1
|
Gonçalves M, Santos JI, Coutinho MF, Matos L, Alves S. Development of Engineered-U1 snRNA Therapies: Current Status. Int J Mol Sci 2023; 24:14617. [PMID: 37834063 PMCID: PMC10572768 DOI: 10.3390/ijms241914617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression. The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. Targeting aberrant RNA(s) may thus provide an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. To that purpose, the use of engineered U1 snRNA (either modified U1 snRNAs or exon-specific U1s-ExSpeU1s) has been applied as a potentially therapeutic strategy to correct splicing mutations, particularly those affecting the 5' splice-site (5'ss). Here we review and summarize a vast panoply of studies that used either modified U1 snRNAs or ExSpeU1s to mediate gene therapeutic correction of splicing defects underlying a considerable number of genetic diseases. We also focus on the pre-clinical validation of these therapeutic approaches both in vitro and in vivo, and summarize the main obstacles that need to be overcome to allow for their successful translation to clinic practice in the future.
Collapse
Affiliation(s)
- Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Taliani V, Buonaiuto G, Desideri F, Setti A, Santini T, Galfrè S, Schirone L, Mariani D, Frati G, Valenti V, Sciarretta S, Perlas E, Nicoletti C, Musarò A, Ballarino M. The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart. eLife 2023; 12:81360. [PMID: 36877136 PMCID: PMC10023161 DOI: 10.7554/elife.81360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of heart physiology and disease, although the studies unveiling their modes of action are still limited to few examples. We recently identified pCharme, a chromatin-associated lncRNA whose functional knockout in mice results in defective myogenesis and morphological remodeling of the cardiac muscle. Here, we combined Cap-Analysis of Gene Expression (CAGE), single-cell (sc)RNA sequencing, and whole-mount in situ hybridization analyses to study pCharme cardiac expression. Since the early steps of cardiomyogenesis, we found the lncRNA being specifically restricted to cardiomyocytes, where it assists the formation of specific nuclear condensates containing MATR3, as well as important RNAs for cardiac development. In line with the functional significance of these activities, pCharme ablation in mice results in a delayed maturation of cardiomyocytes, which ultimately leads to morphological alterations of the ventricular myocardium. Since congenital anomalies in myocardium are clinically relevant in humans and predispose patients to major complications, the identification of novel genes controlling cardiac morphology becomes crucial. Our study offers unique insights into a novel lncRNA-mediated regulatory mechanism promoting cardiomyocyte maturation and bears relevance to Charme locus for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Fabio Desideri
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia (IIT)RomeItaly
| | - Adriano Setti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Tiziana Santini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Silvia Galfrè
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia (IIT)RomeItaly
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Davide Mariani
- Center for Human Technologies, Istituto Italiano di TecnologiaGenovaItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Valentina Valenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Emerald Perlas
- Epigenetics and Neurobiology Unit, EMBL-RomeMonterotondoItaly
| | - Carmine Nicoletti
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of RomeRomeItaly
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| |
Collapse
|
3
|
Hatch ST, Smargon AA, Yeo GW. Engineered U1 snRNAs to modulate alternatively spliced exons. Methods 2022; 205:140-148. [PMID: 35764245 PMCID: PMC11185844 DOI: 10.1016/j.ymeth.2022.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Alternative splicing accounts for a considerable portion of transcriptomic diversity, as most protein-coding genes are spliced into multiple mRNA isoforms. However, errors in splicing patterns can give rise to mis-splicing with pathological consequences, such as the congenital diseases familial dysautonomia, Duchenne muscular dystrophy, and spinal muscular atrophy. Small nuclear RNA (snRNA) components of the U snRNP family have been proposed as a therapeutic modality for the treatment of mis-splicing. U1 snRNAs offer great promise, with prior studies demonstrating in vivo efficacy, suggesting additional preclinical development is merited. Improvements in enabling technologies, including screening methodologies, gene delivery vectors, and relevant considerations from gene editing approaches justify further advancement of U1 snRNA as a therapeutic and research tool. With the goal of providing a user-friendly protocol, we compile and demonstrate a methodological toolkit for sequence-specific targeted perturbation of alternatively spliced pre-mRNA with engineered U1 snRNAs. We observe robust modulation of endogenous pre-mRNA transcripts targeted in two contrasting splicing contexts, SMN2 exon 7 and FAS exon 6, exhibiting the utility and applicability of engineered U1 snRNA to both inclusion and exclusion of targeted exons. We anticipate that these demonstrations will contribute to the usability of U1 snRNA in investigating splicing modulation in eukaryotic cells, increasing accessibility to the broader research community.
