1
|
Duron DI, Tanguturi P, Campbell CS, Chou K, Bejarano P, Gabriel KA, Bowden JL, Mishra S, Brackett C, Barlow D, Houseknecht KL, Blagg BSJ, Streicher JM. Inhibiting spinal cord-specific hsp90 isoforms reveals a novel strategy to improve the therapeutic index of opioid treatment. Sci Rep 2024; 14:14715. [PMID: 38926482 PMCID: PMC11208559 DOI: 10.1038/s41598-024-65637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Opioids are the gold standard for the treatment of chronic pain but are limited by adverse side effects. In our earlier work, we showed that Heat shock protein 90 (Hsp90) has a crucial role in regulating opioid signaling in spinal cord; Hsp90 inhibition in spinal cord enhances opioid anti-nociception. Building on these findings, we injected the non-selective Hsp90 inhibitor KU-32 by the intrathecal route into male and female CD-1 mice, showing that morphine anti-nociceptive potency was boosted by 1.9-3.5-fold in acute and chronic pain models. At the same time, tolerance was reduced from 21-fold to 2.9 fold and established tolerance was rescued, while the potency of constipation and reward was unchanged. These results demonstrate that spinal Hsp90 inhibition can improve the therapeutic index of morphine. However, we also found that systemic non-selective Hsp90 inhibition blocked opioid pain relief. To avoid this effect, we used selective small molecule inhibitors and CRISPR gene editing to identify 3 Hsp90 isoforms active in spinal cord (Hsp90α, Hsp90β, and Grp94) while only Hsp90α was active in brain. We thus hypothesized that a systemically delivered selective inhibitor to Hsp90β or Grp94 could selectively inhibit spinal cord Hsp90 activity, resulting in enhanced opioid therapy. We tested this hypothesis using intravenous delivery of KUNB106 (Hsp90β) and KUNG65 (Grp94), showing that both drugs enhanced morphine anti-nociceptive potency while rescuing tolerance. Together, these results suggest that selective inhibition of spinal cord Hsp90 isoforms is a novel, translationally feasible strategy to improve the therapeutic index of opioids.
Collapse
Affiliation(s)
- David I Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Christopher S Campbell
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Kerry Chou
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Paul Bejarano
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Katherin A Gabriel
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Jessica L Bowden
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Brackett
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.
- Comprehensive Center for Pain and Addiction, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Gabriel KA, Streicher JM. HSP90 inhibition in the mouse spinal cord enhances opioid signaling by suppressing an AMPK-mediated negative feedback loop. Sci Signal 2023; 16:eade2438. [PMID: 37040443 PMCID: PMC11010773 DOI: 10.1126/scisignal.ade2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Opioids and other agonists of the μ-opioid receptor are effective at managing acute pain, but their chronic use can lead to tolerance that limits their efficacy. We previously reported that inhibiting the chaperone protein HSP90 in the spinal cords of mice promotes the antinociceptive effects of opioids in a manner that involved increased activation of the kinase ERK. Here, we found that the underlying mechanism involves the relief of a negative feedback loop mediated by the kinase AMPK. Intrathecal treatment of male and female mice with the HSP90 inhibitor 17-AAG decreased the abundance of the β1 subunit of AMPK in the spinal cord. The antinociceptive effects of 17-AAG with morphine were suppressed by intrathecal administration of AMPK activators and enhanced by an AMPK inhibitor. Opioid treatment increased the abundance of phosphorylated AMPK in the dorsal horn of the spinal cord, where it colocalized with a neuronal marker and the neuropeptide CGRP. Knocking down AMPK in CGRP-positive neurons enhanced the antinociceptive effects of morphine and demonstrated that AMPK mediated the signal transduction between HSP90 inhibition and ERK activation. These data suggest that AMPK mediates an opioid-induced negative feedback loop in CGRP neurons of the spinal cord and that this loop can be disabled by HSP90 inhibition to enhance the efficacy of opioids.
