1
|
Marom R, Zhang B, Washington ME, Song IW, Burrage LC, Rossi VC, Berrier AS, Lindsey A, Lesinski J, Nonet ML, Chen J, Baldridge D, Silverman GA, Sutton VR, Rosenfeld JA, Tran AA, Hicks MJ, Murdock DR, Dai H, Weis M, Jhangiani SN, Muzny DM, Gibbs RA, Caswell R, Pottinger C, Cilliers D, Stals K, Eyre D, Krakow D, Schedl T, Pak SC, Lee BH. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling. PLoS Genet 2023; 19:e1011005. [PMID: 37934770 PMCID: PMC10656020 DOI: 10.1371/journal.pgen.1011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Bo Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anika Lindsey
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Lesinski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jian Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. John Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Carrie Pottinger
- All Wales Medical Genomics Service, Wrexham Maelor Hospital, Wrexham, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Human Genetics, Obstetrics & Gynecology, Orthopedic Surgery, University of California, Los Angeles, California, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
2
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
3
|
Nyati S, Young G, Speers C, Nyati MK, Rehemtulla A. Budding uninhibited by benzimidazoles-1 (BUB1) regulates EGFR signaling by reducing EGFR internalization. Aging (Albany NY) 2023; 15:6011-6030. [PMID: 37399454 PMCID: PMC10373970 DOI: 10.18632/aging.204820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
EGFR signaling initiates upon ligand binding which leads to activation and internalization of the receptor-ligand complex. Here, we evaluated if BUB1 impacted EGFR signaling by regulating EGFR receptor internalization and activation. BUB1 was ablated genomically (siRNA) or biochemically (2OH-BNPP1) in cells. EGF ligand was used to initiate EGFR signaling while disuccinimidyl suberate (DSS) was used for cross linking cellular proteins. EGFR signaling was measured by western immunoblotting and receptor internalization was evaluated by fluorescent microscopy (pEGFR (pY1068) colocalization with early endosome marker EEA1). siRNA mediated BUB1 depletion led to an overall increase in total EGFR levels and more phospho-EGFR (Y845, Y1092, and Y1173) dimers while the amount of total EGFR (non-phospho) dimers remained unchanged. BUB1 inhibitor (BUB1i) decreased EGF mediated EGFR signaling including pEGFR Y845, pAKT S473 and pERK1/2 in a time dependent manner. Additionally, BUB1i also reduced EGF mediated pEGFR (Y845) dimers (asymmetric dimers) without affecting total EGFR dimers (symmetric dimers) indicating that dimerization of inactive EGFR is not affected by BUB1. Furthermore, BUB1i blocked EGF mediated EGFR degradation (increase in EGFR half-life) without impacting half-lives of HER2 or c-MET. BUB1i also reduced co-localization of pEGFR with EEA1 positive endosomes suggesting that BUB1 might modulate EGFR endocytosis. Our data provide evidence that BUB1 protein and its kinase activity may regulate EGFR activation, endocytosis, degradation, and downstream signaling without affecting other members of the receptor tyrosine kinase family.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Grant Young
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mukesh K. Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Chiu SC, Yang XT, Wei TYW, Liao YTA, Chen JMM, Kuo YC, Liu CCJ, Cheng CY, Huang YTJ, Huang YRJ, Wu HLJ, Wan CX, Tsai JR, Yu CTR. The crescent-like Golgi ribbon is shaped by the Ajuba/PRMT5/Aurora-A complex-modified HURP. Cell Commun Signal 2023; 21:156. [PMID: 37370099 DOI: 10.1186/s12964-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Golgi apparatus (GA) is assembled as a crescent-like ribbon in mammalian cells under immunofluorescence microscope without knowing the shaping mechanisms. It is estimated that roughly 1/5 of the genes encoding kinases or phosphatases in human genome participate in the assembly of Golgi ribbon, reflecting protein modifications play major roles in building Golgi ribbon. METHODS To explore how Golgi ribbon is shaped as a crescent-like structure under the guidance of protein modifications, we identified a protein complex containing the scaffold proteins Ajuba, two known GA regulators including the protein kinase Aurora-A and the protein arginine methyltransferase PRMT5, and the common substrate of Aurora-A and PRMT5, HURP. Mutual modifications and activation of PRMT5 and Aurora-A in the complex leads to methylation and in turn phosphorylation of HURP, thereby producing HURP p725. The HURP p725 localizes to GA vicinity and its distribution pattern looks like GA morphology. Correlation study of the HURP p725 statuses and GA structure, site-directed mutagenesis and knockdown-rescue experiments were employed to identify the modified HURP as a key regulator assembling GA as a crescent ribbon. RESULTS The cells containing no or extended distribution of HURP p725 have dispersed GA membranes or longer GA. Knockdown of HURP fragmentized GA and HURP wild type could, while its phosphorylation deficiency mutant 725A could not, restore crescent Golgi ribbon in HURP depleted cells, collectively indicating a crescent GA-constructing activity of HURP p725. HURP p725 is transported, by GA membrane-associated ARF1, Dynein and its cargo adaptor Golgin-160, to cell center where HURP p725 forms crescent fibers, binds and stabilizes Golgi assembly factors (GAFs) including TRIP11, GRASP65 and GM130, thereby dictating the formation of crescent Golgi ribbon at nuclear periphery. CONCLUSIONS The Ajuba/PRMT5/Aurora-A complex integrates the signals of protein methylation and phosphorylation to HURP, and the HURP p725 organizes GA by stabilizing and recruiting GAFs to its crescent-like structure, therefore shaping GA as a crescent ribbon. Therefore, the HURP p725 fiber serves a template to construct GA according to its shape. Video Abstract.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Xin-Ting Yang
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yu-Ting Amber Liao
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Yi-Chun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| | - Chun-Chih Jared Liu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Chiao-Yun Cheng
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Yu-Ting Jenny Huang
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | | | - He-Lian Joe Wu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan.
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan.
- Present Address: Department of Applied Chemistry, National Chi Nan University, No. 1, University Rd. Puli, Nantou, 545, Taiwan.
| |
Collapse
|
5
|
J Tisdale E, R Artalejo C. Rab2 stimulates LC3 lipidation on secretory membranes by noncanonical autophagy. Exp Cell Res 2023; 429:113635. [PMID: 37201743 DOI: 10.1016/j.yexcr.2023.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The Golgi complex is a highly dynamic organelle that regulates various cellular activities and yet maintains a distinct structure. Multiple proteins participate in Golgi structure/organization including the small GTPase Rab2. Rab2 is found on the cis/medial Golgi compartments and the endoplasmic reticulum-Golgi intermediate compartment. Interestingly, Rab2 gene amplification occurs in a wide range of human cancers and Golgi morphological alterations are associated with cellular transformation. To learn how Rab2 'gain of function' influences the structure/activity of membrane compartments in the early secretory pathway that may contribute to oncogenesis, NRK cells were transfected with Rab2B cDNA. We found that Rab2B overexpression had a dramatic effect on the morphology of pre- and early Golgi compartments that resulted in a decreased transport rate of VSV-G in the early secretory pathway. We monitored the cells for the autophagic marker protein LC3 based on the findings that depressed membrane trafficking affects homeostasis. Morphological and biochemical studies confirmed that Rab2 ectopic expression stimulated LC3-lipidation on Rab2-containing membranes that was dependent on GAPDH and utilized a non-canonical LC3-conjugation mechanism that is nondegradative. Golgi structural alterations are associated with changes in Golgi-associated signalling pathways. Indeed, Rab2 overexpressing cells had elevated Src activity. We propose that increased Rab2 expression facilitates cis Golgi structural changes that are maintained and tolerated by the cell due to LC3 tagging, and subsequent membrane remodeling triggers Golgi associated signaling pathways that may contribute to oncogenesis.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Ghannoum S, Fantini D, Zahoor M, Reiterer V, Phuyal S, Leoncio Netto W, Sørensen Ø, Iyer A, Sengupta D, Prasmickaite L, Mælandsmo GM, Köhn-Luque A, Farhan H. A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression. PLoS Comput Biol 2023; 19:e1010995. [PMID: 37068117 PMCID: PMC10159355 DOI: 10.1371/journal.pcbi.1010995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/04/2023] [Accepted: 03/04/2023] [Indexed: 04/18/2023] Open
Abstract
Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.