Collapse
Affiliation(s)
- Samuel T Hatch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Happi Mbakam C, Lamothe G, Tremblay JP. Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Front Med (Lausanne) 2022; 9:859930. [PMID: 35419381 PMCID: PMC8995704 DOI: 10.3389/fmed.2022.859930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked hereditary disease characterized by progressive muscle wasting due to modifications in the DMD gene (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) that result in a lack of functional dystrophin expression. Many therapeutic approaches have so far been attempted to induce dystrophin expression and improve the patient phenotype. In this manuscript, we describe the relevant updates for some therapeutic strategies for DMD aiming to restore dystrophin expression. We also present and analyze in vitro and in vivo ongoing experimental approaches to treat the disease.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques P Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
5
|
Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New. Biomolecules 2021; 11:biom11081246. [PMID: 34439911 PMCID: PMC8393752 DOI: 10.3390/biom11081246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The urgent need for new therapies for some devastating neuromuscular diseases (NMDs), such as Duchenne muscular dystrophy or amyotrophic lateral sclerosis, has led to an intense search for new potential biomarkers. Biomarkers can be classified based on their clinical value into different categories: diagnostic biomarkers confirm the presence of a specific disease, prognostic biomarkers provide information about disease course, and therapeutic biomarkers are designed to predict or measure treatment response. Circulating biomarkers, as opposed to instrumental/invasive ones (e.g., muscle MRI or nerve ultrasound, muscle or nerve biopsy), are generally easier to access and less “time-consuming”. In addition to well-known creatine kinase, other promising molecules seem to be candidate biomarkers to improve the diagnosis, prognosis and prediction of therapeutic response, such as antibodies, neurofilaments, and microRNAs. However, there are some criticalities that can complicate their application: variability during the day, stability, and reliable performance metrics (e.g., accuracy, precision and reproducibility) across laboratories. In the present review, we discuss the application of biochemical biomarkers (both validated and emerging) in the most common NMDs with a focus on their diagnostic, prognostic/predictive and therapeutic application, and finally, we address the critical issues in the introduction of new biomarkers.
Collapse
|
6
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
7
|
Huang Y, Zhang C, Xiong J, Ren H. Emerging important roles of circRNAs in human cancer and other diseases. Genes Dis 2021; 8:412-423. [PMID: 34179306 PMCID: PMC8209354 DOI: 10.1016/j.gendis.2020.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
CircRNAs are a large class of endogenous single-stranded RNA that is different from other linear RNA, which are produced by back-splicing and fusion of either exons, introns, or both exon-intron into covalently closed loops. CircRNAs are found in almost all living organisms and have emerged as potentially important players effecting on all life activities. It was characterized by stable structure, resistant to RNA degradation, highly abundance and conservation and tissue-specific expression. Early circRNAs were ignored as a by-product of meaningless abnormally cut RNA and had little biological function. Currently, circRNAs have become a research hotspot due to its special characteristics. CircRNAs could function as miRNA sponges, interfere with splicing and bind to protein to regulate the expression of parental genes and so on. In recent years, an increasing number of studies have revealed that circRNAs are closely related to a series of physiological and pathological processes. Additionally, circRNAs play an important role in the occurrence and development of a variety of diseases, suggesting circRNAs may be as novel indicators or biomarkers for cancer and other diseases with which they are associated. In this article, we review the biogenesis, biological functions of circRNAs and recent advances in circRNAs research in human diseases. Results will provide new insights on the roles and new ideas of circRNAs for the diagnosis and treatment of diseases and possible directions and approach for future circRNA applications.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| |
Collapse
|
8
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
9
|
Brusa R, Magri F, Bresolin N, Comi GP, Corti S. Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cell Mol Life Sci 2020; 77:4299-4313. [PMID: 32350552 PMCID: PMC11105074 DOI: 10.1007/s00018-020-03537-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Noncoding RNAs (ncRNAs), such as miRNAs and long noncoding RNAs, are key regulators of gene expression at the post-transcriptional level and represent promising therapeutic targets and biomarkers for several human diseases, including Duchenne and Becker muscular dystrophies (DMD/BMD). A role for ncRNAs in the pathogenesis of muscular dystrophies has been suggested, even if it is still incompletely understood. Here, we discuss current progress leading towards the clinical utility of ncRNAs for DMD/BMD. Long and short noncoding RNAs are differentially expressed in DMD/BMD and have a mechanism of action via targeting mRNAs. A subset of muscle-enriched miRNAs, the so-called myomiRs (miR-1, miR-133, and miR-206), are increased in the serum of patients with DMD and in dystrophin-defective animal models. Interestingly, myomiRs might be used as biomarkers, given that their levels can be corrected after dystrophin restoration in dystrophic mice. Remarkably, further evidence demonstrates that ncRNAs also play a role in dystrophin expression; thus, their modulations might represent a potential therapeutic strategy with the aim of upregulating the dystrophin protein in combination with other oligonucleotides/gene therapy approaches.
