun Hwangbo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol 2021. [DOI: 10.1371/journal.pbio.3001328
expr 949426982 + 863878017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule–cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell–mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid “shields” against self-destruction.
Collapse
|
10
|
Li Y, Orange JS. Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol 2021; 19:e3001328. [PMID: 34343168 PMCID: PMC8330931 DOI: 10.1371/journal.pbio.3001328&set/a 870330320+893642561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule-cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell-mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid "shields" against self-destruction.
Collapse
Affiliation(s)
- Yu Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
11
|
Li Y, Orange JS. Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol 2021; 19:e3001328. [PMID: 34343168 PMCID: PMC8330931 DOI: 10.1371/journal.pbio.3001328] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule-cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell-mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid "shields" against self-destruction.
Collapse
Affiliation(s)
- Yu Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jordan S. Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
12
|
Role of 1q21 in Multiple Myeloma: From Pathogenesis to Possible Therapeutic Targets. Cells 2021; 10:cells10061360. [PMID: 34205916 PMCID: PMC8227721 DOI: 10.3390/cells10061360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.
Collapse
|
13
|
Bcl-xL: A Focus on Melanoma Pathobiology. Int J Mol Sci 2021; 22:ijms22052777. [PMID: 33803452 PMCID: PMC7967179 DOI: 10.3390/ijms22052777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.
Collapse
|
14
|
Kara A, Özgür A, Tekin Ş, Tutar Y. Computational Analysis of Drug Resistance Network in Lung Adenocarcinoma. Anticancer Agents Med Chem 2021; 22:566-578. [PMID: 33602077 DOI: 10.2174/1871520621666210218175439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by non-small cell lung cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. OBJECTIVE In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for non-small cell lung adenocarcinoma patients. METHODS Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known mechanism of action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. RESULTS This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with molecular mechanism of resistance to anticancer drugs in NSCLC cells. CONCLUSION To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.
Collapse
Affiliation(s)
- Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, . Turkey
| | - Aykut Özgür
- Tokat Gaziosmanpaşa University, Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat, . Turkey
| | - Şaban Tekin
- University of Health Sciences, Turkey, Hamidiye Faculty of Medicine, Department of Basic Medical Sciences, Division of Biology, İstanbul, . Turkey
| | - Yusuf Tutar
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Oncology, Istanbul, . Turkey
| |
Collapse
|
15
|
Trisciuoglio D, Del Bufalo D. New insights into the roles of antiapoptotic members of the Bcl-2 family in melanoma progression and therapy. Drug Discov Today 2021; 26:1126-1135. [PMID: 33545382 DOI: 10.1016/j.drudis.2021.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Prosurvival and antiapoptotic B cell lymphoma-2 (Bcl-2) family proteins are often overexpressed in cutaneous melanoma, one of the most aggressive types of human cancer. They are also implicated in resistance to therapy and participate in melanoma progression by regulating various processes, including cell proliferation, migration, invasion, and crosstalk with the tumor microenvironment. In this review, we summarize recent findings related to prosurvival members of the Bcl-2 family beyond their canonical functions in the apoptotic pathway, mainly focusing on their potential roles as diagnostic and prognostic biomarkers in cutaneous melanoma. We also provide an overview of different approaches used to inhibit Bcl-2 proteins in preclinical and clinical studies, which are mainly based on the inhibition of protein expression or the disruption of their antiapoptotic functions.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, via degli Apuli 4, 00185, Rome, Italy.
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy.
| |
Collapse
|
16
|
Naik PP. Cutaneous Malignant Melanoma: A Review of Early Diagnosis and Management. World J Oncol 2021; 12:7-19. [PMID: 33738001 PMCID: PMC7935621 DOI: 10.14740/wjon1349] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma (CM) is a malignant tumor formed from pigment-producing cells called melanocytes. It is one of the most aggressive and fatal forms of skin malignancy. In the last decades, CM's incidence has gradually risen, with 351,880 new cases in 2015. Since the 1960s, its incidence has increased steadily, in 2019, with approximately 96,000 new cases. A greater understanding of early diagnosis and management of CM is urgently needed because of the high mortality rates due to metastatic melanoma. Timely detection of melanoma is crucial for successful treatment, but diagnosis with histopathology may also pose a significant challenge to this objective. Early diagnosis and management are essential and contribute to better survival rates of the patient. To better control this malignancy, such information is expected to be particularly useful in the early detection of possible metastatic lesions and the development of new therapeutic approaches. This article reviews the available information on the early diagnosis and management of CM and discusses such information's potential in facilitating the future prospective.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Hessa Street 331 West, Al Barsha 3, Exit 36 Sheikh Zayed Road, Opposite of American School, Dubai, United Arab Emirates.
| |
Collapse
|
17
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
18
|
Vanillic Acid Improves Comorbidity of Cancer and Obesity through STAT3 Regulation in High-Fat-Diet-Induced Obese and B16BL6 Melanoma-Injected Mice. Biomolecules 2020; 10:biom10081098. [PMID: 32722030 PMCID: PMC7464557 DOI: 10.3390/biom10081098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is known to be associated with risk and aggressiveness of cancer. Melanoma, the most lethal type of skin cancer, is also closely related to the prevalence of obesity. In this study, we established a cancer–obesity comorbidity (COC) model to investigate the effects of vanillic acid (VA). After a five-week administration with a high-fat diet (HFD) to induce obesity, subcutaneous allograft of B16BL6 cells were followed, and VA was orally administrated for an additional two weeks. VA-fed mice showed significantly decreased body weight and white adipose tissue (WAT) weight, which were due to increased thermogenesis and AMPK activation in WATs. Growth of cancer was also suppressed. Mechanistic studies revealed increased apoptosis and autophagy markers by VA; however, caspase 3 was not involved. Since signal transducer and activator of transcription 3 (STAT3) is suggested as an important pathway linking obesity and cancer, we further investigated to find out if STAT3 phosphorylation was repressed by VA treatment, and this was again confirmed in a COC cell model of adipocyte conditioned medium-treated B16BL6 melanoma cells. Overall, our results show VA induces STAT3-mediated autophagy to inhibit cancer growth and thermogenesis to ameliorate obesity in COC. Based on these findings, we suggest VA as a candidate therapeutic agent for COC treatment.