Collapse
Affiliation(s)
- Salim Ghannoum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Damiano Fantini
- Department of Urology, Northwestern University, Chicago, Illinois, United States of America
| | - Muhammad Zahoor
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Santosh Phuyal
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Arvind Iyer
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, Delhi, India
| | - Lina Prasmickaite
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hesso Farhan
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Khine MN, Sakurai K. Golgi-Targeting Anticancer Natural Products. Cancers (Basel) 2023; 15:cancers15072086. [PMID: 37046746 PMCID: PMC10093635 DOI: 10.3390/cancers15072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023] Open
Abstract
The Golgi apparatus plays an important role in maintaining cell homeostasis by serving as a biosynthetic center for glycans, lipids and post-translationally modified proteins and as a sorting center for vesicular transport of proteins to specific destinations. Moreover, it provides a signaling hub that facilitates not only membrane trafficking processes but also cellular response pathways to various types of stresses. Altered signaling at the Golgi apparatus has emerged as a key regulator of tumor growth and survival. Among the small molecules that can specifically perturb or modulate Golgi proteins and organization, natural products with anticancer property have been identified as powerful chemical probes in deciphering Golgi-related pathways and, in particular, recently described Golgi stress response pathways. In this review, we highlight a set of Golgi-targeting natural products that enabled the characterization of the Golgi-mediated signaling events leading to cancer cell death and discuss the potential for selectively exploiting these pathways for the development of novel chemotherapeutic agents.
Collapse
|
8
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|
9
|
Wortzel I, Porat Z. Quantifying Golgi Apparatus Fragmentation Using Imaging Flow Cytometry. Methods Mol Biol 2023; 2635:173-184. [PMID: 37074663 DOI: 10.1007/978-1-0716-3020-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Unlike the common conception of the Golgi apparatus as a static organelle, it is, in fact, a dynamic structure, as well as a sensitive sensor for the cellular status. In response to various stimuli, the intact Golgi structure undergoes fragmentation. This fragmentation can yield either partial fragmentation, resulting in several separated chunks, or complete vesiculation of the organelle. These distinct morphologies form the basis of several methods for the quantification of the Golgi status. In this chapter, we describe our imaging flow cytometry-based method for quantifying changes in the Golgi architecture. This method has all the benefits of imaging flow cytometry-namely, it is rapid, high-throughput, and robust-while affording easy implementation and analysis capabilities.
Collapse
Affiliation(s)
- Inbal Wortzel
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Mejia I, Chen YC, Díaz B. Analysis of Golgi Morphology Using Immunofluorescence and CellProfiler Software. Methods Mol Biol 2022; 2557:765-784. [PMID: 36512250 DOI: 10.1007/978-1-0716-2639-9_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The architecture of the Golgi apparatus in mammalian cells changes dynamically in response to internal and external cues and may be permanently altered in disease states. Here, we present a method to quantify changes in Golgi morphology using immunofluorescence and confocal microscopy followed by CellProfiler software analysis. This method will assist researchers in evaluating alterations in the Golgi complex morphology of cultured cells under a variety of different experimental conditions.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu-Chuan Chen
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA. .,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Vti1a/b support distinct aspects of TGN and cis-/medial Golgi organization. Sci Rep 2022; 12:20870. [PMID: 36460703 PMCID: PMC9718741 DOI: 10.1038/s41598-022-25331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Retrograde trafficking towards the trans-Golgi network (TGN) is important for dense core vesicle (DCV) biogenesis. Here, we used Vti1a/b deficient neurons to study the impact of disturbed retrograde trafficking on Golgi organization and cargo sorting. In Vti1a/b deficient neurons, staining intensity of cis-/medial Golgi proteins (e.g., GM130 and giantin) was increased, while the intensity of two recycling TGN proteins, TGN38 and TMEM87A, was decreased and the TGN-resident protein Golgin97 was normal. Levels and localization of DCV cargo markers, LAMP1 and KDEL were also altered. This phenotype was not caused by reduced Golgi size or absence of a TGN compartment. The phenotype was partially phenocopied by disturbing sphingolipid homeostasis, but was not rescued by overexpression of sphingomyelin synthases or the sphingolipid synthesis inhibitor myriocin. We conclude that Vti1a/b are important for distinct aspects of TGN and cis-/medial Golgi organization. Our data underline the importance of retrograde trafficking for Golgi organization, DCV cargo sorting and the distribution of proteins of the regulated secretory pathway.
Collapse
|
12
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
13
|
Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan JZ, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN. Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. eLife 2021; 10:68910. [PMID: 34545811 PMCID: PMC8494481 DOI: 10.7554/elife.68910] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity, and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered that they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with endoplasmic reticulum (ER) exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction, and disease.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| | - Theron A Russell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Zola Yi
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Abhijit Ramaprasad
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Luke Newell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - William Ramos
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Fernando M Valbuena
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jing-Zhi Yan
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | | | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
14
|
Fourriere L, Gleeson PA. Amyloid β production along the neuronal secretory pathway: Dangerous liaisons in the Golgi? Traffic 2021; 22:319-327. [PMID: 34189821 DOI: 10.1111/tra.12808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
β-amyloid peptides (Aβ) are generated in intracellular compartments of neurons and secreted to form cytotoxic fibrils and plaques. Dysfunctional membrane trafficking contributes to aberrant Aβ production and Alzheimer's disease. Endosomes represent one of the major sites for Aβ production and recently the Golgi has re-emerged also as a major location for amyloid precursor protein (APP) processing and Aβ production. Based on recent findings, here we propose that APP processing in the Golgi is finely tuned by segregating newly-synthesised APP and the β-secretase BACE1 within the Golgi and into distinct trans-Golgi network transport pathways. We hypothesise that there are multiple mechanisms responsible for segregating APP and BACE1 during transit through the Golgi, and that perturbation in Golgi morphology associated with Alzheimer's disease, and or changes in cholesterol metabolism associated with Alzheimer's disease risk factors, may lead to a loss of partitioning and enhanced Aβ production.
