1
|
Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 2016; 204:659-673. [PMID: 27474729 DOI: 10.1534/genetics.116.188086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023] Open
Abstract
The retrograde response signals mitochondrial status to the nucleus, compensating for accumulating mitochondrial dysfunction during Saccharomyces cerevisiae aging and extending replicative lifespan. The histone acetylase Gcn5 is required for activation of nuclear genes and lifespan extension in the retrograde response. It is part of the transcriptional coactivators SAGA and SLIK, but it is not known which of these complexes is involved. Genetic manipulation showed that these complexes perform interchangeably in the retrograde response. These results, along with the finding that the histone deacetylase Sir2 was required for a robust retrograde response informed a bioinformatics screen that reduced to four the candidate genes causal for longevity of the 410 retrograde response target genes. Of the four, only deletion of PHO84 suppressed lifespan extension. Retrograde-response activation of PHO84 displayed some preference for SAGA. Increased PHO84 messenger RNA levels from a second copy of the gene in cells in which the retrograde response is not activated achieved >80% of the lifespan extension observed in the retrograde response. Our studies resolve questions involving the roles of SLIK and SAGA in the retrograde response, pointing to the cooperation of these complexes in gene activation. They also finally pinpoint the gene that is both necessary and sufficient to extend replicative lifespan in the retrograde response. The finding that this gene is PHO84 opens up a new set of questions about the mechanisms involved, as this gene is known to have pleiotropic effects.
Collapse
|
2
|
Kang WK, Kim YH, Kang HA, Kwon KS, Kim JY. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. eLife 2015; 4. [PMID: 26329457 PMCID: PMC4586308 DOI: 10.7554/elife.09709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023] Open
Abstract
Silent information regulator 2 (Sir2), an NAD+-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H+-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2-S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a mechanism by which Sir2 contributes to lifespan extension. DOI:http://dx.doi.org/10.7554/eLife.09709.001 We know that cutting calorie intake through a restricted diet can slow down the aging process and prolong the lives of many organisms ranging from yeast to mammals. Calorie restriction also has protective effects on various age-related diseases including neurodegenerative disorders, cardiovascular disease, and cancer. Many studies suggest that we may mimic the beneficial effects of calorie restriction by controlling the activities of some proteins involved in the aging process. An enzyme called Sir2 is required for calorie restriction to be able to increase lifespan. This enzyme modifies proteins called histones, which are used to package DNA inside cells. In yeast, Sir2 modifies the histones in such a way that the genes contained in that section of DNA are inactivated (or ‘silenced’). As the yeast cells age, the activity of Sir2 declines, which allows these genes to become active and contribute to the aging process. However, when yeast cells are grown in the presence of little sugar—which mimics caloric restriction—Sir2 is activated and this restores gene silencing. It is not clear how Sir2's ability to silence these genes contributes to prolonged lifespan. Kang et al. studied the role of Sir2 in yeast and observed that one of the genes that Sir2 inactivates is called PMA1. This gene encodes a protein that is known to restrict the lifespan of yeast cells. Further experiments show that other proteins attach or remove molecules called phosphate groups from Sir2 to regulate its activity. Sir2 is inactivated when a phosphate group is attached, and active in the absence of phosphate. Under a reduced diet, the proteins that add phosphate to Sir2 are inactive, which allows Sir2 to become active and reduce the expression of the PMA1 gene. These results show that Sir2 fine-tunes the expression of PMA1 and other age-related genes and that the attachment of phosphate groups to Sir2 by other proteins interferes with this regulation. The next challenges will be to identify the proteins responsible for attaching phosphate groups to Sir2, and to find out how they work. DOI:http://dx.doi.org/10.7554/eLife.09709.002
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ki-Sun Kwon
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Stochastic control of proliferation and differentiation in stem cell dynamics. J Math Biol 2014; 71:883-901. [PMID: 25319118 DOI: 10.1007/s00285-014-0835-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 10/31/2012] [Indexed: 12/24/2022]
Abstract
In self-renewing tissues, cell lineages consisting of stem cell and classes of daughter cells are the basic units which are responsible for the correct functioning of the organ. Cell proliferation and differentiation in lineages is thought to be mediated by feedback signals. In the simplest case a lineage is comprised of stem cells and differentiated cells. We create a model where stem cell proliferation and differentiation are controlled by the size of cell populations by means of a negative feedback loop. This two-dimensional Markov process allows for an analytical solution for the mean numbers and variances of stem and daughter cells. The mean values and the amounts of variation in cell numbers can be tightly regulated by the parameters of the control loop.