Collapse
|
19
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
20
|
Tseng HY, Dreyer J, Emran AA, Gunatilake D, Pirozyan M, Cullinane C, Dutton-Regester K, Rizos H, Hayward NK, McArthur G, Hersey P, Tiffen J, Gallagher S. Co-targeting bromodomain and extra-terminal proteins and MCL1 induces synergistic cell death in melanoma. Int J Cancer 2020; 147:2176-2189. [PMID: 32249419 DOI: 10.1002/ijc.33000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
The treatment of melanoma has been markedly improved by the introduction of targeted therapies and checkpoint blockade immunotherapy. Unfortunately, resistance to these therapies remains a limitation. Novel anticancer therapeutics targeting the MCL1 anti-apoptotic protein have shown impressive responses in haematological cancers but are yet to be evaluated in melanoma. To assess the sensitivity of melanoma to new MCL1 inhibitors, we measured the response of 51 melanoma cell lines to the novel MCL1 inhibitor, S63845. Additionally, we assessed combination of this drug with inhibitors of the bromodomain and extra-terminal (BET) protein family of epigenetic readers, which we postulated would assist MCL1 inhibition by downregulating anti-apoptotic targets regulated by NF-kB such as BCLXL, BCL2A1 and XIAP, and by upregulating pro-apoptotic proteins including BIM and NOXA. Only 14% of melanoma cell lines showed sensitivity to S63845, however, combination of S63845 and I-BET151 induced highly synergistic apoptotic cell death in all melanoma lines tested and in an in vivo xenograft model. Cell death was dependent on caspases and BAX/BAK. Although the combination of drugs increased the BH3-only protein, BIM, and downregulated anti-apoptotic proteins such as BCL2A1, the importance of these proteins in inducing cell death varied between cell lines. ABT-199 or ABT-263 inhibitors against BCL2 or BCL2 and BCLXL, respectively, induced further cell death when combined with S63845 and I-BET151. The combination of MCL1 and BET inhibition appears to be a promising therapeutic approach for metastatic melanoma, and presents opportunities to add further BCL2 family inhibitors to overcome treatment resistance.
Collapse
Affiliation(s)
- Hsin-Yi Tseng
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jan Dreyer
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia
| | - Mehdi Pirozyan
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Carleen Cullinane
- Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ken Dutton-Regester
- Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Helen Rizos
- Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nicholas K Hayward
- Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant McArthur
- Department of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jessamy Tiffen
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stuart Gallagher
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
21
|
Su W, Niu X, Ji H, Xu Y, Zhong L, Wang S, Tang D, Zhou X, Zhang Q, Zhou J. A novel classification based on B-cell receptor signal gene expression correlates with prognosis in primary breast diffuse large B-cell lymphoma. J Cancer 2020; 11:2431-2441. [PMID: 32201514 PMCID: PMC7066002 DOI: 10.7150/jca.39083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Primary breast diffuse large B-cell lymphoma (PB-DLBCL), the most common histologic subtype of lymphoid malignancy in the breast, is a clinically and genetically heterogeneous disease that has insufficient systematic studies on the pathological and molecular features, optimal treatment scheme, as well as the prognostic factors. The aim of our study was to identify biomarkers and distinct subtypes of PB-DLBCLs and then evaluate the prognosis of this rare malignant lymphoma. We carried out hierarchical clustering analysis to evaluate protein expressions of potential biomarkers detected by immunohistochemistry staining of samples from 68 PB-DLBCL patients. The gene expression data from TCGA database was obtained to validate the identified clusters. We identified three robust clusters based on the B-cell receptor (BCR) signaling pathway, including two recognized NF-κB-dependent and PI3K-dependent clusters, and a distinct subset of PB-DLBCL with NF-κB-independent anti-apoptotic overexpression plus PI3K signaling, which exhibited an evolving definition and distinctive characters of a cluster group. Furthermore, survival analysis results showed an inferior outcome in NF-κB-dependent cluster patients and favorable survival in the PI3K-dependent cluster patients, suggesting an important predictive value of the three clusters. Our study provided a new perspective for understanding clinical complexity of PB-DLBCLs, and gave evidence for finding targeted biomarkers and strategies.
Collapse
Affiliation(s)
- Wenjia Su
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yang Xu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Lei Zhong
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuye Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoping Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Jin Zhou
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang, China
| |
Collapse
|
22
|
Mohammadi Kian M, Salemi M, Bahadoran M, Haghi A, Dashti N, Mohammadi S, Rostami S, Chahardouli B, Babakhani D, Nikbakht M. Curcumin Combined with Thalidomide Reduces Expression of STAT3 and Bcl-xL, Leading to Apoptosis in Acute Myeloid Leukemia Cell Lines. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:185-194. [PMID: 32021103 PMCID: PMC6970263 DOI: 10.2147/dddt.s228610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
Introduction Acute myeloid leukemia (AML) is a type of blood disorder that exhibits uncontrolled growth and reduced ability to undergo apoptosis. Signal transducer and activator of transcription 3 (STAT3) is a family member of transcription factors which promotes carcinogenesis in most human cancers. This effect on AML is accomplished through deregulation of several critical genes, such as B cell lymphoma-extra-large (BCL-XL) which is anti-apoptotic protein. The aim of this study was to evaluate the effect of curcumin (CUR) and thalidomide (THAL) on apoptosis induction and also the alteration of the mRNA expression level of STAT3 and BCL-XL mRNA on AML cell line compounds. Methods The growth inhibitory effects of CUR and THAL and their combination were measured by MTT assay in U937 and KG-1 cell lines. The rates of apoptosis induction and cell cycle analysis were measured by concurrent staining with Annexin V and PI. The mRNA expression level of STAT3 and BCL-XL was evaluated by Real-Time PCR. Results CUR inhibited proliferation and induced apoptosis in both KG-1 and U937 cells and this effect increased by combination with THAL. The expression level of STAT3 and BCL-XL was significantly down-regulated in KG-1 cells after treatment by CUR and THAL and their combination. Conclusion Overall, our findings suggested that down-regulation of STAT3 and BCL-XL mRNA expression in response to CUR and THAL treatment lead to inhibition of cell growth and induction of apoptosis.