Collapse
Affiliation(s)
- Lou Fourriere
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Wortzel I, Maik-Rachline G, Yadav SS, Hanoch T, Seger R. Mitotic HOOK3 phosphorylation by ERK1c drives microtubule-dependent Golgi destabilization and fragmentation. iScience 2021; 24:102670. [PMID: 34189435 PMCID: PMC8215223 DOI: 10.1016/j.isci.2021.102670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/07/2020] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
ERK1c is an alternatively spliced isoform of ERK1 that specifically regulates mitotic Golgi fragmentation, which allows division of the Golgi during mitosis. We have previously shown that ERK1c translocates to the Golgi during mitosis where it is activated by a resident MEK1b to induce Golgi fragmentation. However, the mechanism of ERK1c functions in the Golgi remained obscure. Here, we searched for ERK1c substrates and identified HOOK3 as a mediator of ERK1c-induced mitotic Golgi fragmentation, which requires a second phosphorylation by AuroraA for its function. In cycling cells, HOOK3 interacts with microtubules (MTs) and links them to the Golgi. Early in mitosis, HOOK3 is phosphorylated by ERK1c and later by AuroraA, resulting in HOOK3 detachment from the MTs, and elevated interaction with GM130. This detachment modulates Golgi stability and allows fragmentation of the Golgi. This study demonstrates a novel mechanism of Golgi apparatus destabilization early in mitosis to allow mitotic progression.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Galia Maik-Rachline
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Zhang X. Alterations of Golgi Structural Proteins and Glycosylation Defects in Cancer. Front Cell Dev Biol 2021; 9:665289. [PMID: 34055798 PMCID: PMC8149618 DOI: 10.3389/fcell.2021.665289] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
As the central hub in the secretory and endocytic pathways, the Golgi apparatus continually receives the flow of cargos and serves as a major processing station in the cell. Due to its dynamic nature, a sophisticated and constantly remodeling mechanism needs to be set up to maintain the Golgi architecture and function in the non-stop trafficking of proteins and lipids. Abundant evidence has been accumulated that a well-organized Golgi structure is required for its proper functions, especially protein glycosylation. Remarkably, altered glycosylation has been a hallmark of most cancer cells. To understand the causes of Golgi defects in cancer, efforts have been made to characterize Golgi structural proteins under physiological and pathological conditions. This review summarizes the current knowledge of crucial Golgi structural proteins and their connections with tumor progression. We foresee that understanding the Golgi structural and functional defects may help solve the puzzle of whether glycosylation defect is a cause or effect of oncogenesis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Chin MY, Espinosa JA, Pohan G, Markossian S, Arkin MR. Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis. Cell Chem Biol 2021; 28:320-337. [PMID: 33600764 PMCID: PMC7995685 DOI: 10.1016/j.chembiol.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
Collapse
Affiliation(s)
- Marcus Y Chin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Ghannoum S, Leoncio Netto W, Fantini D, Ragan-Kelley B, Parizadeh A, Jonasson E, Ståhlberg A, Farhan H, Köhn-Luque A. DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics. Int J Mol Sci 2021; 22:ijms22031399. [PMID: 33573289 PMCID: PMC7866810 DOI: 10.3390/ijms22031399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The growing attention toward the benefits of single-cell RNA sequencing (scRNA-seq) is leading to a myriad of computational packages for the analysis of different aspects of scRNA-seq data. For researchers without advanced programing skills, it is very challenging to combine several packages in order to perform the desired analysis in a simple and reproducible way. Here we present DIscBIO, an open-source, multi-algorithmic pipeline for easy, efficient and reproducible analysis of cellular sub-populations at the transcriptomic level. The pipeline integrates multiple scRNA-seq packages and allows biomarker discovery with decision trees and gene enrichment analysis in a network context using single-cell sequencing read counts through clustering and differential analysis. DIscBIO is freely available as an R package. It can be run either in command-line mode or through a user-friendly computational pipeline using Jupyter notebooks. We showcase all pipeline features using two scRNA-seq datasets. The first dataset consists of circulating tumor cells from patients with breast cancer. The second one is a cell cycle regulation dataset in myxoid liposarcoma. All analyses are available as notebooks that integrate in a sequential narrative R code with explanatory text and output data and images. R users can use the notebooks to understand the different steps of the pipeline and will guide them to explore their scRNA-seq data. We also provide a cloud version using Binder that allows the execution of the pipeline without the need of downloading R, Jupyter or any of the packages used by the pipeline. The cloud version can serve as a tutorial for training purposes, especially for those that are not R users or have limited programing skills. However, in order to do meaningful scRNA-seq analyses, all users will need to understand the implemented methods and their possible options and limitations.
Collapse
Affiliation(s)
- Salim Ghannoum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
- Correspondence: (S.G.); (A.K.-L.); Tel.: +46-76-5770129 (S.G.)
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Damiano Fantini
- Department of Urology, Northwestern University, Chicago, IL 60611, USA;
| | | | - Amirabbas Parizadeh
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-41390 Gothenburg, Sweden; (E.J.); (A.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-41390 Gothenburg, Sweden; (E.J.); (A.S.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-41390 Gothenburg, Sweden
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence: (S.G.); (A.K.-L.); Tel.: +46-76-5770129 (S.G.)
| |
Collapse
|
19
|
van Berkel AA, Santos TC, Shaweis H, van Weering JRT, Toonen RF, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem 2020; 157:450-466. [PMID: 33259669 PMCID: PMC8247427 DOI: 10.1111/jnc.15256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
Loss of the exocytic Sec1/MUNC18 protein MUNC18-1 or its target-SNARE partners SNAP25 and syntaxin-1 results in rapid, cell-autonomous and unexplained neurodegeneration, which is independent of their known role in synaptic vesicle exocytosis. cis-Golgi abnormalities are the earliest cellular phenotypes before degeneration occurs. Here, we investigated whether loss of MUNC18-1 causes defects in intracellular membrane transport pathways in primary murine neurons that may explain neurodegeneration. Electron, confocal and super resolution microscopy confirmed that loss of MUNC18-1 expression results in a smaller cis-Golgi. In addition, we now show that medial-Golgi and the trans-Golgi Network are also affected. However, stacking and cisternae ultrastructure of the Golgi were normal. Overall, ultrastructure of null mutant neurons was remarkably normal just hours before cell death occurred. By synchronizing protein trafficking by conditional cargo retention in the endoplasmic reticulum using selective hooks (RUSH) and immunocytochemistry, we show that anterograde Endoplasmic Reticulum-to-Golgi and Golgi exit of endogenous and exogenous proteins were normal. In contrast, loss of MUNC18-1 caused reduced retrograde Cholera Toxin B-subunit transport from the plasma membrane to the Golgi. In addition, MUNC18-1-deficiency resulted in abnormalities in retrograde TrkB trafficking in an antibody uptake assay. We conclude that MUNC18-1 deficient neurons have normal anterograde but reduced retrograde transport to the Golgi. The impairments in retrograde pathways suggest a role of MUNC18-1 in endosomal SNARE-dependent fusion and provide a plausible explanation for the observed Golgi abnormalities and cell death in MUNC18-1 deficient neurons.
