1
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
2
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
3
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
4
|
Maphanga VB, Skalicka-Woźniak K, Budzynska B, Enslin GM, Viljoen AM. Screening selected medicinal plants for potential anxiolytic activity using an in vivo zebrafish model. Psychopharmacology (Berl) 2020; 237:3641-3652. [PMID: 32840669 DOI: 10.1007/s00213-020-05642-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/13/2020] [Indexed: 02/03/2023]
Abstract
RATIONALE Medicinal plants are used extensively in many countries to treat conditions related to the central nervous system (CNS), and there is renewed interest to explore natural products, which may exhibit CNS activity. OBJECTIVE In this study, seven plants were selected based on literature reports of their ethnopharmacological use in treating anxiety-related conditions and assayed in a zebrafish model. METHODS Crude extracts were prepared with solvents of different polarities, and the maximum tolerated concentration (MTC) of these crude extracts was established. The anxiolytic activity of the crude extracts was determined using 5-day post-fertilization (dpf) zebrafish larvae. General locomotor activity and reverse-thigmotaxis behavior (indicative of anxiolytic activity) were analyzed under continuous illumination and alternating light-dark challenges, which induced anxiety in the zebrafish larvae. RESULTS Of the 28 extracts tested, 13 were toxic according to the MTC values obtained. Larvae were subsequently treated with the 15 non-toxic extracts, at a dose determined in the MTC assay or with 1% DMSO as control. The anxiolytic activity (reverse-thigmotaxis) was demonstrated by an increase in the percentage time spent by the larvae in the central arena of the well. Of the 15 non-toxic extracts tested, the Sceletium tortuosum water extract exhibited the most promising anxiolytic activity. CONCLUSIONS The zebrafish model was effective in studying anxiety-related behavior. Thus, the study confirmed that S. tortuosum mitigates anxiety in zebrafish larvae, a step towards the full in vivo validation of the traditional use of the plant.
Collapse
Affiliation(s)
- Veronica B Maphanga
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Gill M Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa. .,SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
5
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Abnormal repetitive behaviors in zebrafish and their relevance to human brain disorders. Behav Brain Res 2019; 367:101-110. [PMID: 30926483 DOI: 10.1016/j.bbr.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/01/2023]
Abstract
Abnormal repetitive behaviors (ARBs) are a prominent symptom of numerous human brain disorders and are commonly seen in rodent models as well. While rodent studies of ARBs continue to dominate the field, mounting evidence suggests that zebrafish (Danio rerio) also display ARB-like phenotypes and may therefore be a novel model organism for ARB research. In addition to clear practical research advantages as a model species, zebrafish share high genetic and physiological homology to humans and rodents, including multiple ARB-related genes and robust behaviors relevant to ARB. Here, we discuss a wide spectrum of stereotypic repetitive behaviors in zebrafish, data on their genetic and pharmacological modulation, and the overall translational relevance of fish ARBs to modeling human brain disorders. Overall, the zebrafish is rapidly emerging as a new promising model to study ARBs and their underlying mechanisms.
Collapse
|
7
|
Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJ, Rosemberg DB. Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2018; 90:471-485. [DOI: 10.1016/j.neubiorev.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Datta U, van Staaden M, Huber R. Crayfish Self-Administer Amphetamine in a Spatially Contingent Task. Front Physiol 2018; 9:433. [PMID: 29867520 PMCID: PMC5961511 DOI: 10.3389/fphys.2018.00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
Natural reward is an essential element of any organism’s ability to adapt to environmental variation. Its underlying circuits and mechanisms guide the learning process as they help associate an event, or cue, with the perception of an outcome’s value. More generally, natural reward serves as the fundamental generator of all motivated behavior. Addictive plant alkaloids are able to activate this circuitry in taxa ranging from planaria to humans. With modularly organized nervous systems and confirmed vulnerabilities to human drugs of abuse, crayfish have recently emerged as a compelling model for the study of the addiction cycle, including psychostimulant effects, sensitization, withdrawal, reinstatement, and drug reward in conditioned place preference paradigms. Here we extend this work with the demonstration of a spatially contingent, operant drug self-administration paradigm for amphetamine. When the animal enters a quadrant of the arena with a particular textured substrate, a computer-based control system delivers amphetamine through an indwelling fine-bore cannula. Resulting reward strength, dose-response, and the time course of operant conditioning were assessed. Individuals experiencing the drug contingent on their behavior, displayed enhanced rates of operant responses compared to that of their yoked (non-contingent) counterparts. Application of amphetamine near the supra-esophageal ganglion elicited stronger and more robust increases in operant responding than did systemic infusions. This work demonstrates automated implementation of a spatially contingent self-administration paradigm in crayfish, which provides a powerful tool to explore comparative perspectives in drug-sensitive reward, the mechanisms of learning underlying the addictive cycle, and phylogenetically conserved vulnerabilities to psychostimulant compounds.