Collapse
Affiliation(s)
- Mahnaz Mohammadi Kian
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Salemi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bahadoran
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Young Researchers & Elite Club Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Dashti
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Babakhani
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. JOURNAL OF ONCOLOGY 2020; 2020:1079827. [PMID: 32411231 PMCID: PMC7199609 DOI: 10.1155/2020/1079827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.
Collapse
|
24
|
In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment. Cancers (Basel) 2019; 11:cancers11121939. [PMID: 31817171 PMCID: PMC6966457 DOI: 10.3390/cancers11121939] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
The bone marrow microenvironment promotes proliferation and drug resistance in chronic lymphocytic leukemia (CLL). Although ibrutinib is active in CLL, it is rarely able to clear leukemic cells protected by bone marrow mesenchymal stromal cells (BMSCs) within the marrow niche. We investigated the modulation of JAK2/STAT3 pathway in CLL by BMSCs and its targeting with AG490 (JAK2 inhibitor) or Stattic (STAT3 inhibitor). B cells collected from controls and CLL patients, were treated with medium alone, ibrutinib, JAK/Signal Transducer and Activator of Transcription (STAT) inhibitors, or both drugs, in the presence of absence of BMSCs. JAK2/STAT3 axis was evaluated by western blotting, flow cytometry, and confocal microscopy. We demonstrated that STAT3 was phosphorylated in Tyr705 in the majority of CLL patients at basal condition, and increased following co-cultures with BMSCs or IL-6. Treatment with AG490, but not Stattic, caused STAT3 and Lyn dephosphorylation, through re-activation of SHP-1, and triggered CLL apoptosis even when leukemic cells were cultured on BMSC layers. Moreover, while BMSCs hamper ibrutinib activity, the combination of ibrutinib+JAK/STAT inhibitors increase ibrutinib-mediated leukemic cell death, bypassing the pro-survival stimuli derived from BMSCs. We herein provide evidence that JAK2/STAT3 signaling might play a key role in the regulation of CLL-BMSC interactions and its inhibition enhances ibrutinib, counteracting the bone marrow niche.
Collapse
|
25
|
Huang Q, Zhong Y, Dong H, Zheng Q, Shi S, Zhu K, Qu X, Hu W, Zhang X, Wang Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur J Med Chem 2019; 187:111922. [PMID: 31810784 DOI: 10.1016/j.ejmech.2019.111922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Collapse
Affiliation(s)
- Qiuyao Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yan Zhong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyao Zheng
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuo Shi
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinming Qu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Afrang N, Honardoost M. Cell cycle regulatory markers in melanoma: New strategies in diagnosis and treatment. Med J Islam Repub Iran 2019; 33:96. [PMID: 31696090 PMCID: PMC6825388 DOI: 10.34171/mjiri.33.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Melanoma has been known as an aggressive type of skin cancer in recent years. Reports have distributed the spread rate of melanoma among white skin populations. Also, many studies have mentioned several causes of melanoma. Ultraviolet radiation was represented to be the most important reason for occurrence of melanoma. However, recent studies have found that a combination of factors, such as environmental and genetic factors, can contribute to occurrence of various cancers, specifically melanoma. Methods: Different studies have been conducted on the efficacy of genetic disorders in melanoma. These surveys marked the key role of specific biomarkers in molecular and cellular processes, and investigations have found the expression of several genes in these processes. In addition, aberrant expression of these genes due to mutation and methylation can affect the whole process. Results: The expression process of these genes is regulated by microRNAs. These new biomolecules have been considered as negative regulators because of managing molecular and cellular processes. MicroRNAs are small conserved regulators attached to their targets leading to rearrangement of gene expression. Adherence of these noncoding RNAs can cause mRNA degradation or inhibit its translation. Conclusion: Recently, the application of specific genes in melanoma has been studied. In this review, the way melanoma is regulated because of these biomarkers and their demand through cell cycle in diagnosis, prognosis, and therapeutic periods was considered. Keywords: Melanoma, Biomarkers, Cell cycle, Biomolecules
Collapse
Affiliation(s)
- Negin Afrang
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
28
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
29
|
Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes. Oncotarget 2019; 10:3472-3490. [PMID: 31191820 PMCID: PMC6544398 DOI: 10.18632/oncotarget.26930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a deadly form of malignancy and according to the World Health Organization 132,000 new cases of melanoma are diagnosed worldwide each year. Surgical resection and chemo/drug treatments opted for early and late stage of melanoma respectively, however detrimental post surgical and chemotherapy consequences are inevitable. Noticeably melanoma drug treatments are associated with liver injuries such as hepatitis and cholestasis which are very common. Alleviation of these clinical manifestations with better treatment options would enhance prognosis status and patients survival. Natural products which induce cytotoxicity with minimum side effects are of interest to achieve high therapeutic efficiency. In this study we investigated anti-melanoma and hepatoprotective activities of frankincense essential oil (FEO) in both in vitro and in vivo models. Pretreatment with FEO induce a significant (p < 0.05) dose-dependent reduction in the cell viability of mouse (B16-F10) and human melanoma (FM94) but not in the normal human epithelial melanocytes (HNEM). Immunoblot analysis showed that FEO induces down regulation of Bcl-2 and up regulation of BAX in B16-F10 cells whereas in FM94 cells FEO induced dose-dependent cleavage of caspase 3, caspase 9 and PARP. Furthermore, FEO (10 μg/ml) treatment down regulated MCL1 in a time-dependent manner in FM94 cells. In vivo toxicity analysis reveals that weekly single dose of FEO (1200 mg/kg body weight) did not elicit detrimental effect on body weight during four weeks of experimental period. Histology of tissue sections also indicated that there were no observable histopathologic differences in the brain, heart, liver, and kidney compare to control groups. FEO (300 and 600 mg/kg body weight) treatments significantly reduced the tumor burden in C57BL/6 mice melanoma model. Acetaminophen (750 mg/kg body weight) was used to induce hepatic injury in Swiss albino mice. Pre treatment with FEO (250 and 500 mg/kg body weight) for seven days retained hematology (complete blood count), biochemical parameters (AST, ALT, ALK, total bilirubin, total protein, glucose, albumin/globulin ratio, cholesterol and triglyceride), and the level of phase I and II drug metabolizing enzymes (cytochrome P450, cytochromeb5, glutathione-S-transferase) which were obstructed by the administration of acetaminophen. Further liver histology showed that FEO treatments reversed the damages (central vein dilation, hemorrhage, and nuclei condensation) caused by acetaminophen. In conclusion, FEO elicited marked anti-melanoma in both in vitro and in vivo with a significant heptoprotection.