Collapse
Affiliation(s)
- Annemiek A van Berkel
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Tatiana C Santos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Hesho Shaweis
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Wu D, Dean J. EXOSC10 sculpts the transcriptome during the growth-to-maturation transition in mouse oocytes. Nucleic Acids Res 2020; 48:5349-5365. [PMID: 32313933 DOI: 10.1093/nar/gkaa249] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Growing mammalian oocytes accumulate substantial amounts of RNA, most of which is degraded during subsequent meiotic maturation. The growth-to-maturation transition begins with germinal vesicle or nuclear envelope breakdown (GVBD) and is critical for oocyte quality and early development. The molecular machinery responsible for the oocyte transcriptome transition remains unclear. Here, we report that an exosome-associated RNase, EXOSC10, sculpts the transcriptome to facilitate the growth-to-maturation transition of mouse oocytes. We establish an oocyte-specific conditional knockout of Exosc10 in mice using CRISPR/Cas9 which results in female subfertility due to delayed GVBD. By performing multiple single oocyte RNA-seq, we document dysregulation of several types of RNA, and the mRNAs that encode proteins important for endomembrane trafficking and meiotic cell cycle. As expected, EXOSC10-depleted oocytes have impaired endomembrane components including endosomes, lysosomes, endoplasmic reticulum and Golgi. In addition, CDK1 fails to activate, possibly due to persistent WEE1 activity, which blocks lamina phosphorylation and disassembly. Moreover, we identified rRNA processing defects that cause higher percentage of developmentally incompetent oocytes after EXOSC10 depletion. Collectively, we propose that EXOSC10 promotes normal growth-to-maturation transition in mouse oocytes by sculpting the transcriptome to degrade RNAs encoding growth-phase factors and, thus, support the maturation phase of oogenesis.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
The Cosmc-mediated effects of neutrophil elastase on T antigen expression in BEAS-2B cells. Respir Physiol Neurobiol 2020; 281:103496. [PMID: 32683071 DOI: 10.1016/j.resp.2020.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Mucin 5AC (MUC5AC) is a highly O-glycosylated mucin secreted by human bronchial epithelial cells during pulmonary inflammatory diseases. T antigen, a component of the MUC5AC glycans, is the product of the O-glycosylation transferase T-synthase and its chaperone Cosmc. Since the expression of Cosmc is mediated by signaling pathways and inflammatory factors affecting mucin O-glycosylation, we analyzed the impact of neutrophil elastase (NE)-mediated Cosmc and T antigen expression in BEAS-2B cells derived from human bronchial epithelial cells. The expression of Cosmc and T antigen in human lung tissue was analyzed by immunohistochemistry. Cellular immunohistochemistry and western blot analysis demonstrated elevated expression of T antigen in BEAS-2B cells after NE stimulation. Altered Cosmc expression in BEAS-2B cells after NE stimulation was analyzed by confocal microscopy, western blot analysis and quantitative RT-PCR. To assess the biological implications of Cosmc function for T-synthase activity and T antigen synthesis after NE stimulation, BEAS-2B cells were transfected with shRNA to silence the expression of Cosmc. The changes in signaling pathways were analyzed by western blotting. The expression of Cosmc and T antigen increased in lung tissue exposed to chronic inflammation. The expression of Cosmc and T antigen increased in NE-stimulated BEAS-2B cells. NE induced increases in T antigen expression and T-synthase transferase activity in BEAS-2B cells expressing Cosmc, highlighting the importance of Cosmc in the relationship between NE and T antigen. Cosmc and phosphatidylinositol-3-kinase (PI3K) played important roles in the signaling pathway that stimulated hyperexpression of T antigen.
Collapse
|
22
|
Nyati S, Gregg BS, Xu J, Young G, Kimmel L, Nyati MK, Ray D, Speers C, Rehemtulla A. TGFBR2 mediated phosphorylation of BUB1 at Ser-318 is required for transforming growth factor-β signaling. Neoplasia 2020; 22:163-178. [PMID: 32143140 PMCID: PMC7057164 DOI: 10.1016/j.neo.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023] Open
Abstract
BUB1 (budding uninhibited by benzimidazoles-1) is required for efficient TGF-β signaling, through its role in stabilizing the TGFBR1 and TGFBR2 complex. Here we demonstrate that TGFBR2 phosphorylates BUB1 at Serine-318, which is conserved in primates. S318 phosphorylation abrogates the interaction of BUB1 with TGFBR1 and SMAD2. Using BUB1 truncation domains (1–241, 241–482 and 482–723), we demonstrate that multiple contact points exist between BUB1 and TGF-β signaling components and that these interactions are independent of the BUB1 tetratricopeptide repeat (TPR) domain. Moreover, substitutions in the middle domain (241–482) encompassing S318 reveals that efficient interaction with TGFBR2 occurs only in its dephosphorylated state (241–482 S318A). In contrast, the phospho-mimicking mutant (241–482 S318D) exhibits efficient binding with SMAD2 and its over-expression results in a decrease in TGFBR1-TGFBR2 and TGFBR1-SMAD2 interactions. These findings suggest that TGFBR2 mediated BUB1 phosphorylation at S318 may serve as a switch for the dissociation of the SMAD2-TGFBR complex, and therefore represents a regulatory event for TGF-β signaling. Finally, we provide evidence that the BUB1-TGF-β signaling axis may mediate aggressive phenotypes in a variety of cancers.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Brandon S Gregg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Grant Young
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Kimmel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, Smelkinson M, Fraser IDC. IFIT1 Exerts Opposing Regulatory Effects on the Inflammatory and Interferon Gene Programs in LPS-Activated Human Macrophages. Cell Rep 2020; 25:95-106.e6. [PMID: 30282041 PMCID: PMC6492923 DOI: 10.1016/j.celrep.2018.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/06/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of the TLR4 signaling pathway by lipopolysaccharide (LPS) leads to induction of both inflammatory and interferon-stimulated genes, but the mechanisms through which these coordinately activated transcriptional programs are balanced to promote an optimal innate immune response remain poorly understood. In a genome-wide small interfering RNA (siRNA) screen of the LPS-induced tumor necrosis factor α (TNF-α) response in macrophages, we identify the interferon-stimulated protein IFIT1 as a negative regulator of the inflammatory gene program. Transcriptional profiling further identifies a positive regulatory role for IFIT1 in type I interferon expression, implicating IFIT1 as a reciprocal modulator of LPS-induced gene classes. We demonstrate that these effects of IFIT1 are mediated through modulation of a Sin3A-HDAC2 transcriptional regulatory complex at LPS-induced gene loci. Beyond the well-studied role of cytosolic IFIT1 in restricting viral replication, our data demonstrate a function for nuclear IFIT1 in differential transcriptional regulation of separate branches of the LPS-induced gene program.
Collapse
Affiliation(s)
- Sinu P John
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jing Sun
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rebecca J Carlson
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Binh Cao
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Clinton J Bradfield
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jian Song
- Bioinformatics Group, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Bassaganyas L, Popa SJ, Horlbeck M, Puri C, Stewart SE, Campelo F, Ashok A, Butnaru CM, Brouwers N, Heydari K, Ripoche J, Weissman J, Rubinsztein DC, Schekman R, Malhotra V, Moreau K, Villeneuve J. New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. J Cell Biol 2019; 218:3861-3879. [PMID: 31488582 PMCID: PMC6829651 DOI: 10.1083/jcb.201902028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.
Collapse
Affiliation(s)
- Laia Bassaganyas
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Stephanie J Popa
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Max Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sarah E Stewart
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Campelo
- Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Anupama Ashok
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristian M Butnaru
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Photonic Investigations, Center of Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
| | - Nathalie Brouwers
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jean Ripoche
- Institut National de la Sante et de la Recherche Medicale U1026, Université de Bordeaux, Bordeaux, France
| | - Jonathan Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge, UK
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| | - Vivek Malhotra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kevin Moreau
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Julien Villeneuve
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Wen KK, Han SS, Vyas YM. Wiskott-Aldrich syndrome protein senses irradiation-induced DNA damage to coordinate the cell-protective Golgi dispersal response in human T and B lymphocytes. J Allergy Clin Immunol 2019; 145:324-334. [PMID: 31604087 DOI: 10.1016/j.jaci.2019.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency disorder resulting from Wiskott-Aldrich syndrome protein (WASp) deficiency. Lymphocytes from patients with WAS manifest increased DNA damage and lymphopenia from cell death, yet how WASp influences DNA damage-linked cell survival is unknown. A recently described mechanism promoting cell survival after ionizing radiation (IR)-induced DNA damage involves fragmentation and dispersal of the Golgi apparatus, known as the Golgi-dispersal response (GDR), which uses the Golgi phosphoprotein 3 (GOLPH3)-DNA-dependent protein kinase (DNA-PK)-myosin XVIIIA-F-actin signaling pathway. OBJECTIVE We sought to define WASp's role in the DNA damage-induced GDR and its disruption as a contributor to the development of radiosensitivity-linked immunodeficiency in patients with WAS. METHODS In human TH and B-cell culture systems, DNA damage-induced GDR elicited by IR or radiomimetic chemotherapy was monitored in the presence or absence of WASp or GOLPH3 alone or both together. RESULTS WASp deficiency completely prevents the development of IR-induced GDR in human TH and B cells, despite the high DNA damage load. Loss of WASp impedes nuclear translocation of GOLPH3 and its colocalization with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Surprisingly, however, depletion of GOLPH3 alone or depolymerization of F-actin in WASp-sufficient TH cells still allows development of robust GDR, suggesting that WASp, but not GOLPH3, is essential for GDR and cell survival after IR-induced DNA-damage in human lymphocytes. CONCLUSION The study identifies WASp as a novel effector of the nucleus-to-Golgi cell-survival pathway triggered by IR-induced DNA damage in cells of the hematolymphoid lineage and proposes an impaired GDR as a new cause for development of a "radiosensitive" form of immune dysregulation in patients with WAS.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa.