Collapse
Affiliation(s)
- Udita Datta
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Moira van Staaden
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Robert Huber
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
9
|
Scherer L, Tomasik B, Rueda O, Pfister S. Framework for integrating animal welfare into life cycle sustainability assessment. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2017; 23:1476-1490. [PMID: 30996531 PMCID: PMC6435210 DOI: 10.1007/s11367-017-1420-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 05/27/2023]
Abstract
PURPOSE This study seeks to provide a framework for integrating animal welfare as a fourth pillar into a life cycle sustainability assessment and presents three alternative animal welfare indicators. METHODS Animal welfare is assessed during farm life and during slaughter. The indicators differ in how they value premature death. All three consider (1) the life quality of an animal such as space allowance, (2) the slaughter age either as life duration or life fraction, and (3) the number of animals affected for providing a product unit, e.g. 1 Mcal. One of the indicators additionally takes into account a moral value denoting their intelligence and self-awareness. The framework allows for comparisons across studies and products and for applications at large spatial scales. To illustrate the framework, eight products were analysed and compared: beef, pork, poultry, milk, eggs, salmon, shrimps, and, as a novel protein source, insects. RESULTS AND DISCUSSION Insects are granted to live longer fractions of their normal life spans, and their life quality is less compromised due to a lower assumed sentience. Still, they perform worst according to all three indicators, as their small body sizes only yield low product quantities. Therefore, we discourage from eating insects. In contrast, milk is the product that reduces animal welfare the least according to two of the three indicators and it performs relatively better than other animal products in most categories. The difference in animal welfare is mostly larger for different animal products than for different production systems of the same product. This implies that, besides less consumption of animal-based products, a shift to other animal products can significantly improve animal welfare. CONCLUSIONS While the animal welfare assessment is simplified, it allows for a direct integration into life cycle sustainability assessment. There is a trade-off between applicability and indicator complexity, but even a simple estimate of animal welfare is much better than ignoring the issue, as is the common practice in life cycle sustainability assessments. Future research should be directed towards elaborating the life quality criterion and extending the product coverage.
Collapse
Affiliation(s)
- Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC Leiden, Netherlands
| | | | - Oscar Rueda
- Effective Altruism Foundation, Basel, Switzerland
| | - Stephan Pfister
- Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
11
|
Forest M, Iturria‐Medina Y, Goldman JS, Kleinman CL, Lovato A, Oros Klein K, Evans A, Ciampi A, Labbe A, Greenwood CM. Gene networks show associations with seed region connectivity. Hum Brain Mapp 2017; 38:3126-3140. [PMID: 28321948 PMCID: PMC6866840 DOI: 10.1002/hbm.23579] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/17/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
Primary patterns in adult brain connectivity are established during development by coordinated networks of transiently expressed genes; however, neural networks remain malleable throughout life. The present study hypothesizes that structural connectivity from key seed regions may induce effects on their connected targets, which are reflected in gene expression at those targeted regions. To test this hypothesis, analyses were performed on data from two brains from the Allen Human Brain Atlas, for which both gene expression and DW-MRI were available. Structural connectivity was estimated from the DW-MRI data and an approach motivated by network topology, that is, weighted gene coexpression network analysis (WGCNA), was used to cluster genes with similar patterns of expression across the brain. Group exponential lasso models were then used to predict gene cluster expression summaries as a function of seed region structural connectivity patterns. In several gene clusters, brain regions located in the brain stem, diencephalon, and hippocampal formation were identified that have significant predictive power for these expression summaries. These connectivity-associated clusters are enriched in genes associated with synaptic signaling and brain plasticity. Furthermore, using seed region based connectivity provides a novel perspective in understanding relationships between gene expression and connectivity. Hum Brain Mapp 38:3126-3140, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie Forest
