1
|
Chinnapaiyan S, Santiago MJ, Panda K, Rahman MS, Alluin J, Rossi J, Unwalla HJ. A conditional RNA Pol II mono-promoter drives HIV-inducible, CRISPR-mediated cyclin T1 suppression and HIV inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:553-565. [PMID: 37215150 PMCID: PMC10192333 DOI: 10.1016/j.omtn.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternative to render viral escape irrelevant. Cyclin T1 is a critical modulator of HIV transcription and mediates recruitment of positive transcription elongation factor-b (P-TEFb) kinase for transcriptional elongation. Hence, a CRISPR-mediated cyclin T1 inactivation will silence HIV transcription, locking it in an inactive form in the cell and thereby serving as an effective antiviral and possibly effecting a functional cure. However, cellular genes play important roles, and their uncontrolled inhibition can promote undesirable effects. Here, we demonstrate a conditional inducible RNA polymerase II (RNA Pol II) mono-promoter-based co-expression of a CRISPR system targeting cyclin T1 from a single transcription unit. Co-expression of guide RNA (gRNA) and CRISPR-associated protein (Cas9) is observed only in HIV-infected cells and leads to sustained HIV suppression in stringent chronically infected cell lines as well as in T cell lines. We further show that incorporation of cis-acting ribozymes immediately upstream of the gRNA further enhances HIV silencing.
Collapse
Affiliation(s)
- Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Maria-Jose Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Jessica Alluin
- Beckman Research Institute of the City of Hope National Medical Center, Monrovia Biomedical Research Center MBRC, 1218 S. Fifth Av., Monrovia, CA 91008, USA
| | - John Rossi
- Beckman Research Institute of the City of Hope National Medical Center, Monrovia Biomedical Research Center MBRC, 1218 S. Fifth Av., Monrovia, CA 91008, USA
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Peng Y, Ai X, Peng B. Trans-cleaving hammerhead ribozyme in specific regions can improve knockdown efficiency in vivo. J Cell Biochem 2022. [PMID: 35411616 DOI: 10.1002/jcb.30249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Trans-cleaving techniques have been most enthusiastically embraced in the development of therapy for genetic diseases, particularly in the correction of monogenic recessive mutations at the messenger RNA level. However, easy degradation and poor catalytic activity in vivo remain significant obstacles to trans-cleaving of the hammerhead ribozyme. Herein, we found a novel scaffold RNA that stabilizes the ribozyme structure in trans-cleaving and promotes the knockdown efficiency of the hammerhead ribozyme in specific regions of living cells. We can give the trans-cleaving hammerhead ribozyme the ability to knock down specific genes in specific cell regions by changing different scaffolds. Therefore, our study proves the potential usefulness of the RNA knockdown strategy with high-specific trans-cleaving hammerhead ribozyme as a therapeutic approach in gene therapy.
Collapse
Affiliation(s)
- Yan Peng
- Medical School, Fuyang Normal University, Fuyang, Anhui, China
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Peng
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
4
|
Organelle-targeted imaging based on fluorogen-activating RNA aptamers in living cells. Anal Chim Acta 2022; 1209:339816. [DOI: 10.1016/j.aca.2022.339816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
5
|
Huang X, Zhao Y, Pu Q, Liu G, Peng Y, Wang F, Chen G, Sun M, Du F, Dong J, Cui X, Tang Z, Mo X. Intracellular selection of trans-cleaving hammerhead ribozymes. Nucleic Acids Res 2019; 47:2514-2522. [PMID: 30649474 PMCID: PMC6412130 DOI: 10.1093/nar/gkz018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
Hammerhead ribozyme is the smallest and best characterized catalytic RNA-cleaving ribozyme. It has been reported as potential therapeutic tools to manipulate the expression of target genes. However, most of naturally occurring hammerhead ribozymes process self-cleavage rather than cleave substrate RNA in trans, and its high intracellular activity relies on the tertiary interaction of Loop II and steam I bulge, resulting in decreased performance as applied in gene silencing. We described a direct intracellular selection method to evolve hammerhead variants based on trans-cleavage mode via using a toxin gene as the reporter. And a dual fluorescence proteins system has also been established to quantitatively evaluate the efficiency of selected ribozymes in the cell. Based on this selection strategy, we obtained three mutants with enhanced intracellular cleaving activity compared to wide type hammerhead ribozyme. The best one, TX-2 was revealed to possess better and consistent gene knockdown ability at different positions on diverse targeted mRNA either in prokaryotic or eukaryotic cells than wild-type hammerhead ribozyme. These observations imply the efficiency of the intracellular selection method of the trans-acting ribozyme and the potentials of improved ribozyme variants for research and therapeutic purposes.