Collapse
|
30
|
Bardi GT, Al-Rayan N, Richie JL, Yaddanapudi K, Hood JL. Detection of Inflammation-Related Melanoma Small Extracellular Vesicle (sEV) mRNA Content Using Primary Melanocyte sEVs as a Reference. Int J Mol Sci 2019; 20:ijms20051235. [PMID: 30870978 PMCID: PMC6429302 DOI: 10.3390/ijms20051235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Melanoma-derived small extracellular vesicles (sEVs) participate in tumor pathogenesis. Tumor pathogenesis is highly dependent on inflammatory processes. Given the potential for melanoma sEVs to carry tumor biomarkers, we explored the hypothesis that they may contain inflammation-related mRNA content. Biophysical characterization showed that human primary melanocyte-derived sEVs trended toward being smaller and having less negative (more neutral) zeta potential than human melanoma sEVs (A-375, SKMEL-28, and C-32). Using primary melanocyte sEVs as the control population, RT-qPCR array results demonstrated similarities and differences in gene expression between melanoma sEV types. Upregulation of pro-angiogenic chemokine ligand CXCL1, CXCL2, and CXCL8 mRNAs in A-375 and SKMEL-28 melanoma sEVs was the most consistent finding. This paralleled increased production of CXCL1, CXCL2, and CXCL8 proteins by A-375 and SKMEL-28 sEV source cells. Overall, the use of primary melanocyte sEVs as a control sEV reference population facilitated the detection of inflammation-related melanoma sEV mRNA content.
Collapse
Affiliation(s)
- Gina T Bardi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Numan Al-Rayan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Jamaal L Richie
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Joshua L Hood
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
31
|
STAT5 expression correlates with recurrence and survival in melanoma patients treated with interferon-α. Melanoma Res 2019; 28:204-210. [PMID: 29485532 DOI: 10.1097/cmr.0000000000000435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interferons (IFN) have a direct growth-inhibiting effect on tumor cells through Janus kinase-dependent activation of the transcription factor signal transducer and activator of transcription (STAT1). In vitro, signaling through STAT5 has been demonstrated to counteract this effect and lead to IFN resistance of melanoma cell lines. In 32 patients treated with IFN-α in an adjuvant setting, we investigated paraffin-embedded tumor tissue from primary melanomas and melanoma metastases for expression of STAT3 and STAT5, by immunohistochemistry, and for expression of phosphorylated signaling transduction activating transcription factor (pSTAT)3 and pSTAT5, by immunofluorescence. Tumor cell expression levels of these proteins were correlated with patient characteristics and clinical outcomes. The patient cohort consisted of 12 (37.5%) patients at AJCC stage I/II (primary melanoma) and 20 (62.5%) at stage III/IV (metastatic melanoma). Recurrence was observed for 25 (78.1%) either during or after IFN-α therapy. χ Correlation of staining intensities with clinical data revealed association of pSTAT3 and STAT5 expression with sex (P=0.003 and 0.016, respectively) and of STAT3 with tumor stage (P=0.019). Recurrence of melanoma was found to be associated with high STAT5 expression (P=0.017). Multivariable regression analysis revealed STAT5 expression as an independent factor for predicting progression-free survival (P<0.0001) and overall survival (P=0.022). In summary, high expression of STAT5 correlated with melanoma recurrence and survival of patients treated with IFN-α in the adjuvant setting. Recently, it has been suggested that mutations of Janus kinases are involved in resistance to immune checkpoint blocker treatments implying a possible role of STAT5 for immune checkpoint resistance.
Collapse
|
32
|
Niessner H, Kosnopfel C, Sinnberg T, Beck D, Krieg K, Wanke I, Lasithiotakis K, Bonin M, Garbe C, Meier F. Combined activity of temozolomide and the mTOR inhibitor temsirolimus in metastatic melanoma involves DKK1. Exp Dermatol 2018; 26:598-606. [PMID: 28423208 DOI: 10.1111/exd.13372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/03/2023]
Abstract
The BRAFV600E inhibitor vemurafenib achieves remarkable clinical responses in patients with BRAF-mutant melanoma, but its effects are limited by the onset of drug resistance. In the case of resistance, chemotherapy can still be applied as second line therapy. However, it yields low response rates and strategies are urgently needed to potentiate its effects. In a previous study, we showed that the inhibition of the PI3K-AKT-mTOR pathway significantly increases sensitivity of melanoma cells to chemotherapeutic drugs (J. Invest. Dermatol. 2009, 129, 1500). In this study, the combination of the mTOR inhibitor temsirolimus with the chemotherapeutic agent temozolomide significantly increases growth inhibition and apoptosis in melanoma cells compared to temsirolimus or temozolomide alone. The combination of temozolomide with temsirolimus is not only effective in established but also in newly isolated and vemurafenib-resistant metastatic melanoma cell lines. These effects are associated with the downregulation of the anti-apoptotic protein Mcl-1 and the upregulation of the Wnt antagonist Dickkopf homologue 1 (DKK1). Knock-down of DKK1 suppresses apoptosis induction by the combination of temsirolimus and temozolomide. These data suggest that the inhibition of the mTOR pathway increases sensitivity of melanoma cells towards temozolomide. Chemosensitisation is associated with enhanced expression of the Wnt antagonist DKK1.