- Lady Davis Institute, Jewish General HospitalMontrealQuebecCanada
- Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
| | - Yasser Iturria‐Medina
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Jennifer S. Goldman
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Claudia L. Kleinman
- Lady Davis Institute, Jewish General HospitalMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Amanda Lovato
- Lady Davis Institute, Jewish General HospitalMontrealQuebecCanada
| | - Kathleen Oros Klein
- Lady Davis Institute, Jewish General HospitalMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
| | - Alan Evans
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Antonio Ciampi
- Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Aurélie Labbe
- Département De Sciences De La DécisionHECMontrealQuebecCanada
| | - Celia M.T. Greenwood
- Lady Davis Institute, Jewish General HospitalMontrealQuebecCanada
- Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of OncologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
12
|
Ferguson L, Petty A, Rohrscheib C, Troup M, Kirszenblat L, Eyles DW, van Swinderen B. Transient Dysregulation of Dopamine Signaling in a Developing Drosophila Arousal Circuit Permanently Impairs Behavioral Responsiveness in Adults. Front Psychiatry 2017; 8:22. [PMID: 28243212 PMCID: PMC5304146 DOI: 10.3389/fpsyt.2017.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
The dopamine ontogeny hypothesis for schizophrenia proposes that transient dysregulation of the dopaminergic system during brain development increases the likelihood of this disorder in adulthood. To test this hypothesis in a high-throughput animal model, we have transiently manipulated dopamine signaling in the developing fruit fly Drosophila melanogaster and examined behavioral responsiveness in adult flies. We found that either a transient increase of dopamine neuron activity or a transient decrease of dopamine receptor expression during fly brain development permanently impairs behavioral responsiveness in adults. A screen for impaired responsiveness revealed sleep-promoting neurons in the central brain as likely postsynaptic dopamine targets modulating these behavioral effects. Transient dopamine receptor knockdown during development in a restricted set of ~20 sleep-promoting neurons recapitulated the dopamine ontogeny phenotype, by permanently reducing responsiveness in adult animals. This suggests that disorders involving impaired behavioral responsiveness might result from defective ontogeny of sleep/wake circuits.
Collapse
Affiliation(s)
- Lachlan Ferguson
- Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Alice Petty
- Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Chelsie Rohrscheib
- Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Michael Troup
- Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Darryl W Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
13
|
An JY, Claudianos C. Genetic heterogeneity in autism: From single gene to a pathway perspective. Neurosci Biobehav Rev 2016; 68:442-453. [DOI: 10.1016/j.neubiorev.2016.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/15/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022]
|
14
|
Grados M, Prazak M, Saif A, Halls A. A review of animal models of obsessive-compulsive disorder: a focus on developmental, immune, endocrine and behavioral models. Expert Opin Drug Discov 2015; 11:27-43. [PMID: 26558411 DOI: 10.1517/17460441.2016.1103225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive thoughts (obsessions) and/or repetitive behaviors (compulsions). Several models of OCD exist, many which employ behaviors such as over-grooming or hoarding as correlates for compulsive behaviors - often using a response to serotonergic agents as evidence for their validity. Recent discoveries in the genetics of OCD and the identification of aberrancies of glutamatergic, hormonal, and immune pathways in the OCD phenotype highlight a need to review existing of animal models of OCD. The focus of attention to these pathways may lead to possible new targets for drug discovery. AREAS COVERED In this review, the authors describe frameworks for animal models in OCD conceptualized as either biological (e.g., developmental, genetic, and endocrine pathways), or behavioral (e.g., repetitive grooming, and stereotypies). In addition, the authors give special attention to the emerging role of glutamate in OCD. EXPERT OPINION While many animal models for OCD demonstrate pathologic repetitive behavior phenotypes, which are relieved by serotoninergic agents, animal models based on reversal learning, perseverative responding, and neurodevelopmental mechanisms represent robust new paradigms. Glutamatergic influences in these new animal models suggest that drug discovery using neuroprotective approaches may represent a new stage for pharmacologic developments in OCD.