Collapse
Affiliation(s)
- Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yongyun Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Getong Liu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yan Peng
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Meiling Sun
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
6
|
Arizala JAC, Takahashi M, Burnett JC, Ouellet DL, Li H, Rossi JJ. Nucleolar Localization of HIV-1 Rev Is Required, Yet Insufficient for Production of Infectious Viral Particles. AIDS Res Hum Retroviruses 2018; 34:961-981. [PMID: 29804468 PMCID: PMC6238656 DOI: 10.1089/aid.2017.0306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Combination antiretroviral therapy fails in complete suppression of HIV-1 due to drug resistance and persistent latency. Novel therapeutic intervention requires knowledge of intracellular pathways responsible for viral replication, specifically those untargeted by antiretroviral drugs. An understudied phenomenon is the nucleolar localization of Rev phosphoprotein, which completes nucleocytoplasmic transport of unspliced/partially spliced HIV mRNA through multimerization with intronic cis-acting targets-the Rev-response element (RRE). Rev contains a nucleolar localization signal (NoLS) comprising the COOH terminus of the arginine-rich motif for accumulation within nucleoli-speculated as the interaction ground for Rev with cellular proteins mediating mRNA-independent nuclear export and splicing. Functionality of Rev nucleolar access during HIV-1 production and infection was investigated in the context of deletion and single-point mutations within Rev-NoLS. Mutations induced upon Rev-NoLS are hypothesized to inactivate the HIV-1 infectious cycle. HIV-1HXB2 replication ceased with Rev mutations lacking nucleolar access due to loss or replacement of multiple arginine residues. Rev mutations missing single arginine residues remained strictly nucleolar in pattern and participated in proviral production, however, with reduced efficiency. Viral RNA packaging also decreased in efficiency after expression of nucleolar-localizing mutations. These results were observed during propagation of variant HIV-1NL4-3 containing nucleolar-localizing mutations within the viral backbone (M4, M5, and M6). Lentiviral particles produced with Rev single-point mutations were transducible at extremely low frequency. Similarly, HIV-1NL4-3 Rev-NoLS variants lost infectivity, unlike virulent WT (wild type) HIV-1NL4-3. HIV-1NL4-3 variants were capable of CD4+ host entry and reverse transcription as WT HIV-1NL4-3, but lacked ability to complete a full infectious cycle. We currently reveal that viral integration is deregulated in the presence of Rev-NoLS mutations.
Collapse
Affiliation(s)
- Jerlisa Ann C. Arizala
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - Mayumi Takahashi
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - Dominique L. Ouellet
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| |
Collapse
|
7
|
AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun 2015; 6:7388. [PMID: 26066847 PMCID: PMC4477044 DOI: 10.1038/ncomms8388] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/05/2015] [Indexed: 02/08/2023] Open
Abstract
Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. Cell-based screening assays allow functional testing of chemicals but do not mimic the in vivo situation well. Here, the authors report a method for the discovery of secreted cytoprotective factors in mice and use it to demonstrate that the hormone ghrelin protects cardiac muscle from ischaemic damage.
Collapse
|
8
|
Abstract
Ribozymes are structured RNA molecules that act as catalysts in different biological reactions. From simple genome cleaving activities in satellite RNAs to more complex functions in cellular protein synthesis and gene regulation, ribozymes play important roles in all forms of life. Several naturally existing ribozymes have been modified for use as therapeutics in different conditions, with HIV-1 infection being one of the most studied. This chapter summarizes data from different preclinical and clinical studies conducted to evaluate the potential of ribozymes to be used in HIV-1 therapies. The different ribozyme motifs that have been modified, as well as their target sites and expression strategies, are described. RNA conjugations used to enhance the antiviral effect of ribozymes are also presented and the results from clinical trials conducted to date are summarized. Studies on anti-HIV-1 ribozymes have provided valuable information on the optimal expression strategies and clinical protocols for RNA gene therapy and remain competitive candidates for future therapy.