Collapse
Affiliation(s)
- Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Daniela Beck
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Kathrin Krieg
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Ines Wanke
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | | | - Michael Bonin
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany.,Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
33
|
Zheng L, Wong YS, Shao M, Huang S, Wang F, Chen J. Apoptosis induced by 9,11‑dehydroergosterol peroxide from Ganoderma Lucidum mycelium in human malignant melanoma cells is Mcl‑1 dependent. Mol Med Rep 2018; 18:938-944. [PMID: 29845223 PMCID: PMC6059726 DOI: 10.3892/mmr.2018.9035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
9,11-Dehydroergosterol peroxide [9(11)-DHEP] is an important steroid from medicinal mushroom, which has been reported to exert antitumor activity in several tumor types. However, the role of 9(11)-DHEP toward the malignant melanoma cells has not been investigated. In the present study, the steroid from Ganoderma lucidum was purified on a submerged culture, and its antitumor mechanisms on A375 human malignant melanoma cells was investigated by MTT, flow cytometry and western blotting. The studies demonstrated that apoptotic mechanisms of the steroid were caspase-dependent and mediated via the mitochondrial pathway. The steroid did not cause significant changes in the expression levels of B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2-like protein 11, p53 upregulated modulator of apoptosis, Bcl-2-associated X protein, BH3 interacting-domain death agonist, Bcl-2-associated death promoter and Bcl-2, but it significantly downregulated induced myeloid leukemia cell differentiation protein Mcl-1 (Mcl-1) in melanoma cells, suggesting the key role of Mcl-1 in regulating apoptosis of melanoma cells induced by the steroid. These properties of 9(11)-DHEP advocate its usage as supplements in human malignant melanoma chemoprevention. The present study also suggests that mycelium of G. lucidum has a potential for producing bioactive substances and extracts with applications in medicine.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yum-Shing Wong
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
34
|
Jaime-Sánchez P, Catalán E, Uranga-Murillo I, Aguiló N, Santiago L, M Lanuza P, de Miguel D, A Arias M, Pardo J. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance. Cell Death Differ 2018; 25:1536-1548. [PMID: 29743559 DOI: 10.1038/s41418-018-0112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic CD8+ T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-XL or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc-based immunotherapy.
Collapse
Affiliation(s)
- Paula Jaime-Sánchez
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Elena Catalán
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Nacho Aguiló
- Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Pilar M Lanuza
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Maykel A Arias
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain.
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain. .,Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain. .,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain. .,Aragon I+D Foundation, Zaragoza, Spain.
| |
Collapse
|
35
|
Seberg HE, Van Otterloo E, Cornell RA. Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res 2018. [PMID: 28649789 DOI: 10.1111/pcmr.12611] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MITF governs multiple steps in the development of melanocytes, including specification from neural crest, growth, survival, and terminal differentiation. In addition, the level of MITF activity determines the phenotype adopted by melanoma cells, whether invasive, proliferative, or differentiated. However, MITF does not act alone. Here, we review literature on the transcription factors that co-regulate MITF-dependent genes. ChIP-seq studies have indicated that the transcription factors SOX10, YY1, and TFAP2A co-occupy subsets of regulatory elements bound by MITF in melanocytes. Analyses at single loci also support roles for LEF1, RB1, IRF4, and PAX3 acting in combination with MITF, while sequence motif analyses suggest that additional transcription factors colocalize with MITF at many melanocyte-specific regulatory elements. However, the precise biochemical functions of each of these MITF collaborators and their contributions to gene expression remain to be elucidated. Analogous to the transcriptional networks in morphogen-patterned tissues during embryogenesis, we anticipate that the level of MITF activity is controlled not only by the concentration of activated MITF, but also by additional transcription factors that either quantitatively or qualitatively influence the expression of MITF-target genes.
Collapse
Affiliation(s)
- Hannah E Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
36
|
A preliminary immunohistochemical study of signal transducer and activator of transcription (STAT) proteins in primary oral malignant melanoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:164-171. [DOI: 10.1016/j.oooo.2017.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 02/03/2023]
|
37
|
Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, Zhai Y, Wu C, Xu Y. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep 2018; 8:1117. [PMID: 29348670 PMCID: PMC5773564 DOI: 10.1038/s41598-018-19463-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Hyperactivity of signal transducer and activity of transcription 3 (STAT3) plays a crucial role in melanoma invasion and metastasis. Gene therapy applying siRNA targeting STAT3 is a potential therapeutic strategy for melanoma. In this article, we first fabricated safe and novel dissolving microneedles (MNs) for topical application of STAT3 siRNA to enhance the skin penetration of siRNA and used polyethylenimine (PEI, 25 kDa) as carrier to improve cellular uptake of siRNA. The results showed that MNs can effectively penetrate skin and rapidly dissolve in the skin. In vitro B16F10 cell experiments presented that STAT3 siRNA PEI complex can enhance cellular uptake and transfection of siRNA, correspondingly enhance gene silencing efficiency and inhibit tumor cells growth. In vivo experiments indicated that topical application of STAT3 siRNA PEI complex delivered by dissolving MNs into skin can effectively suppress the development of melanoma through silencing STAT3 gene, and the inhibition effect is dose-dependent. STAT3 siRNA delivery via dissolving MNs is a promising approach for skin melanoma treatment with targeting inhibition efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Jingtong Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenyi Ruan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mengyao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yueming Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tao Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaiyue Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuanhao Zhai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Dalvi S, El Jabbour T, Kim S, Sheehan C, Ross J. Myeloid cell leukemia-1 protein expression and myeloid cell leukemia-1 gene amplification in non small cell lung cancer. INDIAN J PATHOL MICR 2018; 61:27-30. [DOI: 10.4103/ijpm.ijpm_731_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Sample A, He YY. Mechanisms and prevention of UV-induced melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:13-24. [PMID: 28703311 PMCID: PMC5760354 DOI: 10.1111/phpp.12329] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer and its incidence is rising, creating a costly and significant clinical problem. Exposure to ultraviolet (UV) radiation, namely UVA (315-400 nm) and UVB (280-315 nm), is a major risk factor for melanoma development. Cumulative UV radiation exposure from sunlight or tanning beds contributes to UV-induced DNA damage, oxidative stress, and inflammation in the skin. A number of factors, including hair color, skin type, genetic background, location, and history of tanning, determine the skin's response to UV radiation. In melanocytes, dysregulation of this UV radiation response can lead to melanoma. Given the complex origins of melanoma, it is difficult to develop curative therapies and universally effective preventative strategies. Here, we describe and discuss the mechanisms of UV-induced skin damage responsible for inducing melanomagenesis, and explore options for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
40
|
Liu SM, Lin CH, Lu J, Lin IY, Tsai MS, Chen MH, Ma N. miR-596 Modulates Melanoma Growth by Regulating Cell Survival and Death. J Invest Dermatol 2017; 138:911-921. [PMID: 29183729 DOI: 10.1016/j.jid.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023]
Abstract
Tumors grow because cancer cells lack the ability to balance cell survival and death signaling pathways. miR-596, a microRNA located at the 8p23.3 locus, has been shown by the TCGA-Assembler to be deleted in a significant number of melanoma samples. Here, we also validated the low levels of miR-596 in melanoma compared to tissue nevi, and Kaplan-Meier curve analysis revealed that low miR-596 expression was associated with worse overall survival. Moreover, we showed that miR-596 overexpression effectively inhibited MAPK/ERK signaling, cell proliferation, migration, and invasion and increased the cell apoptosis of melanoma cells. In addition, we found that miR-596 directly targets MEK1 and two apoptotic proteins, MCL1, and BCL2L1, in melanoma cells. Our findings indicated that miR-596 is an important miRNA that both negatively regulates the MAPK/ERK signaling pathway by targeting MEK1 and modulates the apoptosis pathway by targeting MCL1 and BCL2L1, suggesting that miR-596 could be a therapeutic candidate for treating melanoma, and a prognostic factor for melanoma patients.