Collapse
Affiliation(s)
- Marco Grados
- a Department of Psychiatry , Johns Hopkins University , 1800 Orleans St. - 12th floor, Baltimore , MD 21287 , USA
| | - Michael Prazak
- b Department of Medicine , Dow University of Health Sciences , Karachi , Pakistan
| | - Aneeqa Saif
- c Department of Psychology Grand Forks , University of North Dakota , ND , USA
| | - Andrew Halls
- a Department of Psychiatry , Johns Hopkins University , 1800 Orleans St. - 12th floor, Baltimore , MD 21287 , USA
| |
Collapse
|
15
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
16
|
Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T. Place memory retention in Drosophila. Neurobiol Learn Mem 2015; 123:217-24. [DOI: 10.1016/j.nlm.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
17
|
Søvik E, Even N, Radford CW, Barron AB. Cocaine affects foraging behaviour and biogenic amine modulated behavioural reflexes in honey bees. PeerJ 2014; 2:e662. [PMID: 25405075 PMCID: PMC4232840 DOI: 10.7717/peerj.662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/20/2014] [Indexed: 11/20/2022] Open
Abstract
In humans and other mammals, drugs of abuse alter the function of biogenic amine pathways in the brain leading to the subjective experience of reward and euphoria. Biogenic amine pathways are involved in reward processing across diverse animal phyla, however whether cocaine acts on these neurochemical pathways to cause similar rewarding behavioural effects in animal phyla other than mammals is unclear. Previously, it has been shown that bees are more likely to dance (a signal of perceived reward) when returning from a sucrose feeder after cocaine treatment. Here we examined more broadly whether cocaine altered reward-related behaviour, and biogenic amine modulated behavioural responses in bees. Bees developed a preference for locations at which they received cocaine, and when foraging at low quality sucrose feeders increase their foraging rate in response to cocaine treatment. Cocaine also increased reflexive proboscis extension to sucrose, and sting extension to electric shock. Both of these simple reflexes are modulated by biogenic amines. This shows that systemic cocaine treatment alters behavioural responses that are modulated by biogenic amines in insects. Since insect reward responses involve both octopamine and dopamine signalling, we conclude that cocaine treatment altered diverse reward-related aspects of behaviour in bees. We discuss the implications of these results for understanding the ecology of cocaine as a plant defence compound. Our findings further validate the honey bee as a model system for understanding the behavioural impacts of cocaine, and potentially other drugs of abuse.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Biological Sciences, Macquarie University , Sydney , Australia ; Department of Biology, Washington University in St. Louis , St. Louis , USA
| | - Naïla Even
- Department of Biological Sciences, Macquarie University , Sydney , Australia
| | - Catherine W Radford
- Department of Biological Sciences, Macquarie University , Sydney , Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University , Sydney , Australia
| |
Collapse
|
18
|
Abstract
Significant progress is being made in defining the genetic etiology of schizophrenia. As the list of implicated genes grows, parallel developments in gene editing technology provide new methods to investigate gene function in model systems. The confluence of these two research fields--gene discovery and functional biology--may offer novel insights into schizophrenia etiology. We review recent advances in these fields, consider the likely obstacles to progress, and consider strategies as to how these can be overcome.
Collapse
Affiliation(s)
- Shane E. McCarthy
- Stanley Institute of Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY
| | - W. Richard McCombie
- Stanley Institute of Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY
| | - Aiden Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland,*To whom correspondence should be addressed; Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland; tel: +353-1-8962467, fax: +353-1-8963405, e-mail:
| |
Collapse
|
19
|
Ali S, Aalders J, Richardson MK. Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development. Zebrafish 2014; 11:129-41. [PMID: 24650241 DOI: 10.1089/zeb.2013.0901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay.
Collapse
Affiliation(s)
- Shaukat Ali
- 1 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, The Netherlands
| | | | | |
Collapse
|
20
|
Wang X, Piccolo CW, Cohen BM, Buttner EA. Transient receptor potential melastatin (TRPM) channels mediate clozapine-induced phenotypes in Caenorhabditis elegans. J Neurogenet 2014; 28:86-97. [PMID: 24564792 DOI: 10.3109/01677063.2013.879717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular mechanisms of action of antipsychotic drugs (APDs) are not fully understood. Here, we characterize phenotypes of missense and knockout mutations in the Caenorhabditis elegans transient receptor potential melastatin (TRPM) channel ortholog gtl-2, a candidate APD target identified in a genome-wide RNAi (RNA interference) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes). We then employ the developmental phenotypes of gtl-2(lf) mutants to validate our previous gtl-2(RNAi) result. GTL-2 acts in the excretory canal cell to regulate Mg(2+) homeostasis. Using exc (excretory canal abnormal) gene mutants, we demonstrate that excretory canal cell function is necessary for clozapine-induced developmental delay and lethality. Moreover, cell-specific promoter-driven expression studies reveal that GTL-2 function in the excretory canal cell is important for its role in the SCLA phenotype. We then investigate the mechanism by which GTL-2 function in the excretory canal cell impacts clozapine-induced phenotypes. gtl-2(lf) mutations cause hypermagnesemia, and we show that exposure of the wild-type strain to high Mg(2+) phenocopies gtl-2(lf) with respect to suppression of clozapine-induced developmental delay and lethality. Our results suggest that GTL-2 TRPM channel function in the excretory canal cell is important for clozapine's developmental effects. TRP channels are expressed in mammalian brain and are implicated in the pathogenesis of mental illnesses but have not been previously implicated in APD action.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, Harvard Medical School , Boston, Massachusetts , USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35:63-75. [PMID: 24412421 DOI: 10.1016/j.tips.2013.12.002] [Citation(s) in RCA: 728] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/27/2022]
Abstract
The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions are a rapidly emerging critical field in translational neuroscience and pharmacology research.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
23
|
Søvik E, Barron AB. Invertebrate models in addiction research. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:153-65. [PMID: 24192516 DOI: 10.1159/000355506] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
Abstract
While drug addiction is a uniquely human problem, most research examining the biological mechanisms of the transition from substance use to addiction is conducted with vertebrate animal models. Many other fields of neuroscience have greatly benefitted from contributions from simple and manipulable invertebrate model systems. However, the potential of invertebrate research has yet to be fully capitalised on in the field of addiction neuroscience. This may be because of the complexity of addiction and the clinical imperative of addiction research. We argue that the homocentric diagnostic criteria of addiction are no more a hindrance to the use of invertebrate models than they are to vertebrate models. We highlight the strengths of the diversity of different invertebrate model systems in terms of neuroanatomy and molecular machinery, and stress that working with a range of different models will aid in understanding addiction and not be a disadvantage. Finally, we discuss the specific advantages of utilising invertebrate animals for addiction research and highlight key areas in which invertebrates are suited for making unique and meaningful contributions to this field.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Biological Sciences, Macquarie University, Sydney, N.S.W., Australia
| | | |
Collapse
|
24
|
Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SCF, Weng W, Bally-Cuif L, Schneider H. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013; 10:70-86. [PMID: 23590400 DOI: 10.1089/zeb.2012.0861] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.