Collapse
|
4
|
Kasavi C, Eraslan S, Arga KY, Oner ET, Kirdar B. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2014; 8:90. [PMID: 25103914 PMCID: PMC4236716 DOI: 10.1186/s12918-014-0090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023]
Abstract
Background Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance. Results In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain. The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in yeast. Conclusions The system based network approach developed allows the identification of novel gene targets for improved ethanol tolerance and supports the highly complex nature of ethanol tolerance in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Betul Kirdar
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
5
|
Abstract
Identifying the exact regulatory circuits that can stably maintain tissue homeostasis is critical for our basic understanding of multicellular organisms, and equally critical for identifying how tumors circumvent this regulation, thus providing targets for treatment. Despite great strides in the understanding of the molecular components of stem-cell regulation, the overall mechanisms orchestrating tissue homeostasis are still far from being understood. Typically, tissue contains the stem cells, transit amplifying cells, and terminally differentiated cells. Each of these cell types can potentially secrete regulatory factors and/or respond to factors secreted by other types. The feedback can be positive or negative in nature. This gives rise to a bewildering array of possible mechanisms that drive tissue regulation. In this paper, we propose a novel method of studying stem cell lineage regulation, and identify possible numbers, types, and directions of control loops that are compatible with stability, keep the variance low, and possess a certain degree of robustness. For example, there are exactly two minimal (two-loop) control networks that can regulate two-compartment (stem and differentiated cell) tissues, and 20 such networks in three-compartment tissues. If division and differentiation decisions are coupled, then there must be a negative control loop regulating divisions of stem cells (e.g. by means of contact inhibition). While this mechanism is associated with the highest robustness, there could be systems that maintain stability by means of positive divisions control, coupled with specific types of differentiation control. Some of the control mechanisms that we find have been proposed before, but most of them are new, and we describe evidence for their existence in data that have been previously published. By specifying the types of feedback interactions that can maintain homeostasis, our mathematical analysis can be used as a guide to experimentally zero in on the exact molecular mechanisms in specific tissues.
Collapse
Affiliation(s)
- Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
6
|
Rende D, Baysal N, Kirdar B. Complex disease interventions from a network model for type 2 diabetes. PLoS One 2013; 8:e65854. [PMID: 23776558 PMCID: PMC3679160 DOI: 10.1371/journal.pone.0065854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network are informative to reveal significant metabolic processes and disease's associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network (T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The assembly of top scoring overlapping members in the functional modules revealed that, along with the well known biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have significant occurrence in the pathophysiology of the disease. The disease's association with other metabolic and neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2 diabetes and neuromuscular diseases.
Collapse
Affiliation(s)
- Deniz Rende
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America.
| | | | | |
Collapse
|
7
|
Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol 2013; 14:R48. [PMID: 23710766 PMCID: PMC4053722 DOI: 10.1186/gb-2013-14-5-r48] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/14/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sirtuins are a conserved family of NAD⁺-dependent histone/protein deacetylases that regulate numerous cellular processes, including heterochromatin formation and transcription. Multiple sirtuins are encoded by each eukaryotic genome, raising the possibility of cooperativity or functional overlap. The scope and variety of chromatin binding sites of the sirtuins in any specific organism remain unclear. RESULTS Here we utilize the ChIP-seq technique to identify and functionally characterize the genome-wide targets of the sirtuins, Sir2, Hst1 to Hst4, and the DNA binding partner of Hst1, Sum 1, in Saccharomyces cerevisiae. Unexpectedly, Sir2, Hst1 and Sum1, but not the other sirtuins, exhibit co-enrichment at several classes of chromatin targets. These include telomeric repeat clusters, tRNA genes, and surprisingly, the open reading frames (ORFs) of multiple highly expressed RNA polymerase II-transcribed genes that function in processes such as fermentation, glycolysis, and translation. Repression of these target genes during the diauxic shift is specifically dependent on Sir2/Hst1/Sum1 binding to the ORF and sufficiently high intracellular NAD⁺ concentrations. Sir2 recruitment to the ORFs is independent of the canonical SIR complex and surprisingly requires Sum1. The shared Sir2/Hst1/Sum1 targets also significantly overlap with condensin and cohesin binding sites, where Sir2, Hst1, and Sum1 were found to be important for condensin and cohesin deposition, suggesting a possible mechanistic link between metabolism and chromatin architecture during the diauxic shift. CONCLUSIONS This study demonstrates the existence of overlap in sirtuin function, and advances our understanding of conserved sirtuin-regulated functions, including the regulation of glycolytic gene expression and condensin loading.