| |
Collapse
|
26
|
Alcedo KP, Guerrero A, Basrur V, Fu D, Richardson ML, McLane JS, Tsou C, Nesvizhskii AI, Welling TH, Lebrilla CB, Otey CA, Kim HJ, Omary MB, Snider NT. Tumor-Selective Altered Glycosylation and Functional Attenuation of CD73 in Human Hepatocellular Carcinoma. Hepatol Commun 2019; 3:1400-1414. [PMID: 31592495 PMCID: PMC6771166 DOI: 10.1002/hep4.1410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
CD73, a cell-surface N-linked glycoprotein that produces extracellular adenosine, is a novel target for cancer immunotherapy. Although anti-CD73 antibodies have entered clinical development, CD73 has both protumor and antitumor functions, depending on the target cell and tumor type. The aim of this study was to characterize CD73 regulation in human hepatocellular carcinoma (HCC). We examined CD73 expression, localization, and activity using molecular, biochemical, and cellular analyses on primary HCC surgical specimens, coupled with mechanistic studies in HCC cells. We analyzed CD73 glycan signatures and global alterations in transcripts encoding other N-linked glycoproteins by using mass spectrometry glycomics and RNA sequencing (RNAseq), respectively. CD73 was expressed on tumor hepatocytes where it exhibited abnormal N-linked glycosylation, independent of HCC etiology, tumor stage, or fibrosis presence. Aberrant glycosylation of tumor-associated CD73 resulted in a 3-fold decrease in 5'-nucleotidase activity (P < 0.0001). Biochemically, tumor-associated CD73 was deficient in hybrid and complex glycans specifically on residues N311 and N333 located in the C-terminal catalytic domain. Blocking N311/N333 glycosylation by site-directed mutagenesis produced CD73 with significantly decreased 5'-nucleotidase activity in vitro, similar to the primary tumors. Glycosylation-deficient CD73 partially colocalized with the Golgi structural protein GM130, which was strongly induced in HCC tumors. RNAseq analysis further revealed that N-linked glycoprotein-encoding genes represented the largest category of differentially expressed genes between HCC tumor and adjacent tissue. Conclusion: We provide the first detailed characterization of CD73 glycosylation in normal and tumor tissue, revealing a novel mechanism that leads to the functional suppression of CD73 in human HCC tumor cells. The present findings have translational implications for therapeutic candidate antibodies targeting cell-surface CD73 in solid tumors and small-molecule adenosine receptor agonists that are in clinical development for HCC.
Collapse
Affiliation(s)
- Karel P. Alcedo
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Andres Guerrero
- Department of ChemistryUniversity of California DavisDavisCA
| | | | - Dong Fu
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Monea L. Richardson
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Joshua S. McLane
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Chih‐Chiang Tsou
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI
| | - Alexey I. Nesvizhskii
- Department of PathologyUniversity of MichiganAnn ArborMI
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI
| | - Theodore H. Welling
- Perlmutter Cancer Center and Department of SurgeryNew York University Langone HealthNew YorkNY
| | | | - Carol A. Otey
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Hong Jin Kim
- Department of SurgeryUniversity of North Carolina at Chapel HillChapel HillNC
| | - M. Bishr Omary
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI
- Department of MedicineUniversity of MichiganAnn ArborMI
- Center for Advanced Biotechnology & MedicineRutgers UniversityPiscatawayNJ
- Rutgers Biomedical Health SciencesNewarkNJ
| | - Natasha T. Snider
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| |
Collapse
|
27
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
28
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Liu S, Majeed W, Grigaitis P, Betts MJ, Climer LK, Starkuviene V, Storrie B. Epistatic Analysis of the Contribution of Rabs and Kifs to CATCHR Family Dependent Golgi Organization. Front Cell Dev Biol 2019; 7:126. [PMID: 31428608 PMCID: PMC6687757 DOI: 10.3389/fcell.2019.00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
Multisubunit members of the CATCHR family: COG and NRZ complexes, mediate intra-Golgi and Golgi to ER vesicle tethering, respectively. We systematically addressed the genetic and functional interrelationships between Rabs, Kifs, and the retrograde CATCHR family proteins: COG3 and ZW10, which are necessary to maintain the organization of the Golgi complex. We scored the ability of siRNAs targeting 19 Golgi-associated Rab proteins and all 44 human Kifs, microtubule-dependent motor proteins, to suppress CATCHR-dependent Golgi fragmentation in an epistatic fluorescent microscopy-based assay. We found that co-depletion of Rab6A, Rab6A’, Rab27A, Rab39A and two minus-end Kifs, namely KIFC3 and KIF25, suppressed both COG3- and ZW10-depletion-induced Golgi fragmentation. ZW10-dependent Golgi fragmentation was suppressed selectively by a separate set of Rabs: Rab11A, Rab33B and the little characterized Rab29. 10 Kifs were identified as hits in ZW10-depletion-induced Golgi fragmentation, and, in contrast to the double suppressive Kifs, these were predominantly plus-end motors. No Rabs or Kifs selectively suppressed COG3-depletion-induced Golgi fragmentation. Protein-protein interaction network analysis indicated putative direct and indirect links between suppressive Rabs and tether function. Validation of the suppressive hits by EM confirmed a restored organization of the Golgi cisternal stack. Based on these outcomes, we propose a three-way competitive model of Golgi organization in which Rabs, Kifs and tethers modulate sequentially the balance between Golgi-derived vesicle formation, consumption, and off-Golgi transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Waqar Majeed
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pranas Grigaitis
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Matthew J Betts
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Leslie K Climer
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vytaute Starkuviene
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany.,Institute of Pharmacology and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
30
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
31
|
Popa S, Villeneuve J, Stewart S, Perez Garcia E, Petrunkina Harrison A, Moreau K. Genome-wide CRISPR screening identifies new regulators of glycoprotein secretion. Wellcome Open Res 2019; 4:119. [PMID: 32030357 PMCID: PMC6979480 DOI: 10.12688/wellcomeopenres.15232.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 01/08/2024] Open
Abstract
Background: The fundamental process of protein secretion from eukaryotic cells has been well described for many years, yet gaps in our understanding of how this process is regulated remain. Methods: With the aim of identifying novel genes involved in the secretion of glycoproteins, we used a screening pipeline consisting of a pooled genome-wide CRISPR screen, followed by secondary siRNA screening of the hits to identify and validate several novel regulators of protein secretion. Results: We present approximately 50 novel genes not previously associated with protein secretion, many of which also had an effect on the structure of the Golgi apparatus. We further studied a small selection of hits to investigate their subcellular localisation. One of these, GPR161, is a novel Golgi-resident protein that we propose maintains Golgi structure via an interaction with golgin A5. Conclusions: This study has identified new factors for protein secretion involved in Golgi homeostasis.