Collapse
Affiliation(s)
- Allan V Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Aiden Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
26
|
van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull 2013; 92:1-11. [DOI: 10.1016/j.brainresbull.2011.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/03/2023]
|
27
|
Saur T, DeMarco SE, Ortiz A, Sliwoski GR, Hao L, Wang X, Cohen BM, Buttner EA. A genome-wide RNAi screen in Caenorhabditis elegans identifies the nicotinic acetylcholine receptor subunit ACR-7 as an antipsychotic drug target. PLoS Genet 2013; 9:e1003313. [PMID: 23468647 PMCID: PMC3585123 DOI: 10.1371/journal.pgen.1003313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/22/2012] [Indexed: 11/18/2022] Open
Abstract
We report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotinic acetylcholine receptor (nAChR) homolog acr-7. We validate the requirement for acr-7 by showing that acr-7 knockout suppresses clozapine-induced larval arrest and that expression of a full-length translational GFP fusion construct rescues this phenotype. nAChR agonists phenocopy the developmental effects of clozapine, while nAChR antagonists partially block these effects. ACR-7 is strongly expressed in the pharynx, and clozapine inhibits pharyngeal pumping. acr-7 knockout and nAChR antagonists suppress clozapine-induced inhibition of pharyngeal pumping. These findings suggest that clozapine activates ACR-7 channels in pharyngeal muscle, leading to tetanus of pharyngeal muscle with consequent larval arrest. No APDs are known to activate nAChRs, but a number of studies indicate that α7-nAChR agonists may prove effective for the treatment of psychosis. α-like nAChR signaling is a mechanism through which clozapine may produce its therapeutic and/or toxic effects in humans, a hypothesis that could be tested following identification of the mammalian ortholog of C. elegans acr-7. Clozapine is the most effective medication for treatment-refractory schizophrenia but produces toxic side effects such as agranulocytosis, metabolic syndrome, and developmental defects after exposure early in life. However, clozapine's molecular mechanisms of action remain poorly understood. In past studies, we showed that pharmacogenomic experiments in C. elegans identify novel signaling pathways through which clozapine exerts its biological effects. Here, we report the first genetic suppressor screen for antipsychotic (APD) drug targets in an animal and identify 40 suppressors of clozapine-induced larval arrest, including the α-like nicotinic acetylcholine receptor (nAChR) acr-7. We validate our RNAi result by showing that an acr-7 knockout suppresses clozapine-induced larval arrest and inhibition of pharyngeal pumping. Expression of a full-length translational acr-7::GFP (Green Fluorescent Protein) construct in the acr-7 mutant rescues suppression of these phenotypes. Clozapine-induced phenotypes are phenocopied by nAChR agonists and blocked by nAChR antagonists. The results suggest that clozapine induces these phenotypes through activation of the ACR-7 receptor. Recent studies have underscored the potential importance of nAChRs in the pathophysiology of schizophrenia. A clearer understanding of APD mechanisms would facilitate the design of improved drugs and may inform our understanding, not only of drug mechanisms, but also of disease pathogenesis.