Collapse
Affiliation(s)
- Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Veena Valsakumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Sun Z, Komarova NL. Stochastic modeling of stem-cell dynamics with control. Math Biosci 2012; 240:231-40. [PMID: 22960597 PMCID: PMC3921979 DOI: 10.1016/j.mbs.2012.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 12/12/2022]
Abstract
Tissue development and homeostasis are thought to be regulated endogenously by control loops that ensure that the numbers of stem cells and daughter cells are maintained at desired levels, and that the cell dynamics are robust to perturbations. In this paper we consider several classes of stochastic models that describe stem/daughter cell dynamics in a population of constant size, which are generalizations of the Moran process that include negative control loops that affect differentiation probabilities for stem cells. We present analytical solutions for the steady-state expectations and variances of the numbers of stem and daughter cells; these results remain valid for non-constant cell populations. We show that in the absence of differentiation/proliferation control, the number of stem cells is subject to extinction or overflow. In the presence of linear control, a steady state may be maintained but no tunable parameters are available to control the mean and the spread of the cell population sizes. Two types of nonlinear control considered here incorporate tunable parameters that allow specification of the expected number of stem cells and also provide control over the size of the standard deviation. We show that under a hyperbolic control law, there is a trade-off between minimizing standard deviations and maintaining the system robustness against external perturbations. For the Hill-type control, the standard deviation is inversely proportional to the Hill coefficient of the control loop. Biologically this means that ultrasensitive response that is observed in a number of regulatory loops may have evolved in order to reduce fluctuations while maintaining the desired population levels.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Mathematics, University of California Irvine, Irvine, CA 92617
| | - Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA 92617
| |
Collapse
|
9
|
Weiner A, Chen HV, Liu CL, Rahat A, Klien A, Soares L, Gudipati M, Pfeffner J, Regev A, Buratowski S, Pleiss JA, Friedman N, Rando OJ. Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 2012; 10:e1001369. [PMID: 22912562 PMCID: PMC3416867 DOI: 10.1371/journal.pbio.1001369] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023] Open
Abstract
Systematic functional and mapping studies of histone modifications in yeast show that most chromatin regulators are more important for dynamic transcriptional reprogramming than for steady-state gene expression. Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression. Chromatin packaging of eukaryotic genomes has wideranging, yet poorly understood, effects on gene regulation. Curiously, many histone modifications occur on the majority of genes, yet their loss typically affects a small subset of those genes. Here, we examine gene expression defects in 200 chromatin-related mutants during a stress response, finding that chromatin regulators have far greater effects on the dynamics of gene expression than on the steady-state transcription. By grouping mutants according to their shared defects in the stress response, we systematically recover known chromatin-related complexes and pathways, and predict several novel pathways. Finally, by integrating genome-wide changes in the locations of five prominent histone modifications during the stress response with our functional data, we uncover a novel role for the “activating” histone modification H3K4me3 in gene repression. Surprisingly, H3K4 methylation appears to act in conjunction with H3S10 phosphorylation in the repression of ribosomal biosynthesis genes. Repression of ribosomal protein genes and ribosomal RNA maturation genes occur via distinct pathways. Our results show that steady-state studies miss a great deal of important chromatin biology, and identify a surprising role for H3K4 methylation in ribosomal gene repression in yeast.