Collapse
Affiliation(s)
- Stephanie Popa
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julien Villeneuve
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sarah Stewart
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Esther Perez Garcia
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Petrunkina Harrison
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kevin Moreau
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
32
|
Popa S, Villeneuve J, Stewart S, Perez Garcia E, Petrunkina Harrison A, Moreau K. Genome-wide CRISPR screening identifies new regulators of glycoprotein secretion. Wellcome Open Res 2019; 4:119. [PMID: 32030357 PMCID: PMC6979480 DOI: 10.12688/wellcomeopenres.15232.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The fundamental process of protein secretion from eukaryotic cells has been well described for many years, yet gaps in our understanding of how this process is regulated remain. Methods: With the aim of identifying novel genes involved in the secretion of glycoproteins, we used a screening pipeline consisting of a pooled genome-wide CRISPR screen, followed by secondary siRNA screening of the hits to identify and validate several novel regulators of protein secretion. Results: We present approximately 50 novel genes not previously associated with protein secretion, many of which also had an effect on the structure of the Golgi apparatus. We further studied a small selection of hits to investigate their subcellular localisation. One of these, GPR161, is a novel Golgi-resident protein that we propose maintains Golgi structure via an interaction with golgin A5. Conclusions: This study has identified new factors for protein secretion involved in Golgi homeostasis.
Collapse
Affiliation(s)
- Stephanie Popa
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julien Villeneuve
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sarah Stewart
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Esther Perez Garcia
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Petrunkina Harrison
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kevin Moreau
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
33
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
34
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Wei M, Zhu Z, Wu J, Wang Y, Geng J, Qin ZH. DRAM1 deficiency affects the organization and function of the Golgi apparatus. Cell Signal 2019; 63:109375. [PMID: 31356858 DOI: 10.1016/j.cellsig.2019.109375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/07/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022]
Abstract
DRAM1 (DNA damage-regulated autophagy modulator 1) is a transmembrane protein that predominantly localizes to the lysosome but is also found in other membranous organelles; however, its function in these organelles remains largely unknown. We found that DRAM1 was partially located in the Golgi apparatus, and knockdown of DRAM1 caused fragmentation of the Golgi apparatus in cells. The phenomenon of fragmented Golgi was not related to microtubule organization, and there was no direct interaction between DRAM1 and Golgi structural proteins (ARF1, GM130, syntaxin 6 and GRASP55). Moreover, Golgi-targeting DRAM1 failed to rescue the fragmentation of Golgi in DRAM1-deficient cells. The transport of ts045-VSVG-GFP, an indicator of movement from the Golgi apparatus to the plasma membrane, was delayed in DRAM1-knockdown cells. Moreover, the trafficking of CI-MPR from the plasma membrane to the Golgi was also impeded in DRAM1-knockdown cells. These results indicated that DRAM1 regulated the structure of the Golgi apparatus and affected Golgi apparatus-associated vesicular transport.
Collapse
Affiliation(s)
- Mingzhen Wei
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Junchao Wu
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ji Geng
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Zheng-Hong Qin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Golgi Fragmentation in Neurodegenerative Diseases: Is There a Common Cause? Cells 2019; 8:cells8070748. [PMID: 31331075 PMCID: PMC6679019 DOI: 10.3390/cells8070748] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
In most mammalian cells, the Golgi complex forms a continuous ribbon. In neurodegenerative diseases, the Golgi ribbon of a specific group of neurons is typically broken into isolated elements, a very early event which happens before clinical and other pathological symptoms become evident. It is not known whether this phenomenon is caused by mechanisms associated with cell death or if, conversely, it triggers apoptosis. When the phenomenon was studied in diseases such as Parkinson’s and Alzheimer’s or amyotrophic lateral sclerosis, it was attributed to a variety of causes, including the presence of cytoplasmatic protein aggregates, malfunctioning of intracellular traffic and/or alterations in the cytoskeleton. In the present review, we summarize the current findings related to these and other neurodegenerative diseases and try to search for clues on putative common causes.
Collapse
|
37
|
Chessel A, Carazo Salas RE. From observing to predicting single-cell structure and function with high-throughput/high-content microscopy. Essays Biochem 2019; 63:197-208. [PMID: 31243141 PMCID: PMC6610450 DOI: 10.1042/ebc20180044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
In the past 15 years, cell-based microscopy has evolved its focus from observing cell function to aiming to predict it. In particular-powered by breakthroughs in computer vision, large-scale image analysis and machine learning-high-throughput and high-content microscopy imaging have enabled to uniquely harness single-cell information to systematically discover and annotate genes and regulatory pathways, uncover systems-level interactions and causal links between cellular processes, and begin to clarify and predict causal cellular behaviour and decision making. Here we review these developments, discuss emerging trends in the field, and describe how single-cell 'omics and single-cell microscopy are imminently in an intersecting trajectory. The marriage of these two fields will make possible an unprecedented understanding of cell and tissue behaviour and function.
Collapse
Affiliation(s)
- Anatole Chessel
- École polytechnique, Université Paris-Saclay, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
38
|
Makhoul C, Gosavi P, Gleeson PA. Golgi Dynamics: The Morphology of the Mammalian Golgi Apparatus in Health and Disease. Front Cell Dev Biol 2019; 7:112. [PMID: 31334231 PMCID: PMC6616279 DOI: 10.3389/fcell.2019.00112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
In vertebrate cells the Golgi consists of individual stacks fused together into a compact ribbon structure. The function of the ribbon structure of the Golgi has only begun to be appreciated (De Matteis et al., 2008; Gosavi and Gleeson, 2017; Wei and Seemann, 2017). Recent advances have identified a role for the Golgi in the regulation of a broad range of cellular processes and of particular interest is that the modulation of the Golgi ribbon is associated with regulation of a number of signaling pathways (Makhoul et al., 2018). Various cell responses, such as inflammation, and various disorders and diseases, including neurodegeneration and cancer, are associated with the loss of the Golgi ribbon and the appearance of a dispersed or semi-dispersed Golgi. Often the dispersed Golgi is referred to as a “fragmented” morphology. However, the description of a dispersed Golgi ribbon as “fragmented” is inadequate as it does not accurately define the morphological state of the Golgi. This issue is particularly relevant as there are an increasing number of reports describing Golgi fragmentation under physiological and pathological conditions. Knowledge of the precise Golgi architecture is relevant to an appreciation of the functional status of the Golgi apparatus and the underlying molecular mechanism for the contribution of the Golgi to different cellular processes. Here we propose a classification to define the various morphological states of the non-ribbon architecture of the Golgi in mammalian cells as a guide to more precisely define the relationship between the morphological and functional status of this organelle.