Collapse
Affiliation(s)
- Szu-Mam Liu
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - In-Yu Lin
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan
| | - Mu-Shiun Tsai
- Department of Pathology, Landseed Hospital, Taoyuan, Taiwan
| | - Ming-Hong Chen
- Department of Pathology, Saint Paul's Hospital, Taoyuan, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
41
|
Gabellini C, Gómez-Abenza E, Ibáñez-Molero S, Tupone MG, Pérez-Oliva AB, de Oliveira S, Del Bufalo D, Mulero V. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer 2017; 142:584-596. [PMID: 28949016 DOI: 10.1002/ijc.31075] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022]
Abstract
The protein bcl-xL is able to enhance the secretion of the proinflammatory chemokine interleukin 8 (CXCL8) in human melanoma lines. In this study, we investigate whether the bcl-xL/CXCL8 axis is important for promoting melanoma angiogenesis and aggressiveness in vivo, using angiogenesis and xenotransplantation assays in zebrafish embryos. When injected into wild-type embryos, bcl-xL-overexpressing melanoma cells showed enhanced dissemination and angiogenic activity compared with control cells. Human CXCL8 protein elicited a strong proangiogenic activity in zebrafish embryos and zebrafish Cxcr2 receptor was identified as the mediator of CXCL8 proangiogenic activity using a morpholino-mediated gene knockdown. However, human CXCL8 failed to induce neutrophil recruitment in contrast to its zebrafish homolog. Interestingly, the greater aggressiveness of bcl-xL-overexpressing melanoma cells was mediated by an autocrine effect of CXCL8 on its CXCR2 receptor, as confirmed by an shRNA approach. Finally, correlation studies of gene expression and survival analyses using microarray and RNA-seq public databases of human melanoma biopsies revealed that bcl-xL expression significantly correlated with the expression of CXCL8 and other markers of melanoma progression. More importantly, a high level of co-expression of bcl-xL and CXCL8 was associated with poor prognosis in melanoma patients. In conclusion, these data demonstrate the existence of an autocrine CXCL8/CXCR2 signaling pathway in the bcl-xL-induced melanoma aggressiveness, encouraging the development of novel therapeutic approaches for high bcl-xL-expressing melanoma.
Collapse
Affiliation(s)
- Chiara Gabellini
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Elena Gómez-Abenza
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofia Ibáñez-Molero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Maria Grazia Tupone
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Ana B Pérez-Oliva
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofia de Oliveira
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.,Microvascular Biology and Inflammation Unit, Molecular Medicine Institute, Biochemistry Institute, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| |
Collapse
|
42
|
Delyon J, Chevret S, Jouary T, Dalac S, Dalle S, Guillot B, Arnault JP, Avril MF, Bedane C, Bens G, Pham-Ledard A, Mansard S, Grange F, Machet L, Meyer N, Legoupil D, Saiag P, Idir Z, Renault V, Deleuze JF, Hindie E, Battistella M, Dumaz N, Mourah S, Lebbe C. STAT3 Mediates Nilotinib Response in KIT-Altered Melanoma: A Phase II Multicenter Trial of the French Skin Cancer Network. J Invest Dermatol 2017; 138:58-67. [PMID: 28843487 DOI: 10.1016/j.jid.2017.07.839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/18/2017] [Accepted: 07/14/2017] [Indexed: 01/30/2023]
Abstract
Mutated oncogenic KIT is a therapeutic target in melanoma. We conducted a multicenter phase II trial on the KIT inhibitor nilotinib in patients with unresectable melanoma harboring KIT alteration. The primary endpoint was the response rate (complete response or partial response following Response Evaluation Criteria in Solid Tumors criteria) at 6 months. Pharmacodynamic studies using KIT sequencing, qPCR array, and immunostaining of downstream KIT effectors were performed during treatment. Twenty-five patients were included and received 400 mg oral nilotinib twice daily. At 6 months, nilotinib induced tumor response in four patients. The best overall response rate was 20% and the disease control rate was 56%, limited to patients harboring exon 11 or 13 mutations. Four patients exhibited durable response, including three persisting (3.6 and 2.8 years for two patients with stage IIIC and 2.5 years for one with IVM1b melanoma). A reduction in signal transducer and activator of transcription (STAT) 3 phosphorylation and its effectors (BCL-2, MCL-1) in tumors during follow-up was significantly associated with clinical response. In the KIT-mutated melanoma cell line M230, nilotinib reduced STAT3 signaling and STAT inhibitors were as efficient as KIT inhibitors in reducing cell proliferation. Our study evidences a significant association between STAT3 inhibition and response to nilotinib, and provides a rationale for future research assessing STAT inhibitors in KIT-mutated melanoma.