Collapse
Affiliation(s)
- Roberta Brusa
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Martone J, Lisi M, Castagnetti F, Rosa A, Di Carlo V, Blanco E, Setti A, Mariani D, Colantoni A, Santini T, Perone L, Di Croce L, Bozzoni I. Trans-generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Mol Med 2020; 12:e12063. [PMID: 32596946 PMCID: PMC7411655 DOI: 10.15252/emmm.202012063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/04/2023] Open
Abstract
Exon skipping is an effective strategy for the treatment of many Duchenne Muscular Dystrophy (DMD) mutations. Natural exon skipping observed in several DMD cases can help in identifying novel therapeutic tools. Here, we show a DMD study case where the lack of a splicing factor (Celf2a), which results in exon skipping and dystrophin rescue, is due to a maternally inherited trans‐generational epigenetic silencing. We found that the study case and his mother express a repressive long non‐coding RNA, DUXAP8, whose presence correlates with silencing of the Celf2a coding region. We also demonstrate that DUXAP8 expression is lost upon cell reprogramming and that, upon induction of iPSCs into myoblasts, Celf2a expression is recovered leading to the loss of exon skipping and loss of dystrophin synthesis. Finally, CRISPR/Cas9 inactivation of the splicing factor Celf2a was proven to ameliorate the pathological state in other DMD backgrounds establishing Celf2a ablation or inactivation as a novel therapeutic approach for the treatment of Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,CNR Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Michela Lisi
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Francesco Castagnetti
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | - Adriano Setti
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lucia Perone
- Cell Culture and Cytogenetics Core, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Luciano Di Croce
- Center for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Irene Bozzoni
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,CNR Institute of Molecular Biology and Pathology (IBPM), Rome, Italy.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
11
|
Martone J, Mariani D, Santini T, Setti A, Shamloo S, Colantoni A, Capparelli F, Paiardini A, Dimartino D, Morlando M, Bozzoni I. SMaRT lncRNA controls translation of a G-quadruplex-containing mRNA antagonizing the DHX36 helicase. EMBO Rep 2020; 21:e49942. [PMID: 32337838 PMCID: PMC7271651 DOI: 10.15252/embr.201949942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Guanine‐quadruplexes (G4) included in RNA molecules exert several functions in controlling gene expression at post‐transcriptional level; however, the molecular mechanisms of G4‐mediated regulation are still poorly understood. Here, we describe a regulatory circuitry operating in the early phases of murine muscle differentiation in which a long non‐coding RNA (SMaRT) base pairs with a G4‐containing mRNA (Mlx‐γ) and represses its translation by counteracting the activity of the DHX36 RNA helicase. The time‐restricted, specific effect of lnc‐SMaRT on the translation of Mlx‐γ isoform modulates the general subcellular localization of total MLX proteins, impacting on their transcriptional output and promoting proper myogenesis and mature myotube formation. Therefore, the circuitry made of lnc‐SMaRT, Mlx‐γ, and DHX36 not only plays an important role in the control of myogenesis but also unravels a molecular mechanism where G4 structures and G4 unwinding activities are regulated in living cells.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Sama Shamloo
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Francesca Capparelli
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | | | - Dacia Dimartino
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
12
|
Boehler JF, Ricotti V, Gonzalez JP, Soustek-Kramer M, Such L, Brown KJ, Schneider JS, Morris CA. Membrane recruitment of nNOSµ in microdystrophin gene transfer to enhance durability. Neuromuscul Disord 2019; 29:735-741. [PMID: 31521486 DOI: 10.1016/j.nmd.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