Collapse
Affiliation(s)
- Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Lopes-da-Silva M, McCormack JJ, Burden JJ, Harrison-Lavoie KJ, Ferraro F, Cutler DF. A GBF1-Dependent Mechanism for Environmentally Responsive Regulation of ER-Golgi Transport. Dev Cell 2019; 49:786-801.e6. [PMID: 31056345 PMCID: PMC6764485 DOI: 10.1016/j.devcel.2019.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/19/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
How can anterograde membrane trafficking be modulated by physiological cues? A screen of Golgi-associated proteins revealed that the ARF-GEF GBF1 can selectively modulate the ER-Golgi trafficking of prohaemostatic von Willebrand factor (VWF) and extracellular matrix (ECM) proteins in human endothelial cells and in mouse fibroblasts. The relationship between levels of GBF1 and the trafficking of VWF into forming secretory granules confirmed GBF1 is a limiting factor in this process. Further, GBF1 activation by AMPK couples its control of anterograde trafficking to physiological cues; levels of glucose control GBF1 activation in turn modulating VWF trafficking into secretory granules. GBF1 modulates both ER and TGN exit, the latter dramatically affecting the size of the VWF storage organelles, thereby influencing the hemostatic capacity of the endothelium. The role of AMPK as a central integrating element of cellular pathways with intra- and extra-cellular cues can now be extended to modulation of the anterograde secretory pathway. The Arf-GEF GBF1 modulates anterograde trafficking of VWF and ECM proteins Loss of GBF1 slows ER and TGN exit, producing swollen ER and giant WPBs Activation of GBF1 via AMPK reduces endothelial WPB size and secretion Metabolic change alters anterograde trafficking and cargo secretion via AMPK-GBF1
Collapse
Affiliation(s)
- Mafalda Lopes-da-Silva
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Jessica J McCormack
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jemima J Burden
- Electron Microscopy Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Kimberly J Harrison-Lavoie
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Francesco Ferraro
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Daniel F Cutler
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
40
|
Chia J, Tay F, Bard F. The GalNAc-T Activation (GALA) Pathway: Drivers and markers. PLoS One 2019; 14:e0214118. [PMID: 30889231 PMCID: PMC6424425 DOI: 10.1371/journal.pone.0214118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
The enzymes GALNTs add GalNAc sugar to Ser and Thr residues, forming the Tn glycan. GALNTs are activated by trafficking from Golgi to ER, a process driven by the Src kinase and negatively regulated by ERK8. This GALNTs activation (aka GALA) pathway induces high Tn levels and is a key driver of liver tumor growth. Recently, Tabak and colleagues have contested our previous data that EGF stimulation can induce GALNTs relocation. Here, we show that relocation induced by EGF is actually detectable in the very images acquired by Tabak et al. Furthermore, we show that over-expression of EGFR strongly enhances EGF-induced relocation and that EGFR appears required to drive relocation induced by ERK8 depletion. Direct co-localisation of GALNT with the ER marker Calnexin is observed after EGF stimulation. We furthermore propose that quantification of O-glycosylation of the ER resident protein PDIA4 provides a mean to quantify GALA independently of imaging. In sum, we demonstrate that the claimed non-reproducibility was due to experimental imaging conditions, that EGFR is indeed a driver of GALA and propose additional markers to facilitate the study of this pathway.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
42
|
Manca S, Frisbie CP, LaGrange CA, Casey CA, Riethoven JJM, Petrosyan A. The Role of Alcohol-Induced Golgi Fragmentation for Androgen Receptor Signaling in Prostate Cancer. Mol Cancer Res 2018; 17:225-237. [PMID: 30224543 DOI: 10.1158/1541-7786.mcr-18-0577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Multiple epidemiologic observations and meta-analysis clearly indicate the link between alcohol abuse and the incidence and progression of prostate cancer; however, the mechanism remains enigmatic. Recently, it was found that ethanol (EtOH) induces disorganization of the Golgi complex caused by impaired function of the largest Golgi matrix protein, giantin (GOLGB1), which, in turn, alters the Golgi docking of resident Golgi proteins. Here, it is determined that in normal prostate cells, histone deacetylase 6 (HDAC6), the known regulator of androgen receptor (AR) signaling, localizes in the cytoplasm and nucleus, while its kinase, glycogen synthase kinase β (GSK3β), primarily resides in the Golgi. Progression of prostate cancer is accompanied by Golgi scattering, translocation of GSK3β from the Golgi to the cytoplasm, and the cytoplasmic shift in HDAC6 localization. Alcohol dehydrogenase-generated metabolites induces Golgi disorganization in androgen-responsive LNCaP and 22Rv1 cells, facilitates tumor growth in a mouse xenograft model and activates anchorage-independent proliferation, migration, and cell adhesion. EtOH-treated cells demonstrate reduced giantin and subsequent cytoplasmic GSK3β; this phenomenon was validated in giantin-depleted cells. Redistribution of GSK3β to the cytoplasm results in phosphorylation of HDAC6 and its retention in the cytoplasm, which, in turn, stimulates deacetylation of HSP90, AR import into the nucleus, and secretion of prostate-specific antigen (PSA). Finally, the relationship between Golgi morphology, HDAC6 cytoplasmic content, and clinicopathologic features was assessed in human prostate cancer patient specimens with and without a history of alcohol dependence. IMPLICATIONS: This study demonstrates the importance of alcohol-induced Golgi fragmentation in the activation of AR-mediated proliferation.
Collapse
Affiliation(s)
- Sonia Manca
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cole P Frisbie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean-Jack M Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska.,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska.,The Fred and Pamela Buffett Cancer Center, Omaha, Nebraska
| |
Collapse
|
43
|
Groux-Degroote S, Schulz C, Cogez V, Noël M, Portier L, Vicogne D, Solorzano C, Dall'Olio F, Steenackers A, Mortuaire M, Gonzalez-Pisfil M, Henry M, Foulquier F, Héliot L, Harduin-Lepers A. The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and post-Golgi sorting. FEBS J 2018; 285:3442-3463. [PMID: 30067891 DOI: 10.1111/febs.14621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022]
Abstract
The Sda /Cad antigen reported on glycoconjugates of human tissues has an increasingly recognized wide impact on the physio-pathology of different biological systems. The last step of its biosynthesis relies on the enzymatic activity of the β1,4-N-acetylgalactosaminyltransferase-II (B4GALNT2), which shows the highest expression level in healthy colon. Previous studies reported the occurrence in human colonic cells of two B4GALNT2 protein isoforms that differ in the length of their cytoplasmic tail, the long isoform showing an extended 66-amino acid tail. We examined here, the subcellular distribution of the two B4GALNT2 protein isoforms in stably transfected colonic LS174T cells and in transiently transfected HeLa cells using fluorescence microscopy. While a similar subcellular distribution at the trans-Golgi cisternae level was observed for the two isoforms, our study pointed to an atypical subcellular localization of the long B4GALNT2 isoform into dynamic vesicles. We demonstrated a critical role of its extended cytoplasmic tail for its Golgi targeting and post-Golgi sorting and highlighted the existence of a newly described post-Golgi sorting signal as well as a previously undescribed fate of a Golgi glycosyltransferase. DATABASE The proteins β1,4GalNAcT II, β1,4-GalT1, FucT I, FucT VI and ST3Gal IV are noted B4GALNT2, B4GALT1, FUT1, FUT6 and ST3GAL4, whereas the corresponding human genes are noted B4GALNT2, B4GALT1, FUT1, FUT6 and ST3GAL4 according to the HUGO nomenclature.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.,Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - Virginie Cogez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maxence Noël
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Lucie Portier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Dorothée Vicogne
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Carlos Solorzano
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Agata Steenackers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marlène Mortuaire
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Mariano Gonzalez-Pisfil
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - Mélanie Henry
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Laurent Héliot
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
44
|
Becker AK, Erfle H, Gunkel M, Beil N, Kaderali L, Starkuviene V. Comparison of Cell Arrays and Multi-Well Plates in Microscopy-Based Screening. High Throughput 2018; 7:ht7020013. [PMID: 29762489 PMCID: PMC6023461 DOI: 10.3390/ht7020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/30/2023] Open
Abstract
Multi-well plates and cell arrays enable microscopy-based screening assays in which many samples can be analysed in parallel. Each of the formats possesses its own strengths and weaknesses, but reference comparisons between these platforms and their application rationale is lacking. We aim to fill this gap by comparing two RNA interference (RNAi)-mediated fluorescence microscopy-based assays, namely epidermal growth factor (EGF) internalization and cell cycle progression, on both platforms. Quantitative analysis revealed that both platforms enabled the generation of data with the appearance of the expected phenotypes significantly distinct from the negative controls. The measurements of cell cycle progression were less variable in multi-well plates. The result can largely be attributed to higher cell numbers resulting in less data variability when dealing with the assay generating phenotypic cell subpopulations. The EGF internalization assay with a uniform phenotype over nearly the whole cell population performed better on cell arrays than in multi-well plates. The result was achieved by scoring five times less cells on cell arrays than in multi-well plates, indicating the efficiency of the cell array format. Our data indicate that the choice of the screening platform primarily depends on the type of the cellular assay to achieve a maximum data quality and screen efficiency.