Collapse
Affiliation(s)
- Taixiang Saur
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Sarah E. DeMarco
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Angelica Ortiz
- Department of Molecular Pathology, University of Texas–MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory R. Sliwoski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Limin Hao
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Xin Wang
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Edgar A. Buttner
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Behavioral plasticity, learning, and memory in C. elegans. Curr Opin Neurobiol 2013; 23:92-9. [DOI: 10.1016/j.conb.2012.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 08/31/2012] [Accepted: 09/17/2012] [Indexed: 01/02/2023]
|
29
|
Calcagno B, Eyles D, van Alphen B, van Swinderen B. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia. Transl Psychiatry 2013; 3:e206. [PMID: 23299394 PMCID: PMC3567203 DOI: 10.1038/tp.2012.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.
Collapse
Affiliation(s)
- B Calcagno
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - D Eyles
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Wacol, QLD, Australia
| | - B van Alphen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - B van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Brain Institute, The University of Queensland, Upland Road, St. Lucia, QLD, Australia. E-mail:
| |
Collapse
|
30
|
The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013; 18:38-52. [PMID: 22547114 DOI: 10.1038/mp.2012.34] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of halting progress, recent large genome-wide association studies (GWAS) are finally shining light on the genetic architecture of schizophrenia. The picture emerging is one of sobering complexity, involving large numbers of risk alleles across the entire allelic spectrum. The aims of this article are to summarize the key genetic findings to date and to compare and contrast methods for identifying additional risk alleles, including GWAS, targeted genotyping and sequencing. A further aim is to consider the challenges and opportunities involved in determining the functional basis of genetic associations, for instance using functional genomics, cellular models, animal models and imaging genetics. We conclude that diverse approaches will be required to identify and functionally characterize the full spectrum of risk variants for schizophrenia. These efforts should adhere to the stringent standards of statistical association developed for GWAS and are likely to entail very large sample sizes. Nonetheless, now more than any previous time, there are reasons for optimism and the ultimate goal of personalized interventions and therapeutics, although still distant, no longer seems unattainable.
Collapse
|
31
|
Eyles DW, Burne THJ, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 2013; 34:47-64. [PMID: 22796576 DOI: 10.1016/j.yfrne.2012.07.001] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/19/2012] [Accepted: 07/02/2012] [Indexed: 01/27/2023]
Abstract
Increasingly vitamin D deficiency is being associated with a number of psychiatric conditions. In particular for disorders with a developmental basis, such as autistic spectrum disorder and schizophrenia the neurobiological plausibility of this association is strengthened by the preclinical data indicating vitamin D deficiency in early life affects neuronal differentiation, axonal connectivity, dopamine ontogeny and brain structure and function. More recently epidemiological associations have been made between low vitamin D and psychiatric disorders not typically associated with abnormalities in brain development such as depression and Alzheimer's disease. Once again the preclinical findings revealing that vitamin D can regulate catecholamine levels and protect against specific Alzheimer-like pathology increase the plausibility of this link. In this review we have attempted to integrate this clinical epidemiology with potential vitamin D-mediated basic mechanisms. Throughout the review we have highlighted areas where we think future research should focus.
Collapse
Affiliation(s)
- Darryl W Eyles
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD 4076, Australia.
| | | | | |
Collapse
|
32
|
Transient knockdown of tyrosine hydroxylase during development has persistent effects on behaviour in adult zebrafish (Danio rerio). PLoS One 2012; 7:e42482. [PMID: 22879998 PMCID: PMC3411795 DOI: 10.1371/journal.pone.0042482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/06/2012] [Indexed: 01/11/2023] Open
Abstract
Abnormal dopamine (DA) signaling is often suggested as causative in schizophrenia. The other prominent hypothesis for this disorder, largely driven by epidemiological data, is that certain adverse events during the early stages of brain development increase an individual's risk of developing schizophrenia later in life. However, the clinical and preclinical literature consistently implicates behavioural, cognitive, and pharmacological abnormalities, implying that DA signaling is abnormal in the adult brain. How can we reconcile these two major hypotheses underlying much of the clinical and basic research into schizophrenia? In this study we have transiently knocked down tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis) gene expression in the early stages of brain development in zebrafish using morpholinos. We show that by adulthood, TH and DA levels have returned to normal and basic DA-mediated behaviours, such as locomotion, are also normal. However, when they were exposed to a novel environment the levels of freezing and immediate positioning in deeper zones were significantly reduced in these adult fish. The neurochemistry underlying these behaviours is complex, and the exact mechanisms for these abnormal behaviours remains unknown. This study demonstrates that early transient alterations in DA ontogeny can produce persistent alterations in adult brain function and suggests that the zebrafish may be a promising model animal for future studies directed at clarifying the basic neurodevelopmental mechanisms behind complex psychiatric disease.