Collapse
|
9
|
Scarborough RJ, Lévesque MV, Boudrias-Dalle E, Chute IC, Daniels SM, Ouellette RJ, Perreault JP, Gatignol A. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e178. [PMID: 25072692 PMCID: PMC4121520 DOI: 10.1038/mtna.2014.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/03/2014] [Indexed: 12/18/2022]
Abstract
Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.
Collapse
Affiliation(s)
- Robert J Scarborough
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Michel V Lévesque
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Etienne Boudrias-Dalle
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Ian C Chute
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sylvanne M Daniels
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | | | - Jean-Pierre Perreault
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anne Gatignol
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada [3] Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
10
|
Olson KE, Dolan GF, Müller UF. In vivo evolution of a catalytic RNA couples trans-splicing to translation. PLoS One 2014; 9:e86473. [PMID: 24466112 PMCID: PMC3900562 DOI: 10.1371/journal.pone.0086473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022] Open
Abstract
How does a non-coding RNA evolve in cells? To address this question experimentally we evolved a trans-splicing variant of the group I intron ribozyme from Tetrahymena over 21 cycles of evolution in E.coli cells. Sequence variation was introduced during the evolution by mutagenic and recombinative PCR, and increasingly active ribozymes were selected by their repair of an mRNA mediating antibiotic resistance. The most efficient ribozyme contained four clustered mutations that were necessary and sufficient for maximum activity in cells. Surprisingly, these mutations did not increase the trans-splicing activity of the ribozyme. Instead, they appear to have recruited a cellular protein, the transcription termination factor Rho, and facilitated more efficient translation of the ribozyme’s trans-splicing product. In addition, these mutations affected the expression of several other, unrelated genes. These results suggest that during RNA evolution in cells, four mutations can be sufficient to evolve new protein interactions, and four mutations in an RNA molecule can generate a large effect on gene regulation in the cell.
Collapse
Affiliation(s)
- Karen E. Olson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Scarborough RJ, Lévesque MV, Perreault JP, Gatignol A. Design and evaluation of clinically relevant SOFA-HDV ribozymes targeting HIV RNA. Methods Mol Biol 2014; 1103:31-43. [PMID: 24318884 DOI: 10.1007/978-1-62703-730-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nucleic acid therapies targeting HIV replication have the potential to be used in conjunction with or in place of the standard small-molecule therapies. Among the different classes of nucleic acid therapies, several ribozymes (Rzs, RNA enzymes) have been developed to target HIV RNA. The design of Rzs targeting HIV RNA is complicated by the sequence diversity of viral strains and the structural diversity of their target sites. Using the SOFA-HDV Rz as an example, this chapter describes methods that can be used to design Rzs for controlling HIV replication. We describe how to (1) identify highly conserved Rz target sites in HIV RNA; (2) generate a set of Rzs with the potential to be used as therapeutics; and (3) screen these Rzs for activity against HIV production.
Collapse
Affiliation(s)
- Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
12
|
Amini ZN, Müller UF. Low selection pressure aids the evolution of cooperative ribozyme mutations in cells. J Biol Chem 2013; 288:33096-106. [PMID: 24089519 DOI: 10.1074/jbc.m113.511469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the evolution of functional RNA molecules is important for our molecular understanding of biology. Here we tested experimentally how two evolutionary parameters, selection pressure and recombination, influenced the evolution of an evolving RNA population. This was done using four parallel evolution experiments that employed low or gradually increasing selection pressure, and recombination events either at the end or dispersed throughout the evolution. As model system, a trans-splicing group I intron ribozyme was evolved in Escherichia coli cells over 12 rounds of selection and amplification, including mutagenesis and recombination. The low selection pressure resulted in higher efficiency of the evolved ribozyme populations, whereas differences in recombination did not have a strong effect. Five mutations were responsible for the highest efficiency. The first mutation swept quickly through all four evolving populations, whereas the remaining four mutations accumulated later and more efficiently under low selection pressure. To determine why low selection pressure aided this evolution, all evolutionary intermediates between the wild type and the 5-mutation variant were constructed, and their activities at three different selection pressures were determined. The resulting fitness profiles showed a high cooperativity among the four late mutations, which can explain why high selection pressure led to inefficient evolution. These results show experimentally how low selection pressure can benefit the evolution of cooperative mutations in functional RNAs.