Collapse
Affiliation(s)
- Katherin A. Gabriel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson AZ USA
| |
Collapse
|
4
|
Fonville L, Paterson L, Herlinger K, Hayes A, Hill R, Nutt D, Lingford-Hughes A. Functional evaluation of NK 1 antagonism on cue reactivity in opiate dependence; An fMRI study. Drug Alcohol Depend 2021; 221:108564. [PMID: 33548897 PMCID: PMC8047866 DOI: 10.1016/j.drugalcdep.2021.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 10/26/2022]
Abstract
BACKGROUND Opiate addiction is a major health challenge with substantial societal cost. Though harm minimisation strategies have been effective, there is a growing need for new treatments for detoxification and relapse prevention. Preclinical research has found neurokinin 1 (NK1) receptors have prominent effects on opiate reward and reinforcement, and human studies have found NK1 antagonism led to reductions in craving and withdrawal. However, its effect on brain mechanisms in opiate addiction has not yet been examined. METHODS This study aims to assess the impact of NK1 antagonist aprepitant on heroin cue-elicited changes in blood-oxygenation level dependent (BOLD) signal in opiate dependent individuals undergoing detoxification. Participants will attend two scanning sessions and receive a single dose of aprepitant (320 mg) and a placebo in a randomised, cross-over design. During functional magnetic resonance imaging participants will undergo two runs of a cue reactivity task, which consists of passive viewing of drug cues or neutral cues in a block design fashion. We hypothesise that NK1 antagonism will attenuate the BOLD response to drug cues in the caudate nucleus and amygdala. Regions of interest were selected based on NK1 receptor density and their role in cue reactivity and craving.
Collapse
Affiliation(s)
- Leon Fonville
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, United Kingdom.
| | - Louise Paterson
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Katherine Herlinger
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Alexandra Hayes
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Raymond Hill
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom
| | - David Nutt
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Anne Lingford-Hughes
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, United Kingdom
| |
Collapse
|
5
|
Dhanalakshmi C, Janakiraman U, Moutal A, Fukunaga K, Khanna R, Nelson MA. Evaluation of the effects of the T-type calcium channel enhancer SAK3 in a rat model of TAF1 deficiency. Neurobiol Dis 2021; 149:105224. [PMID: 33359140 PMCID: PMC8230513 DOI: 10.1016/j.nbd.2020.105224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
The TATA-box binding protein associated factor 1 (TAF1) is part of the TFIID complex that plays a key role during the initiation of transcription. Variants of TAF1 are associated with neurodevelopmental disorders. Previously, we found that CRISPR/Cas9 based editing of the TAF1 gene disrupts the morphology of the cerebral cortex and blunts the expression as well as the function of the CaV3.1 (T-type) voltage gated calcium channel. Here, we tested the efficacy of SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate), a T-type calcium channel enhancer, in an animal model of TAF1 intellectual disability (ID) syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21, the rat pups were given SAK3 (0.25 mg/kg, p.o.) or vehicle for 14 days (i.e. till post-natal day 35) and then subjected to behavioral, morphological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued locomotion abnormalities associated with TAF1 gene editing. SAK3 treatment prevented the loss of cortical neurons and GFAP-positive astrocytes observed after TAF1 gene editing. In addition, SAK3 protected cells from apoptosis. SAK3 also restored the Brain-derived neurotrophic factor/protein kinase B/Glycogen Synthase Kinase 3 Beta (BDNF/AKT/GSK3β) signaling axis in TAF1 edited animals. Finally, SAK3 normalized the levels of three GSK3β substrates - CaV3.1, FOXP2, and CRMP2. We conclude that the T-type calcium channel enhancer SAK3 is beneficial against the deleterious effects of TAF1 gene-editing, in part, by stimulating the BDNF/AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Chinnasamy Dhanalakshmi