Several gene transfer clinical trials are currently ongoing with the common aim of delivering a shortened version of dystrophin, termed a microdystrophin, for the treatment of Duchenne muscular dystrophy (DMD). However, one of the main differences between these trials is the microdystrophin protein produced following treatment. Each gene transfer product is based on different selections of dystrophin domain combinations to assemble microdystrophin transgenes that maintain functional dystrophin domains and fit within the packaging limits of an adeno-associated virus (AAV) vector. While domains involved in mechanical function, such as the actin-binding domain and β-dystroglycan binding domain, have been identified for many years and included in microdystrophin constructs, more recently the neuronal nitric oxide synthase (nNOS) domain has also been identified due to its role in enhancing nNOS membrane localization. As nNOS membrane localization has been established as an important requirement for prevention of functional ischemia in skeletal muscle, inclusion of the nNOS domain into a microdystrophin construct represents an important consideration. The aim of this mini review is to highlight what is currently known about the nNOS domain of dystrophin and to describe potential implications of this domain in a microdystrophin gene transfer clinical trial.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Valeria Ricotti
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - J Patrick Gonzalez
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | | | - Lauren Such
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Kristy J Brown
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Joel S Schneider
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Carl A Morris
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States.
| |
Collapse
|
13
|
An Overview of Circular RNAs and Their Implications in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20184385. [PMID: 31500099 PMCID: PMC6769675 DOI: 10.3390/ijms20184385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed RNA rings. Biogenesis of circRNAs, which may occur co-transcriptionally and post-transcriptionally via a back-splicing mechanism, requires the presence of complementary and/or inverted repeat sequences in introns flanking back-spliced exons and is facilitated by RNA-binding proteins. CircRNAs are abundant across eukaryotes; however, their biological functions remain largely speculative. Recently, they have been emerging as new members of a gene regulatory network and contributing factors in various human diseases including cancer, neurological, muscular and cardiovascular disorders. In this review, we present an overview of the current knowledge about circRNAs biogenesis and their aberrant expression in various human disorders. In particular, we focus on the latest discovery of circRNAs global upregulation in myotonic dystrophy type 1 (DM1) skeletal muscles and the role these prospective biomarkers might have for prognosis and therapeutic response in DM1.
Collapse
|
14
|
Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases. Cells 2019; 8:cells8090988. [PMID: 31461973 PMCID: PMC6769629 DOI: 10.3390/cells8090988] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation and maintenance. As myogenic stem cells, skeletal muscle satellite cells have the ability to proliferate, differentiate and self-renew, and are involved in muscle formation and muscle injury repair. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in the regulation of gene expression during skeletal muscle myogenesis, and their abnormal expression is associated with a variety of muscle diseases. From the perspective of the molecular mechanism and mode of action of ncRNAs in myogenesis, this review aims to summarize the role of ncRNAs in skeletal muscle satellite cells’ myogenic differentiation and in muscle disease, and systematically analyze the mechanism of ncRNAs in skeletal muscle development. This work will systematically summarize the role of ncRNAs in myogenesis and provide reference targets for the treatment of various muscle diseases, such as muscle dystrophy, atrophy and aberrant hypertrophy.