Collapse
Affiliation(s)
- Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Hsiuyi V. Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chih Long Liu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ayelet Rahat
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Avital Klien
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Luis Soares
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mohanram Gudipati
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jenna Pfeffner
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stephen Buratowski
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey A. Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- * E-mail: (NF); (OJR)
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (NF); (OJR)
| |
Collapse
|
10
|
Batenchuk C, St-Pierre S, Tepliakova L, Adiga S, Szuto A, Kabbani N, Bell JC, Baetz K, Kærn M. Chromosomal position effects are linked to sir2-mediated variation in transcriptional burst size. Biophys J 2011; 100:L56-8. [PMID: 21575565 DOI: 10.1016/j.bpj.2011.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
Gene expression noise varies with genomic position and is a driving force in the evolution of chromosome organization. Nevertheless, position effects remain poorly characterized. Here, we present a systematic analysis of chromosomal position effects by characterizing single-cell gene expression from euchromatic positions spanning the length of a eukaryotic chromosome. We demonstrate that position affects gene expression by modulating the size of transcriptional bursts, rather than their frequency, and that the histone deacetylase Sir2 plays a role in this process across the chromosome.
Collapse
Affiliation(s)
- Cory Batenchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C, Jaspersen SL, Kobor MS, Shilatifard A. Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. Mol Cell 2011; 42:118-26. [PMID: 21474073 DOI: 10.1016/j.molcel.2011.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/02/2010] [Accepted: 02/16/2011] [Indexed: 11/18/2022]
Abstract
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.
Collapse
Affiliation(s)
- Yoh-Hei Takahashi
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rende D, Baysal N, Kirdar B. A novel integrative network approach to understand the interplay between cardiovascular disease and other complex disorders. MOLECULAR BIOSYSTEMS 2011; 7:2205-19. [PMID: 21559538 DOI: 10.1039/c1mb05064h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network can be integrated with bibliomics to reveal association with other complex disorders. In this study, the cardiovascular disease functional linkage network (CFN) containing 1536 nodes and 3345 interactions was constructed using proteins encoded by 234 genes associated with the disease. Integration of CFN with bibliomics showed that 227 out of 566 functional modules are significantly associated with one or more diseases. Analysis of functional modules revealed the possible regulatory roles of SP1 and CXCL12 in the pathogenesis of cardiovascular disease (CVD) and modulation of their activities may be considered as potential therapeutic tools. The integration of CFN with bibliomics also indicated significant relations of CVD with other complex disorders. In a stratified map the members of 227 functional modules and 58 diseases in 15 disease classes were combined. In this map, leprosy, listeria monocytogenes, myasthenia, hemorrhagic diathesis and Protein S deficiency, which were not previously reported to be associated with CVD, showed significant associations. Several cancers arising from epithelial cells were also found to be linked to other diseases through hub proteins, VEGFA and PTGS2.
Collapse
Affiliation(s)
- Deniz Rende
- Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY12180, USA.
| | | | | |
Collapse
|
13
|
Radman-Livaja M, Ruben G, Weiner A, Friedman N, Kamakaka R, Rando OJ. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization. EMBO J 2011; 30:1012-26. [PMID: 21336256 DOI: 10.1038/emboj.2011.30] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
Chromatin domains are believed to spread via a polymerization-like mechanism in which modification of a given nucleosome recruits a modifying complex, which can then modify the next nucleosome in the polymer. In this study, we carry out genome-wide mapping of the Sir3 component of the Sir silencing complex in budding yeast during a time course of establishment of heterochromatin. Sir3 localization patterns do not support a straightforward model for nucleation and polymerization, instead showing strong but spatially delimited binding to silencers, and weaker and more variable Ume6-dependent binding to novel secondary recruitment sites at the seripauperin (PAU) genes. Genome-wide nucleosome mapping revealed that Sir binding to subtelomeric regions was associated with overpackaging of subtelomeric promoters. Sir3 also bound to a surprising number of euchromatic sites, largely at genes expressed at high levels, and was dynamically recruited to GAL genes upon galactose induction. Together, our results indicate that heterochromatin complex localization cannot simply be explained by nucleation and linear polymerization, and show that heterochromatin complexes associate with highly expressed euchromatic genes in many different organisms.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kumar SV, Wigge PA. H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell 2010; 140:136-47. [DOI: 10.1016/j.cell.2009.11.006] [Citation(s) in RCA: 687] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/14/2009] [Accepted: 11/03/2009] [Indexed: 01/17/2023]
|
15
|
Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM. The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 2009; 19:611-25. [PMID: 19179643 DOI: 10.1101/gr.083881.108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Budding yeast telomeres and cryptic mating-type loci are enriched at the nuclear envelope, forming foci that sequester silent information regulators (SIR factors), much as heterochromatic chromocenters in higher eukaryotes sequester HP1. Here we examine the impact of such subcompartments for regulating transcription genome-wide. We show that the efficiency of subtelomeric reporter gene repression depends not only on the strength of SIR factor recruitment by cis-acting elements, but also on the accumulation of SIRs in such perinuclear foci. To monitor the effects of disrupting this subnuclear compartment, we performed microarray analyses under conditions that eliminate telomere anchoring, while preserving SIR complex integrity. We found 60 genes reproducibly misregulated. Among those with increased expression, 22% were within 20 kb of a telomere, confirming that the nuclear envelope (NE) association of telomeres helps repress natural subtelomeric genes. In contrast, loci that were down-regulated were distributed over all chromosomes. Half of this ectopic repression was SIR complex dependent. We conclude that released SIR factors can promiscuously repress transcription at nontelomeric genes despite the presence of "anti-silencing" mechanisms. Bioinformatic analysis revealed that promoters bearing the PAC (RNA Polymerase A and C promoters) or Abf1 binding consenses are consistently down-regulated by mislocalization of SIR factors. Thus, the normal telomeric sequestration of SIRs both favors subtelomeric repression and prevents promiscuous effects at a distinct subset of promoters. This demonstrates that patterns of gene expression can be regulated by changing the spatial distribution of repetitive DNA sequences that bind repressive factors.