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States; The BIO5 Institute, University of Arizona, United States
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States; The BIO5 Institute, University of Arizona, United States
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
6
|
Multifunctional Opioid-Derived Hybrids in Neuropathic Pain: Preclinical Evidence, Ideas and Challenges. Molecules 2020; 25:molecules25235520. [PMID: 33255641 PMCID: PMC7728063 DOI: 10.3390/molecules25235520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
When the first- and second-line therapeutics used to treat neuropathic pain (NP) fail to induce efficient analgesia—which is estimated to relate to more than half of the patients—opioid drugs are prescribed. Still, the pathological changes following the nerve tissue injury, i.a. pronociceptive neuropeptide systems activation, oppose the analgesic effects of opiates, enforcing the use of relatively high therapeutic doses in order to obtain satisfying pain relief. In parallel, the repeated use of opioid agonists is associated with burdensome adverse effects due to compensatory mechanisms that arise thereafter. Rational design of hybrid drugs, in which opioid ligands are combined with other pharmacophores that block the antiopioid action of pronociceptive systems, delivers the opportunity to ameliorate the NP-oriented opioid treatment via addressing neuropathological mechanisms shared both by NP and repeated exposition to opioids. Therewith, the new dually acting drugs, tailored for the specificity of NP, can gain in efficacy under nerve injury conditions and have an improved safety profile as compared to selective opioid agonists. The current review presents the latest ideas on opioid-comprising hybrid drugs designed to treat painful neuropathy, with focus on their biological action, as well as limitations and challenges related to this therapeutic approach.
Collapse
|
7
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
8
|
Fulenwider HD, Nennig SE, Hafeez H, Price ME, Baruffaldi F, Pravetoni M, Cheng K, Rice KC, Manvich DF, Schank JR. Sex differences in oral oxycodone self-administration and stress-primed reinstatement in rats. Addict Biol 2020; 25:e12822. [PMID: 31830773 DOI: 10.1111/adb.12822] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
The opioid epidemic has become a severe public health problem, with approximately 130 opioid-induced deaths occurring each day in the United States. Prescription opioids are responsible for approximately 40% of these deaths. Oxycodone is one of the most commonly abused prescription opioids, but despite its prevalent misuse, the number of preclinical studies investigating oxycodone-seeking behaviors is relatively limited. Furthermore, preclinical oxycodone studies that include female subjects are even more scarce, and it is critical that future work includes both sexes. Additionally, the oral route of administration is one of the most common routes for recreational users, especially in the early stages of drug experimentation. However, currently, only two studies have been published investigating operant oral oxycodone self-administration in rodents. Therefore, the primary goal of the present study was to establish an oral oxycodone operant self-administration model in adult male and female rats, as well as to examine a potential mechanism of stress-primed reinstatement. We found that females consumed significantly more oral oxycodone than males in operant self-administration sessions. We also found that active oxycodone self-administration was reduced by mu opioid receptor antagonism and by substitution of water for oxycodone solution. Lastly, we induced stress-primed reinstatement and found that this behavior was significantly attenuated by antagonism of the neurokinin-1 receptor, consistent with our prior work examining stress-induced reinstatement of alcohol- and cocaine-seeking.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | - Sadie E. Nennig
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | - Hiba Hafeez
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | - Michaela E. Price