Collapse
Affiliation(s)
- Julie Delyon
- Service de Dermatologie, and CIC (Centre d'Investigations Cliniques), AP-HP, Hôpital Saint-Louis, Paris, France; INSERM, UMR-976, AP-HP, Hôpital Saint-Louis, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Sylvie Chevret
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Biostatistique et Information Médicale, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Thomas Jouary
- Unité Onco-dermatologie, Hôpital François Mitterrand, Pau, France
| | - Sophie Dalac
- Service de Dermatologie, CHU Dijon Bourgogne, Dijon, France
| | - Stephane Dalle
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard Lyon 1 University, Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | | | | | - Marie-Françoise Avril
- Service de Dermatologie, AP-HP, Hôpital Cochin, Paris, France; Université Paris Descartes, Paris, France
| | - Christophe Bedane
- Unité d'oncologie thoracique et cutanée, Hopital Dupuytren, Limoges, France
| | - Guido Bens
- Service de Dermatologie, Centre hospitalier régional d'Orléans, Orléans, France
| | | | - Sandrine Mansard
- Dermatology Department, CHU de Clermont Ferrand, Clermont Ferrand, France
| | - Florent Grange
- Dermatology Department, Reims University Hospital, Reims, France
| | - Laurent Machet
- Department of Dermatology, Centre Hospitalier Regional et Universitaire (CHRU) de Tours, Tours, France; Inserm U930, University Francois Rabelais de Tours, Tours, France
| | - Nicolas Meyer
- Dermatologie, Institut Universitaire du Cancer et CHU de Toulouse, Toulouse, France; Inserm UMR 1037, CRCT, Toulouse, France
| | | | - Philippe Saiag
- Université de Versailles St-Quentin, EA 4340, Boulogne-Billancourt, France; Service de Dermatologie Générale et Oncologique, AP-HP, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Zakia Idir
- AP-HP, Département de la Recherche Clinique et du Développement, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, CEPH-Fondation Jean Dausset, Paris, France
| | - Jean-François Deleuze
- Centre National de Génotypage, CEA, Evry, France; CEPH-Fondation Jean Dausset, Paris, France
| | - Elif Hindie
- Service de Médecine Nucléaire, CHU de Bordeaux, LabEx TRAIL, Université de Bordeaux, Bordeaux, France
| | - Maxime Battistella
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM, UMR_S1165, Paris, France; Pathology department, Hopital Saint-Louis, AP-HP, Paris, France
| | - Nicolas Dumaz
- INSERM, UMR-976, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Samia Mourah
- INSERM, UMR-976, AP-HP, Hôpital Saint-Louis, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire de Pharmacologie Biologique, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Celeste Lebbe
- Service de Dermatologie, and CIC (Centre d'Investigations Cliniques), AP-HP, Hôpital Saint-Louis, Paris, France; INSERM, UMR-976, AP-HP, Hôpital Saint-Louis, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
43
|
Li T, Fu X, Tse AKW, Guo H, Lee KW, Liu B, Su T, Wang X, Yu Z. Inhibiting STAT3 signaling is involved in the anti-melanoma effects of a herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos. Sci Rep 2017; 7:3097. [PMID: 28596565 PMCID: PMC5465088 DOI: 10.1038/s41598-017-03351-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
A herbal formula (SL) comprising Sophorae Flos and Lonicerae Japonicae Flos was traditionally used to treat melanoma. Constitutively active signal transducer and activator of transcription 3 (STAT3) has been proposed as a therapeutic target in melanoma. Here we investigated whether an ethanolic extract of SL (SLE) exerted anti-melanoma activities by inhibiting STAT3 signaling. B16F10 allograft model, A375 and B16F10 cells were employed to assess the in vivo and in vitro anti-melanoma activities of SLE. A375 cells stably expressing STAT3C, a constitutively active STAT3 mutant, were used to determine the role of STAT3 signaling in SLE’s anti-melanoma effects. Intragastric administration of SLE (1.2 g/kg) potently inhibited melanoma growth in mice and inhibited STAT3 phosphorylation in the tumors. In cultured cells, SLE dramatically reduced cell viability, induced apoptosis, suppressed migration and invasion, and restrained STAT3 activation and nuclear localization. STAT3C overexpression in A375 cells diminished SLE’s effects on cell viability, apoptosis and invasion. Collectively, SLE exerted potent anti-melanoma effects partially by inhibiting STAT3 signaling. This study provides pharmacological justification for the traditional use of this formula in treating melanoma, and suggests that SLE has the potential to be developed as a modern alternative and/or complimentary agent for melanoma treatment and prevention.
Collapse
Affiliation(s)
- Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiuqiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kin Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xueyu Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhiling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. .,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
44
|
Xiao W, Yao E, Zheng W, Tian F, Tian L. miR-337 can be a key negative regulator in melanoma. Cancer Biol Ther 2017; 18:392-399. [PMID: 28498028 DOI: 10.1080/15384047.2017.1323581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Incidence of melanoma is increasing annually worldwide. There remains a lack of suitable treatment methods which can significantly improve the 5-year survival rates of patients. It is established that micro RNAs (miRNAs) have important roles in the diagnosis and treatment of cancer. MiR-337 had been reported to regulate the development of variety of cancers, as a cancer suppressive factor. In our research we found that miR-337 had a lower expression in melanoma than adjacent tissues. The patients who had a lower miR-337 also got a worse survival. MiR-337 could target STAT3 to regulate the occurrence and development of melanoma. In summary, our findings suggest that the miR-337/STAT3 axis may serve as a potential target for the treatment of melanoma.