Collapse
Affiliation(s)
- Angela Taddei
- Friedrich Miescher Institute for Biomedical Research and National Center for Competence in Research "Frontiers in Genetics," CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL. Cell lineages and the logic of proliferative control. PLoS Biol 2009; 7:e15. [PMID: 19166268 PMCID: PMC2628408 DOI: 10.1371/journal.pbio.1000015] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/06/2008] [Indexed: 12/03/2022] Open
Abstract
It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors ("chalones") may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives-what, precisely, is being controlled, and to what degree-and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE-the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue-fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules-such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator-may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.
Collapse
Affiliation(s)
- Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Kimberly K Gokoffski
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Frederic Y. M Wan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Qing Nie
- Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Anne L Calof
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
17
|
Choi JK, Hwang S, Kim YJ. Stochastic and regulatory role of chromatin silencing in genomic response to environmental changes. PLoS One 2008; 3:e3002. [PMID: 18714342 PMCID: PMC2500160 DOI: 10.1371/journal.pone.0003002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/29/2008] [Indexed: 01/23/2023] Open
Abstract
Phenotypic diversity and fidelity can be balanced by controlling stochastic molecular mechanisms. Epigenetic silencing is one that has a critical role in stress response. Here we show that in yeast, incomplete silencing increases stochastic noise in gene expression, probably owing to unstable chromatin structure. Telomere position effect is suggested as one mechanism. Expression diversity in a population achieved in this way may render a subset of cells to readily respond to various acute stresses. By contrast, strong silencing tends to suppress noisy expression of genes, in particular those involved in life cycle control. In this regime, chromatin may act as a noise filter for precisely regulated responses to environmental signals that induce huge phenotypic changes such as a cell fate transition. These results propose modulation of chromatin stability as an important determinant of environmental adaptation and cellular differentiation.
Collapse
Affiliation(s)
- Jung Kyoon Choi
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Sohyun Hwang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Bodén M, Bailey TL. Associating transcription factor-binding site motifs with target GO terms and target genes. Nucleic Acids Res 2008; 36:4108-17. [PMID: 18544606 PMCID: PMC2475605 DOI: 10.1093/nar/gkn374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning.
Collapse
Affiliation(s)
- Mikael Bodén
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
19
|
Kozlowska K, Rose D, Khan R, Kram S, Lane L, Collins J. A conceptual model and practice framework for managing chronic pain in children and adolescents. Harv Rev Psychiatry 2008; 16:136-50. [PMID: 18415885 DOI: 10.1080/10673220802069723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pain is a complex phenomenon: a sensory experience originating in traumatized tissues; an emotional (affective) experience that signals danger in the internal (body) or external environment; and a "disposition to act" that results either in "action" that prioritizes escape or in "inhibition of action" to minimize injury or facilitate healing. Recent advances in our understanding of the affective components of pain have significant implications for the treatment of chronic pain in children and adolescents. This article describes a chronic pain clinic for children and adolescents developed by the pain service of a large pediatric teaching hospital. Pain is conceptualized and managed in terms of multiple, interrelating systems (the body level, the psychological level, and the social level). This model of care is illustrated with reference to the management of two cases of children with chronic pain and significant functional impairment. A brief overview of the care utilization of 62 children referred to the Chronic Pain Clinic is also provided, with the clinical characteristics of 40 children with somatoform pain disorder (SPD) being described in more detail. Of 28 children with SPD treated with our systems intervention, 82% reported significant reductions in pain intensity, 71% returned to school full time, and 29% part time. An advantage of this integrated, family-based assessment and treatment approach is the overarching emphasis on identifying the contribution of each system to the child's subjective experience of pain, thereby avoiding the deleterious polarization of the pain as either physical or psychogenic in origin.