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | | | - Marco Pravetoni
- Hennepin Healthcare Research Institute Minneapolis Minnesota USA
- Department of Pharmacology University of Minnesota Medical School Minneapolis Minnesota USA
- Center for Immunology University of Minnesota Medical School Minneapolis Minnesota USA
| | - Kejun Cheng
- Drug Design and Synthesis Section NIH/NIDA/NIAAA Rockville Maryland USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section NIH/NIDA/NIAAA Rockville Maryland USA
| | - Daniel F. Manvich
- Department of Cell Biology and Neuroscience Rowan University School of Osteopathic Medicine Stratford New Jersey USA
| | - Jesse R. Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| |
Collapse
|
9
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Sandweiss AJ, Brandt VL, Zoghbi HY. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol 2020; 19:689-698. [PMID: 32702338 DOI: 10.1016/s1474-4422(20)30217-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
The X-linked gene encoding MECP2 is involved in two severe and complex neurodevelopmental disorders. Loss of function of the MeCP2 protein underlies Rett syndrome, whereas duplications of the MECP2 locus cause MECP2 duplication syndrome. Research on the mechanisms by which MeCP2 exerts effects on gene expression in neurons, studies of animal models bearing different disease-causing mutations, and more in-depth observations of clinical presentations have clarified some issues even as they have raised further questions. Yet there is enough evidence so far to suggest possible approaches to therapy for these two diseases that could go beyond attempting to address specific signs and symptoms (of which there are many) and instead target the pathophysiology underlying MECP2 disorders. Further work could bring antisense oligonucleotides, deep brain stimulation, and gene therapy into the clinic within the next decade or so.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Vicky L Brandt
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
11
|
Janakiraman U, Dhanalakshmi C, Yu J, Moutal A, Boinon L, Fukunaga K, Khanna R, Nelson MA. The investigation of the T-type calcium channel enhancer SAK3 in an animal model of TAF1 intellectual disability syndrome. Neurobiol Dis 2020; 143:105006. [PMID: 32622085 PMCID: PMC7422587 DOI: 10.1016/j.nbd.2020.105006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Chinnasamy Dhanalakshmi
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA; The BIO5 Institute, University of Arizona, USA
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
12
|
Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res 2020; 1734:146729. [PMID: 32067964 DOI: 10.1016/j.brainres.2020.146729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The neurokinins are a class of peptide signaling molecules that mediate a range of central and peripheral functions including pain processing, gastrointestinal function, stress responses, and anxiety. Recent data have linked these neuropeptides with drug-related behaviors. Specifically, substance P (SP) and neurokinin B (NKB), have been shown to influence responses to alcohol, cocaine, and/or opiate drugs. SP and NKB preferentially bind to the neurokinin-1 receptor (NK1R) and neurokinin-3 receptor (NK3R), respectively, but do have some affinity for all classes of neurokinin receptor at high concentrations. NK1R activity has been shown to influence reward and reinforcement for opiate drugs, stimulatory and neurochemical responses to cocaine, and escalated and stress-induced alcohol seeking. In reinstatement models of relapse-like behavior, NK1R antagonism attenuates stress-induced reinstatement for all classes of drugs tested to date. The NK3R also influences alcohol intake and behavioral/neurochemical responses to cocaine, but less research has been performed in regard to this particular receptor in preclinical models of addiction. Clinically, agents targeting these receptors have shown some promise, but have produced mixed results. Here, the preclinical findings for the NK1R and NK3R are reviewed, and discussion is provided to interpret clinical findings. Additionally, important factors to consider in regards to future clinical work are suggested.