Collapse
Affiliation(s)
- Wanan Xiao
- a Department of Orthopedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , P.R. China
| | - Enyang Yao
- a Department of Orthopedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , P.R. China
| | - Wei Zheng
- a Department of Orthopedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , P.R. China
| | - Feng Tian
- a Department of Orthopedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , P.R. China
| | - Lijie Tian
- a Department of Orthopedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , P.R. China
| |
Collapse
|
45
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Abstract
The BCL2-selective BH3 mimetic venetoclax was recently approved for the treatment of relapsed, chromosome 17p-deleted chronic lymphocytic leukemia (CLL) and is undergoing extensive testing, alone and in combination, in lymphomas, acute leukemias, and solid tumors. Here we summarize recent advances in understanding of the biology of BCL2 family members that shed light on the action of BH3 mimetics, review preclinical and clinical studies leading to the regulatory approval of venetoclax, and discuss future investigation of this new class of antineoplastic agent.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Medical Physics and Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - X Wei Meng
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
47
|
Gu Y, Wang J, Peng L. (-)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway. Oncol Rep 2016; 37:483-491. [PMID: 27878290 DOI: 10.3892/or.2016.5270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore explored the effects of (-)-oleocanthal (OC) on the three processes in melanoma and investigated underlying mechanisms. In vitro, OC suppressed proliferation, migration, invasion and induced apoptosis in melanoma cells. In addition, OC inhibited proliferation, migration, invasion and tube formation in human umbilical vascular endothelial cells. In vivo, it exhibited potent activity in suppressing tumor growth in a subcutaneous xenograft model. Furthermore, OC suppressed proliferation and angiogenesis as measured by immunohistochemical staining of Ki-67 and CD31. In addition, OC was found to inhibit metastasis of melanoma in a lung metastasis model. Mechanistically, OC significantly suppressed signal transducer and activator of transcription 3 (STAT3) phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. OC also downregulated STAT3 target genes, including Mcl-1, Bcl-xL, MMP-2, MMP-9, VEGF, which are involved in apoptosis, invasion and angiogenesis of melanoma. These results support further investigation of OC as a potential anti-melanoma drug.
Collapse
Affiliation(s)
- Yanli Gu
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| | - Jing Wang
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| | - Lixin Peng
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
48
|
Serini S, Zinzi A, Ottes Vasconcelos R, Fasano E, Riillo MG, Celleno L, Trombino S, Cassano R, Calviello G. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells. J Dermatol Sci 2016; 84:149-159. [PMID: 27600927 DOI: 10.1016/j.jdermsci.2016.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. OBJECTIVE In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. METHODS WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. RESULTS We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. CONCLUSION The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del S. Cuore, Rome, Italy
| | - Antonio Zinzi
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Renata Ottes Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Elena Fasano
- Institute of General Pathology, Università Cattolica del S. Cuore, Rome, Italy
| | - Maria Greca Riillo
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Leonardo Celleno
- Institute of Dermatology, Università Cattolica del S. Cuore, Rome, Italy; Research Center for Biotechnology Applied to Cosmetology, Università Cattolica del S. Cuore, Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del S. Cuore, Rome, Italy; Research Center for Biotechnology Applied to Cosmetology, Università Cattolica del S. Cuore, Rome, Italy.
| |
Collapse
|
49
|
Or CHR, Su HL, Lee WC, Yang SY, Ho C, Chang CC. Diphenhydramine induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling and retards B16-F10 melanoma growth in vivo. Oncol Rep 2016; 36:3465-3471. [PMID: 27779705 DOI: 10.3892/or.2016.5201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Melanoma is the most aggressive skin malignancy with a high rate of mortality and is frequently refractory to many therapeutics, thus demanding the discovery of novel effective anti-melanoma agents. Diphenhydramine (DPH) is an H1 histamine receptor antagonist and a relatively safe drug. Previous studies have revealed the in vitro cytotoxicity of DPH against melanoma cells, but the mechanisms involved concerning its cytotoxicity and the in vivo anti-melanoma effect remain unknown. We herein present the first evidence supporting that DPH is selectively proapoptotic for a panel of melanoma cell lines irrespective of BRAFV600E status while sparing normal melanocytes. Of note, DPH effectively suppressed tumor growth and prolonged the length of survival of mice bearing B16-F10 melanoma. Mechanistic investigation further revealed that DPH downregulated antiapoptotic MCL-1, whereas MCL-1 overexpression impeded the proapoptotic action of DPH. Moreover, DPH attenuated STAT3 activation, as evidenced by the reduced levels of tyrosine 705-phosphorylated STAT3. Notably, ectopic expression of constitutively active STAT3 mutant reduced DPH-induced apoptosis but also protected MCL-1 from downregulation by DPH, illustrating that DPH impairs STAT3 activation to block STAT3-mediated induction of MCL-1 in eliciting apoptosis. Collectively, we for the first time validate the in vivo anti‑melanoma effect of DPH and also establish DPH as a drug targeting STAT3/MCL-1 survival signaling pathway to induce apoptosis. Our discovery therefore suggests the potential to repurpose DPH as an anti-melanoma therapeutic agent.
Collapse
Affiliation(s)
- Chi-Hung R Or
- Department of Life Science, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Hong-Lin Su
- Department of Life Science, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Wee-Chyan Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Shu-Yi Yang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Cheesang Ho
- Department of Anesthesiology, Kuang Tien General Hospital, Dajia Branch, Taichung 43761, Taiwan, R.O.C
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
50
|
Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death Differ 2016; 23:2054-2062. [PMID: 27689874 DOI: 10.1038/cdd.2016.96] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
A large proportion of melanomas harbour the activating BRAFV600E mutation that renders these cells dependent on MAPK signalling for their survival. Although the highly specific and clinically approved BRAFV600E kinase inhibitor, PLX4032, induces apoptosis of melanoma cells bearing this mutation, the underlying molecular mechanisms are not fully understood. Here, we reveal that PLX4032-induced apoptosis depends on the induction of the pro-apoptotic BH3-only protein PUMA with a minor contribution of its relative BIM. Apoptosis could be significantly augmented when PLX4032 was combined with an inhibitor of the pro-survival protein BCL-XL, whereas neutralization of the pro-survival family member BCL-2 caused no additional cell death. Although the initial response to PLX4032 in melanoma patients is very potent, resistance to the drug eventually develops and relapse occurs. Several factors can cause melanoma cells to develop resistance to PLX4032; one of them is the activation of the receptor tyrosine kinase cMET on melanoma cells by its ligand, hepatocyte growth factor (HGF), provided by the tumour microenvironment or the cancer cells themselves. We found that HGF mediates resistance of cMET-expressing BRAF mutant melanoma cells to PLX4032-induced apoptosis through downregulation of PUMA and BIM rather than by increasing the expression of pro-survival BCL-2-like proteins. These results suggest that resistance to PLX4032 may be overcome by specifically increasing the levels of PUMA and BIM in melanoma cells through alternative signalling cascades or by blocking pro-survival BCL-2 family members with suitable BH3 mimetic compounds.
Collapse
|