Collapse
Affiliation(s)
- Zhaleh N Amini
- From the Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | | |
Collapse
|
13
|
Chung J, DiGiusto DL, Rossi JJ. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert Opin Biol Ther 2013; 13:437-45. [PMID: 23394377 DOI: 10.1517/14712598.2013.761968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. AREAS COVERED In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. EXPERT OPINION Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.
Collapse
Affiliation(s)
- Janet Chung
- Beckman Research Institute of City of Hope, Department of Molecular and Cell Biology, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|
14
|
Lee TS, Wong KY, Giambasu GM, York DM. Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 120:25-91. [PMID: 24156941 PMCID: PMC4747252 DOI: 10.1016/b978-0-12-381286-5.00002-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg(2+) ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg(2+) ion or multiple Na(+) ions, one of which is also in a bridging coordination pattern. In the case of a single Mg(2+) ion bound in the active site, the Mg(2+) ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2'). As the reaction proceeds, the Mg(2+) ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2'. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kin-Yiu Wong
- Center for Integrative Proteomics Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - George M. Giambasu
- Center for Integrative Proteomics Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Darrin M. York
- Center for Integrative Proteomics Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Chung J, Zhang J, Li H, Ouellet DL, DiGiusto DL, Rossi JJ. Endogenous MCM7 microRNA cluster as a novel platform to multiplex small interfering and nucleolar RNAs for combinational HIV-1 gene therapy. Hum Gene Ther 2012; 23:1200-8. [PMID: 22834872 DOI: 10.1089/hum.2012.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications.
Collapse
Affiliation(s)
- Janet Chung
- Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Hammerhead ribozymes have been extensively used as RNA-inactivating agents for therapy as well as forward genomics. A ribozyme can be designed so as to specifically pair with virtually any target RNA, and cleave the phosphodiester backbone at a specified location, thereby functionally inactivating the RNA. Two major factors that determine whether ribozymes will be effective for posttranscriptional gene silencing are colocalization of the ribozyme and the target RNAs, and the choice of an appropriate target site on the mRNA. Complex secondary structures and the ability to bind to some of the cellular proteins mandate that some RNA sequences could stearically occlude binding of RNA-based antivirals like ribozymes to these sites. The use of ribozyme libraries in cell culture factors in these interactions to select for target sites on the RNA, which are more accessible to RNA-based antivirals like ribozymes or siRNA. This chapter provides a useful guide toward using ribozyme libraries to screen for effective target sites on mRNA.
Collapse
|
17
|
Chung J, Rossi JJ, Jung U. Current progress and challenges in HIV gene therapy. Future Virol 2011; 6:1319-1328. [PMID: 22754586 DOI: 10.2217/fvl.11.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV-1 causes AIDS, a syndrome that affects millions of people globally. Existing HAART is efficient in slowing down disease progression but cannot eradicate the virus. Furthermore the severity of the side effects and the emergence of drug-resistant mutants call for better therapy. Gene therapy serves as an attractive alternative as it reconstitutes the immune system with HIV-resistant cells and could thereby provide a potential cure. The feasibility of this approach was first demonstrated with the 'Berlin patient', who was functionally cured from HIV/AIDS with undetectable HIV-1 viral load after transplantation of bone marrow harboring a naturally occurring CCR5 mutation that blocks viral entry. Here, we give an overview of the current status of HIV gene therapy and remaining challenges and obstacles.
Collapse
Affiliation(s)
- Janet Chung
- Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Mark O. J. Olson
- Dept. Biochemistry, University of Mississippi Medical Center, North State St. 2500, Jackson, 39216 Mississippi USA
| |
Collapse
|
19
|
Widodo N, Priyandoko D, Shah N, Wadhwa R, Kaul SC. Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling. PLoS One 2010; 5:e13536. [PMID: 20975835 PMCID: PMC2958829 DOI: 10.1371/journal.pone.0013536] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways. METHODOLOGY/PRINCIPAL FINDINGS Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress. CONCLUSION Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy.