Collapse
Affiliation(s)
- Jesse R Schank
- University of Georgia, Department of Physiology and Pharmacology, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M, Khanna R. The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chem Neurosci 2019; 10:4834-4846. [PMID: 31697467 DOI: 10.1021/acschemneuro.9b00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun 130021, China
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Nancy Y. N. Pham
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Maria J. Serafini
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson, Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
14
|
Janakiraman U, Yu J, Moutal A, Chinnasamy D, Boinon L, Batchelor SN, Anandhan A, Khanna R, Nelson MA. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex. Neurobiol Dis 2019; 132:104539. [PMID: 31344492 PMCID: PMC7197880 DOI: 10.1016/j.nbd.2019.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
TAF1/MRSX33 intellectual disability syndrome is an X-linked disorder caused by loss-of-function mutations in the TAF1 gene. How these mutations cause dysmorphology, hypotonia, intellectual and motor defects is unknown. Mouse models which have embryonically targeted TAF1 have failed, possibly due to TAF1 being essential for viability, preferentially expressed in early brain development, and intolerant of mutation. Novel animal models are valuable tools for understanding neuronal pathology. Here, we report the development and characterization of a novel animal model for TAF1 ID syndrome in which the TAF1 gene is deleted in embryonic rats using clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology and somatic brain transgenesis mediated by lentiviral transduction. Rat pups, post-natal day 3, were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 vectors. Rats were subjected to a battery of behavioral tests followed by histopathological analyses of brains at post-natal day 14 and day 35. TAF1-edited rats exhibited behavioral deficits at both the neonatal and juvenile stages of development. Deletion of TAF1 lead to a hypoplasia and loss of the Purkinje cells. We also observed a decreased in GFAP positive astrocytes and an increase in Iba1 positive microglia within the granular layer of the cerebellum in TAF1-edited animals. Immunostaining revealed a reduction in the expression of the CaV3.1 T-type calcium channel. Abnormal motor symptoms in TAF1-edited rats were associated with irregular cerebellar output caused by changes in the intrinsic activity of the Purkinje cells due to loss of pre-synaptic CaV3.1. This animal model provides a powerful new tool for studies of neuronal dysfunction in conditions associated with TAF1 abnormalities and should prove useful for developing therapeutic strategies to treat TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Dhanalakshmi Chinnasamy
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Shelby N Batchelor
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Annaduri Anandhan
- Department of Pharmacology and Toxicology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States of America; The BIO5 Institute, University of Arizona, United States of America
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
15
|
Lei W, Duron DI, Stine C, Mishra S, Blagg BSJ, Streicher JM. The Alpha Isoform of Heat Shock Protein 90 and the Co-chaperones p23 and Cdc37 Promote Opioid Anti-nociception in the Brain. Front Mol Neurosci 2019; 12:294. [PMID: 31849607 PMCID: PMC6895903 DOI: 10.3389/fnmol.2019.00294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Opioid activation of the mu opioid receptor (MOR) promotes signaling cascades that evoke both analgesic responses to pain and side effects like addiction and dependence. Manipulation of these cascades, such as by biased agonism, has great promise to improve opioid therapy. However, the signaling cascades of the MOR are in general poorly understood, providing few targets for drug development. In our earlier work, we identified Heat shock protein 90 (Hsp90) as a novel and crucial regulator of opioid anti-nociception in the brain by promoting ERK MAPK activation. In this study, we sought to identify the molecular isoforms and co-chaperones by which Hsp90 carried out this role, which could provide specific targets for future clinical intervention. We used novel selective small molecule inhibitors as well as CRISPR/Cas9 gene editing constructs delivered by the intracerebroventricular (icv) route to the brains of adult CD-1 mice to target Hsp90 isoforms (Hsp90α/β, Grp94) and co-chaperones (p23, Cdc37, Aha1). We found that inhibition of the isoform Hsp90α fully blocked morphine anti-nociception in a model of post-surgical paw incision pain, while blocking ERK and JNK MAPK activation, suggesting Hsp90α as the main regulator of opioid response in the brain. We further found that inhibition of the co-chaperones p23 and Cdc37 blocked morphine anti-nociception, suggesting that these co-chaperones assist Hsp90α in promoting opioid anti-nociception. Lastly, we used cycloheximide treatment in the brain to demonstrate that rapid protein translation within 30 min of opioid treatment is required for Hsp90 regulation of opioid response. Together these studies provide insight into the molecular mechanisms by which Hsp90 promotes opioid anti-nociception. These findings thus both improve our basic science knowledge of MOR signal transduction and could provide future targets for clinical intervention to improve opioid therapy.