Collapse
Affiliation(s)
- Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Holger Erfle
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Manuel Gunkel
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Nina Beil
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Biosciences, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
45
|
Zappa F, Failli M, De Matteis MA. The Golgi complex in disease and therapy. Curr Opin Cell Biol 2018; 50:102-116. [PMID: 29614425 DOI: 10.1016/j.ceb.2018.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
The Golgi complex occupies a strategic position in the endomembrane system and acts not only as a key trafficking and sorting station and a vital biosynthetic center for glycoproteins and lipids, but also as an active signaling hub. As such, the Golgi complex participates in the establishment and maintenance of cell compartmentalization and in general, cell processes such as cell growth and apoptosis. The different functions of the Golgi complex are executed by composite molecular machineries that have been exhaustively dissected over the last three decades. These machineries can become dysfunctional as a result of mutations in the respective encoding genes or may be hijacked by infectious agents or misregulated in the course of multifactorial diseases such as neurodegeneration and cancer. Small molecules targeting components of these machineries have been instrumental in dissecting their functions in in vitro studies and some of them have been developed or are currently under development for clinical use.
Collapse
Affiliation(s)
- Francesca Zappa
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Mario Failli
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.
| |
Collapse
|
46
|
Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA. The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 2018; 131:jcs.211987. [PMID: 29361552 DOI: 10.1242/jcs.211987] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul J McMillan
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
47
|
Baumann J, Ignashkova TI, Chirasani SR, Ramírez-Peinado S, Alborzinia H, Gendarme M, Kuhnigk K, Kramer V, Lindemann RK, Reiling JH. Golgi stress-induced transcriptional changes mediated by MAPK signaling and three ETS transcription factors regulate MCL1 splicing. Mol Biol Cell 2018; 29:42-52. [PMID: 29118074 PMCID: PMC5746065 DOI: 10.1091/mbc.e17-06-0418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
The secretory pathway is a major determinant of cellular homoeostasis. While research into secretory stress signaling has so far mostly focused on the endoplasmic reticulum (ER), emerging data suggest that the Golgi itself serves as an important signaling hub capable of initiating stress responses. To systematically identify novel Golgi stress mediators, we performed a transcriptomic analysis of cells exposed to three different pharmacological compounds known to elicit Golgi fragmentation: brefeldin A, golgicide A, and monensin. Subsequent gene-set enrichment analysis revealed a significant contribution of the ETS family transcription factors ELK1, GABPA/B, and ETS1 to the control of gene expression following compound treatment. Induction of Golgi stress leads to a late activation of the ETS upstream kinases MEK1/2 and ERK1/2, resulting in enhanced ETS factor activity and the transcription of ETS family target genes related to spliceosome function and cell death induction via alternate MCL1 splicing. Further genetic analyses using loss-of-function and gain-of-function experiments suggest that these transcription factors operate in parallel.
Collapse
Affiliation(s)
- Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | - Kyra Kuhnigk
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Gendarme M, Baumann J, Ignashkova TI, Lindemann RK, Reiling JH. Image-based drug screen identifies HDAC inhibitors as novel Golgi disruptors synergizing with JQ1. Mol Biol Cell 2017; 28:3756-3772. [PMID: 29074567 PMCID: PMC5739293 DOI: 10.1091/mbc.e17-03-0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is increasingly recognized as a major hub for cellular signaling and is involved in numerous pathologies, including neurodegenerative diseases and cancer. The study of Golgi stress-induced signaling pathways relies on the selectivity of the available tool compounds of which currently only a few are known. To discover novel Golgi-fragmenting agents, transcriptomic profiles of cells treated with brefeldin A, golgicide A, or monensin were generated and compared with a database of gene expression profiles from cells treated with other bioactive small molecules. In parallel, a phenotypic screen was performed for compounds that alter normal Golgi structure. Histone deacetylase (HDAC) inhibitors and DNA-damaging agents were identified as novel Golgi disruptors. Further analysis identified HDAC1/HDAC9 as well as BRD8 and DNA-PK as important regulators of Golgi breakdown mediated by HDAC inhibition. We provide evidence that combinatorial HDACi/(+)-JQ1 treatment spurs synergistic Golgi dispersal in several cancer cell lines, pinpointing a possible link between drug-induced toxicity and Golgi morphology alterations.
Collapse
Affiliation(s)
| | - Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Hussain S, Le Guezennec X, Yi W, Dong H, Chia J, Yiping K, Khoon LK, Bard F. Digging deep into Golgi phenotypic diversity with unsupervised machine learning. Mol Biol Cell 2017; 28:3686-3698. [PMID: 29021342 PMCID: PMC5706995 DOI: 10.1091/mbc.e17-06-0379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
Structural alterations of the Golgi apparatus may lead to phenotypes that human vision cannot easily discriminate. In this work, we present a high-content analysis framework including an unsupervised clustering step to automatically uncover Golgi phenotypic diversity. We use this deep phenotyping to quantitatively compare the effects of gene depletion. The synthesis of glycans and the sorting of proteins are critical functions of the Golgi apparatus and depend on its highly complex and compartmentalized architecture. High-content image analysis coupled to RNA interference screening offers opportunities to explore this organelle organization and the gene network underlying it. To date, image-based Golgi screens have based on a single parameter or supervised analysis with predefined Golgi structural classes. Here, we report the use of multiparametric data extracted from a single marker and a computational unsupervised analysis framework to explore Golgi phenotypic diversity more extensively. In contrast with the three visually definable phenotypes, our framework reproducibly identified 10 Golgi phenotypes. They were used to quantify and stratify phenotypic similarities among genetic perturbations. The derived phenotypic network partially overlaps previously reported protein–protein interactions as well as suggesting novel functional interactions. Our workflow suggests the existence of multiple stable Golgi organizational states and provides a proof of concept for the classification of drugs and genes using fine-grained phenotypic information.
Collapse
Affiliation(s)
| | | | - Wang Yi
- Institute of High Performance Computing, Singapore 138673
| | - Huang Dong
- Institute of High Performance Computing, Singapore 138673
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Ke Yiping
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Lee Kee Khoon
- Institute of High Performance Computing, Singapore 138673
| | - Frédéric Bard
- Institute of Molecular and Cell Biology, Singapore 138673
| |
Collapse
|
50
|
Gosavi P, Gleeson PA. The Function of the Golgi Ribbon Structure - An Enduring Mystery Unfolds! Bioessays 2017; 39. [PMID: 28984991 DOI: 10.1002/bies.201700063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The Golgi apparatus in vertebrate cells consists of individual Golgi stacks fused together in a continuous ribbon structure. The ribbon structure per se is not required to mediate the classical functions of this organelle and the relevance of the "ribbon" structure has been a mystery since first identified ultrastructurally in the 1950s. Recent advances recognize a role for the Golgi apparatus in a range of cellular processes, some mediated by signaling networks which are regulated at the Golgi. Here we review the cellular processes and signaling events regulated by the Golgi apparatus and, in particular, explore an emerging theme that the ribbon structure of the Golgi contributes directly to the regulation of these higher order functions.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|