Collapse
Affiliation(s)
- Nashi Widodo
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Didik Priyandoko
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Navjot Shah
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (SCK); (RW)
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (SCK); (RW)
| |
Collapse
|
20
|
Marton S, Reyes-Darias JA, Sánchez-Luque FJ, Romero-López C, Berzal-Herranz A. In vitro and ex vivo selection procedures for identifying potentially therapeutic DNA and RNA molecules. Molecules 2010; 15:4610-38. [PMID: 20657381 PMCID: PMC6257598 DOI: 10.3390/molecules15074610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 02/05/2023] Open
Abstract
It was only relatively recently discovered that nucleic acids participate in a variety of biological functions, besides the storage and transmission of genetic information. Quite apart from the nucleotide sequence, it is now clear that the structure of a nucleic acid plays an essential role in its functionality, enabling catalysis and specific binding reactions. In vitro selection and evolution strategies have been extremely useful in the analysis of functional RNA and DNA molecules, helping to expand our knowledge of their functional repertoire and to identify and optimize DNA and RNA molecules with potential therapeutic and diagnostic applications. The great progress made in this field has prompted the development of ex vivo methods for selecting functional nucleic acids in the cellular environment. This review summarizes the most important and most recent applications of in vitro and ex vivo selection strategies aimed at exploring the therapeutic potential of nucleic acids.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, P.T. Ciencias de la Salud, Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain.
| | | | | | | | | |
Collapse
|
21
|
Chen X, Denison L, Levy M, Ellington AD. Direct selection for ribozyme cleavage activity in cells. RNA (NEW YORK, N.Y.) 2009; 15:2035-45. [PMID: 19776159 PMCID: PMC2764470 DOI: 10.1261/rna.1635209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Selection may prove to be a powerful tool for the generation of functional RNAs for in vivo genetic regulation. However, traditional in vitro selection schemes do not mimic physiological conditions, and in vivo selection schemes frequently use small pool sizes. Here we describe a hybrid in vitro/in vivo selection scheme that overcomes both of these disadvantages. In this new method, PCR-amplified expression templates are transfected into mammalian cells, transcribed hammerhead RNAs self-cleave, and the extracted, functional hammerhead ribozyme species are specifically amplified for the next round of selection. Using this method we have selected a number of cis-cleaving hammerhead ribozyme variants that are functional in vivo and lead to the inhibition of gene expression. More importantly, these results have led us to develop a quantitative, kinetic model that can be used to assess the stringency of the hybrid selection scheme and to direct future experiments.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
23
|
pcDNA3.1(-)-mediated ribozyme targeting of HER-2 suppresses breast cancer tumor growth. Mol Biol Rep 2009; 37:1597-604. [PMID: 19444644 DOI: 10.1007/s11033-009-9569-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 05/01/2009] [Indexed: 01/11/2023]
Abstract
The HER-2 proto-oncogene (also called c-erbB-2/neu) encodes the protein, p185, which is closely related to the growth and metastasis of adenocarcinoma, and is overexpressed in 25-30% of human breast cancers. In this study, we attempt to reverse the malignant phenotype of the breast cancer cell line, MCF-7, using a HER-2-specific hammerhead ribozyme. Two anti-HER-2 hammerhead ribozymes, RZ1 and RZ2, were synthesized, inserted separately into the nonviral eukaryotic expression vector, pcDNA3.1(-), and transfected into MCF-7 cells. Analyses showed that the HER-2 mRNA and p185, as well as oncogene k-ras were down-regulated remarkably in the ribozyme-transfected cells, while the onco-suppressor gene, p53, was up-regulated. Furthermore, the tumorigenicity of the RZ1-stably transfected MCF-7 cells was decreased dramatically in nude mice. These results demonstrate that the use of anti-HER-2 ribozymes may be a beneficial strategy for gene therapy of breast cancer.
Collapse
|
24
|
Old and new faces of the nucleolus. Workshop on the Nucleolus and Disease. EMBO Rep 2008; 10:35-40. [PMID: 19079131 PMCID: PMC2613212 DOI: 10.1038/embor.2008.230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/17/2008] [Indexed: 12/03/2022] Open
|