Collapse
Affiliation(s)
- Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC, United States
| | - David I. Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sanket Mishra
- Department of Chemistry & Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, United States
| | - Brian S. J. Blagg
- Department of Chemistry & Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Huang H, Zhang X, Fu X, Zhang X, Lang B, Xiang X, Hao W. Alcohol-induced conditioned place preference negatively correlates with anxiety-like behavior in adolescent mice: inhibition by a neurokinin-1 receptor antagonist. Psychopharmacology (Berl) 2018; 235:2847-2857. [PMID: 30054674 DOI: 10.1007/s00213-018-4976-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023]
Abstract
RATIONALE Although alcohol use disorder and anxiety disorders are highly comorbid in humans, controversy remains regarding whether anxiety predisposes individuals to alcohol reward, and the relationship with neurokinin-1 receptor (NK1R) is unclear. OBJECTIVES The objectives of the study are to investigate the association between anxiety-like behavior and alcohol-induced conditioned place preference (CPP) and to examine the effect of NK1R antagonist L-703,606 on this preference and levels of NK1R protein in different brain regions in adolescent mice. METHODS The anxiety-like behavior of adolescent male C57BL/6 mice was assessed using the elevated plus maze (EPM) test, and the animals were then allocated into high-anxiety mouse (HAM) and low-anxiety mouse (LAM) groups based on the percent of open arm time (OT%). After the reinforcement of ethanol was established by alcohol-induced CPP (2 g/kg), NK1R expression was quantified in the hippocampus, prefrontal cortex, and amygdala. Finally, the effect of L-703,606 (10 mg/kg) on the alcohol-induced CPP was examined. RESULTS LAM showed a greater ethanol preference (P = 0.004) and a higher level of NK1R protein in the hippocampus (P = 0.026) than HAM group. Interestingly, the CPP score positively correlated with OT% (r = 0.520, P = 0.016) and the level of NK1R protein (r = 0.476, P = 0.029) in the hippocampus. Moreover, L-703,606 attenuated alcohol-induced CPP (P < 0.001) in both groups. CONCLUSIONS The present results highlight the negative correlation between anxiety-like behavior and the propensity for alcohol and the critical role for NK1R in alcohol reward in adolescent mice. Importantly, the NK1R antagonist L-703,606 might be a promising therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Hui Huang
- Mental Health Institute of the Second Xiangya Hospital, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaojie Zhang
- Mental Health Institute of the Second Xiangya Hospital, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China
| | - Xiaoya Fu
- Mental Health Institute of the Second Xiangya Hospital, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China
| | - Xiangyang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Lang
- Mental Health Institute of the Second Xiangya Hospital, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China
| | - Xiaojun Xiang
- Mental Health Institute of the Second Xiangya Hospital, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China.
| | - Wei Hao
- Mental Health Institute of the Second Xiangya Hospital, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
17
|
Abstract
INTRODUCTION Substance use disorders are a group of chronic relapsing disorders of the brain, which have massive public health and societal impact. In some disorders (e.g., heroin/prescription opioid addictions) approved medications have a major long-term benefit. For other substances (e.g., cocaine, amphetamines and cannabis) there are no approved medications, and for alcohol there are approved treatments, which are not in wide usage. Approved treatments for tobacco use disorders are available, and novel medications are also under study. Areas covered: Medication-based approaches which are in advanced preclinical stages, or which have reached proof-of concept clinical laboratory studies, as well as clinical trials. Expert opinion: Current challenges involve optimizing translation between preclinical and clinical development, and between clinical laboratory studies to therapeutic clinical trials. Comorbidities including depression or anxiety are challenges for study design and analysis. Improved pharmacogenomics, biomarker and phenotyping approaches are areas of interest. Pharmacological mechanisms currently under investigation include modulation of glutamatergic, GABA, vasopressin and κ-receptor function, as well as inhibition of monoamine re-uptake. Other factors that affect potential market size for emerging medications include stigma, availability of treatment settings, adoption by clinicians, and the prevalence of persons with SUD who are not actively treatment-seeking.
Collapse
Affiliation(s)
- Eduardo R Butelman
- a Laboratory in the Biology of Addictive Diseases , The Rockefeller University , New York , NY , USA
| | - Mary Jeanne Kreek
- a Laboratory in the Biology of Addictive Diseases , The Rockefeller University , New York , NY , USA
| |
Collapse
|