Collapse
|
33
|
Eyles D, Feldon J, Meyer U. Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models. Transl Psychiatry 2012; 2:e81. [PMID: 22832818 PMCID: PMC3309552 DOI: 10.1038/tp.2012.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 01/08/2012] [Indexed: 12/13/2022] Open
Abstract
The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as 'Risk factors for schizophrenia--all roads lead to dopamine' or 'The dopamine hypothesis of schizophrenia--the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start.
Collapse
Affiliation(s)
- D Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia
| | - J Feldon
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - U Meyer
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
34
|
Methods to Quantify Basal and Stress-Induced Cortisol Response in Larval Zebrafish. NEUROMETHODS 2012. [DOI: 10.1007/978-1-61779-597-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
35
|
Vernier P, Kyzar EJ, Maximino C, Tierney K, Gebhardt M, Lange M, Jesuthasan S, Stewart AM, Neuhauss SC, Robinson K, Norton W, Herculano AM, Cachat J, Tropepe V, Landsman S, Wisenden B, Bally-Cuif L, Kalueff AV. Time to recognize zebrafish ‘affective’ behavior. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 2012; 62:135-43. [PMID: 21843537 PMCID: PMC3195883 DOI: 10.1016/j.neuropharm.2011.07.037] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/21/2022]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as a useful animal model in neurobehavioral research. Mounting evidence shows the suitability of zebrafish to model various aspects of anxiety-related states. Here, we evaluate established and novel approaches to uncover the molecular substrates, genetic pathways and neural circuits of anxiety using adult zebrafish. Experimental approaches to modeling anxiety in zebrafish include novelty-based paradigms, pharmacological and genetic manipulations, as well as innovative video-tracking, 3D-reconstructions, bioinformatics-based searchable databases and omics-based tools. Complementing traditional rodent models of anxiety, we provide a conceptual framework for the wider application of zebrafish and other aquatic models in anxiety research. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Adam Stewart
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Siddharth Gaikwad
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Evan Kyzar
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jeremy Green
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Andrew Roth
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Allan V. Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
37
|
Simmich J, Staykov E, Scott E. Zebrafish as an appealing model for optogenetic studies. PROGRESS IN BRAIN RESEARCH 2012; 196:145-62. [PMID: 22341325 DOI: 10.1016/b978-0-444-59426-6.00008-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetics, the use of light-based protein tools, has begun to revolutionize biological research. The approach has proven especially useful in the nervous system, where light has been used both to detect and to manipulate activity in targeted neurons. Optogenetic tools have been deployed in systems ranging from cultured cells to primates, with each offering a particular combination of advantages and drawbacks. In this chapter, we provide an overview of optogenetics in zebrafish. Two of the greatest attributes of the zebrafish model system are external fertilization and transparency in early life stages. Combined, these allow researchers to observe the internal structures of developing zebrafish embryos and larvae without dissections or other interference. This transparency, combined with the animals' small size, simple husbandry, and similarity to mammals in many structures and processes, has made zebrafish a particularly popular model system in developmental biology. The easy optical access also dovetails with optogenetic tools, allowing their use in intact, developing, and behaving animals. This means that optogenetic studies in embryonic and larval zebrafish can be carried out in a high-throughput fashion with relatively simple equipment. As a consequence, zebrafish have been an important proving ground for optogenetic tools and approaches and have already yielded important new knowledge about the neural circuits underlying behavior. Here, we provide a general introduction to zebrafish as a model system for optogenetics. Through descriptions and analyses of important optogenetic studies that have been done in zebrafish, we highlight the advantages and liabilities that the system brings to optogenetic experiments.