Collapse
Affiliation(s)
- Kasia Kozlowska
- Faculty of Medicine, University of Sydney, Westmead, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Williams RBH, Chan EKF, Cowley MJ, Little PFR. The influence of genetic variation on gene expression. Genome Res 2008; 17:1707-16. [PMID: 18063559 DOI: 10.1101/gr.6981507] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The view that changes to the control of gene expression rather than alterations to protein sequence are central to the evolution of organisms has become something of a truism in molecular biology. In reality, the direct evidence for this is limited, and only recently have we had the ability to look more globally at how genetic variation influences gene expression, focusing upon inter-individual variation in gene expression and using microarrays to test for differences in mRNA levels. Here, we review the scope of these experimental analyses, what they are designed to tell us about genetic variation, and what are their limitations from both a technical and a conceptual viewpoint. We conclude that while we are starting to understand the impact of this class of genetic variation upon steady-state mRNA levels, we are still far from identifying the potential phenotypic and evolutionary outcomes.
Collapse
Affiliation(s)
- Rohan B H Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, NSW 2052, Australia
| | | | | | | |
Collapse
|
21
|
Komili S, Silver PA. Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 2008; 9:38-48. [PMID: 18071322 DOI: 10.1038/nrg2223] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale analyses have allowed us to progress beyond studying gene expression at the level of individual components of a given process by providing global information about functional connections between genes, mRNAs and their regulatory proteins. Such analyses have greatly increased our understanding of the interplay between different events in gene regulation and have highlighted previously unappreciated functional connections, including coupling between nuclear and cytoplasmic processes. Genome-wide approaches have also revealed extensive coordination within regulatory levels, such as the organization of transcription factors into regulatory motifs. Overall, these studies enhance our understanding of how the many components of the eukaryotic cell function as a system to allow both coordination and versatility in gene expression.
Collapse
Affiliation(s)
- Suzanne Komili
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02119, USA
| | | |
Collapse
|
22
|
Hattier T, Andrulis ED, Tartakoff AM. Immobility, inheritance and plasticity of shape of the yeast nucleus. BMC Cell Biol 2007; 8:47. [PMID: 17996101 PMCID: PMC2222239 DOI: 10.1186/1471-2121-8-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/09/2007] [Indexed: 01/11/2023] Open
Abstract
Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades") which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.
Collapse
Affiliation(s)
- Thomas Hattier
- Cell Biology Program, Case Western Reserve University, 10700 Euclid Avenue, Cleveland, OH, 44106 USA.
| | | | | |
Collapse
|
23
|
Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8:355-67. [PMID: 17453016 DOI: 10.1038/nrn2132] [Citation(s) in RCA: 905] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many neurological and most psychiatric disorders are not due to mutations in a single gene; rather, they involve molecular disturbances entailing multiple genes and signals that control their expression. Recent research has demonstrated that complex 'epigenetic' mechanisms, which regulate gene activity without altering the DNA code, have long-lasting effects within mature neurons. This review summarizes recent evidence for the existence of sustained epigenetic mechanisms of gene regulation in neurons that have been implicated in the regulation of complex behaviour, including abnormalities in several psychiatric disorders such as depression, drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Nadia Tsankova
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The execution of complex biological processes requires the precise interaction and regulation of thousands of molecules. Systematic approaches to study large numbers of proteins, metabolites, and their modification have revealed complex molecular networks. These biological networks are significantly different from random networks and often exhibit ubiquitous properties in terms of their structure and organization. Analyzing these networks provides novel insights in understanding basic mechanisms controlling normal cellular processes and disease pathologies.
Collapse
Affiliation(s)
- Xiaowei Zhu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|