Collapse
Affiliation(s)
- Joshua Simmich
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | | |
Collapse
|
38
|
Ali S, Champagne DL, Richardson MK. Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 2011; 228:272-83. [PMID: 22138507 DOI: 10.1016/j.bbr.2011.11.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/04/2011] [Accepted: 11/17/2011] [Indexed: 11/17/2022]
Abstract
The zebrafish is a powerful whole animal model which is complementary to in vitro and mammalian models. It has been shown to be applicable to the high-throughput behavioral screening of compound libraries. We have analysed 60 water-soluble toxic compounds covering a range of common drugs, toxins and chemicals, and representing various pharmacological mechanisms. Wild-type zebrafish larvae were cultured individually in defined buffer in 96 well plates. They were exposed for a 96h period starting at 24h post fertilization (hpf). A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC(50) determination. LC(50) values were determined at 24h intervals and behavioral testing was carried out on day 5. We used the visual motor response test, in which movement of individual larvae was analysed using automated video-tracking. For all compounds, LC(50) values were found to decrease as the embryo developed. The majority of compounds (57/60) produced an effect in both the basal (lights on) and challenge phases (lights off) of the behavioral assay. These effects were either (i) suppression of locomotor activity (monotonic concentration-response); (ii) stimulation then suppression (biphasic response); (iii) stimulation (monotonic response). We conclude that behavioral assays with zebrafish embryos could be useful for pharmaceutical efficacy and toxicity screening. The precise phenotypic outcome obtained with behavioral assay varies with compound class.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, Leiden, The Netherlands
| | | | | |
Collapse
|
39
|
Introduction: reminiscing on models and modeling. Results Probl Cell Differ 2011. [PMID: 22009344 DOI: 10.1007/978-3-642-21649-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
This chapter answers three basic questions, which are: (1) Why build models, (2) why build models of fragile X syndrome, and (3) what has been learned from the models of fragile X syndrome that have been made? The first question is used to frame the other two questions, providing the appropriate context by which the rest of the book should be examined. Of necessity the last two questions are only addressed briefly, and from one man's point of view, as they contain the subject matter of the entirety of the book. Thus, the reader is introduced to the various topics under review and urged to read for him/herself their contents, drawing such conclusions as he/she thinks are warranted.
Collapse
|
40
|
Ali S, Champagne DL, Spaink HP, Richardson MK. Zebrafish embryos and larvae: a new generation of disease models and drug screens. ACTA ACUST UNITED AC 2011; 93:115-33. [PMID: 21671352 DOI: 10.1002/bdrc.20206] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, The Netherlands
| | | | | | | |
Collapse
|
41
|
Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carlos D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1421-31. [PMID: 21122812 DOI: 10.1016/j.pnpbp.2010.11.035] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022]
Abstract
Zebrafish (Danio rerio) are becoming increasingly popular in neurobehavioral research. Here, we summarize recent data on behavioral responses of adult zebrafish to a wide spectrum of putative anxiolytic and anxiogenic agents. Using the novel tank test as a sensitive and efficient behavioral assay, zebrafish anxiety-like behavior can be bi-directionally modulated by drugs affecting the gamma-aminobutyric acid, monoaminergic, cholinergic, glutamatergic and opioidergic systems. Complementing human and rodent data, zebrafish drug-evoked phenotypes obtained in this test support this species as a useful model for neurobehavioral and psychopharmacological research.
Collapse
Affiliation(s)
- Adam Stewart
- Department of Pharmacology and Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Foldi CJ, Eyles DW, Flatscher-Bader T, McGrath JJ, Burne THJ. New perspectives on rodent models of advanced paternal age: relevance to autism. Front Behav Neurosci 2011; 5:32. [PMID: 21734873 PMCID: PMC3124931 DOI: 10.3389/fnbeh.2011.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/14/2011] [Indexed: 12/29/2022] Open
Abstract
Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers. Evidence also suggests that epigenetic patterning in the sperm from older men is altered. Rodent models provide an experimental platform to examine the association between paternal age and brain development. Several rodent models of advanced paternal age (APA) have been published with relevance to intermediate phenotypes related to autism. All four published APA models vary in key features creating a lack of consistency with respect to behavioral phenotypes. A consideration of common phenotypes that emerge from these APA-related mouse models may be informative in the exploration of the molecular and neurobiological correlates of APA.
Collapse
Affiliation(s)
- Claire J Foldi
- Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| | | | | | | | | |
Collapse
|
43
|
Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 2011; 6:e17597. [PMID: 21408171 PMCID: PMC3049776 DOI: 10.1371/journal.pone.0017597] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
Abstract
The use of adult zebrafish (Danio rerio) in neurobehavioral research is rapidly expanding. The present large-scale study applied the newest video-tracking and data-mining technologies to further examine zebrafish anxiety-like phenotypes. Here, we generated temporal and spatial three-dimensional (3D) reconstructions of zebrafish locomotion, globally assessed behavioral profiles evoked by several anxiogenic and anxiolytic manipulations, mapped individual endpoints to 3D reconstructions, and performed cluster analysis to reconfirm behavioral correlates of high- and low-anxiety states. The application of 3D swim path reconstructions consolidates behavioral data (while increasing data density) and provides a novel way to examine and represent zebrafish behavior. It also enables rapid optimization of video tracking settings to improve quantification of automated parameters, and suggests that spatiotemporal organization of zebrafish swimming activity can be affected by various experimental manipulations in a manner predicted by their anxiolytic or anxiogenic nature. Our approach markedly enhances the power of zebrafish behavioral analyses, providing innovative framework for high-throughput 3D phenotyping of adult zebrafish behavior.
Collapse
|