Collapse
|
15
|
Florian A, Patrascu A, Tremmel R, Rösch S, Sechtem U, Schwab M, Schaeffeler E, Yilmaz A. Identification of Cardiomyopathy-Associated Circulating miRNA Biomarkers in Muscular Dystrophy Female Carriers Using a Complementary Cardiac Imaging and Plasma Profiling Approach. Front Physiol 2018; 9:1770. [PMID: 30622476 PMCID: PMC6308188 DOI: 10.3389/fphys.2018.01770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Different from males with Duchenne/Becker muscular dystrophy (DMD/BMD) in whom overt myopathy is the rule, muscular dystrophy (MD) female carriers are mostly free of skeletal muscle symptoms. However, similar to MD males, these females are also prone to cardiomyopathy. Since circulating microRNAs (miRNAs) have been proposed as diagnostic biomarkers for various cardiovascular diseases, the aim of the current study was to identify specific circulating miRNAs in the plasma of female DMD/BMD carriers that may allow an early and accurate diagnosis of cardiac involvement in these cases. Methods: Twenty-nine female MD carriers and 24 age-matched healthy female controls were prospectively enrolled. All MD carriers and controls underwent comprehensive cardiovascular magnetic resonance (CMR) studies as well as venous blood sampling on the same day. Results: An impaired left ventricular (LV) systolic function was detected in 4 (14%) MD carriers while late gadolinium enhancement (LGE) indicative of myocardial fibrosis was present in 13 female patients (45%)—with an exclusively non-ischemic pattern. Among the circulating miRNAs examined, six were significantly up-regulated in MD carriers compared to female controls: miR-206 (103-fold increase, p < 0.0001), miR-222 (41-fold, p < 0.0001), miR-26a (fourfold, p = 0.029), miR-342 (27-fold, p < 0.0001), miR-378a-3p (minimum 3,600-fold; almost undetectable in controls, p = 0.013), miR-378a-5p (64-fold, p < 0.0001); only two miRNAs were substantially down-regulated in MD carriers: miR-144 (p < 0.0001) and miR-29a (p = 0.002) (both undetectable in carriers). A significant down-regulation of the miR-29c (<0.001-fold, p = 0.006) was observed in MD carriers with abnormal CMR findings (comprising functional and/or structural abnormalities) compared to those with normal CMR examinations. Univariable analyses regarding the presence of abnormal CMR findings resulted in four significant variables: LV end-diastolic volume index (EDVi), LV end-systolic volume index (ESVi), an elevated plasma creatine kinase (CK), and decreased serum miR-29c levels. In subsequent multivariable analysis, the only independent predictor for an abnormal CMR among MD carriers was circulating miR-29c (OR 0.99, 95% CI 0.98–0.99, p = 0.037). Moreover, an elevated CK and/or a downregulated miR-29c level (<0.05 × 10-3) resulted in an improved AUC value of 0.79 (0.62–0.97, p = 0.007) (79, 80 and 80%, sensitivity, specificity and overall accuracy) for the CMR-based diagnosis of cardiomyopathy in MD carriers when compared to using the two parameters individually. Conclusion: In female MD carriers, down-regulation of circulating miR-29c relates to the presence of functional and/or structural cardiac abnormalities (as detected by CMR) and appears to be a promising novel biomarker—in addition to conventional CK plasma levels—for an early diagnosis of cardiomyopathy.
Collapse
Affiliation(s)
- Anca Florian
- Department of Cardiology, University Hospital Münster, Münster, Germany
| | | | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Sabine Rösch
- Division of Cardiology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Udo Sechtem
- Division of Cardiology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Ali Yilmaz
- Department of Cardiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
16
|
Greco S, Cardinali B, Falcone G, Martelli F. Circular RNAs in Muscle Function and Disease. Int J Mol Sci 2018; 19:ijms19113454. [PMID: 30400273 PMCID: PMC6274904 DOI: 10.3390/ijms19113454] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA produced during pre-mRNA splicing that are emerging as new members of the gene regulatory network. In addition to being spliced in a linear fashion, exons of pre-mRNAs can be circularized by use of the 3' acceptor splice site of upstream exons, leading to the formation of circular RNA species. In this way, genetic information can be re-organized, increasing gene expression potential. Expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across eukaryotes. The importance of circRNAs in gene regulation is now beginning to be recognized and some putative functions have been assigned to them, such as the sequestration of microRNAs or proteins, the modulation of transcription, the interference with splicing, and translation of small proteins. In accordance with an important role in normal cell biology, circRNA deregulation has been reported to be associated with diseases. Recent evidence demonstrated that circRNAs are highly expressed in striated muscle tissue, both skeletal and cardiac, that is also one of the body tissue showing the highest levels of alternative splicing. Moreover, initial studies revealed altered circRNA expression in diseases involving striated muscle, suggesting important functions of these molecules in the pathogenetic mechanisms of both heart and skeletal muscle diseases. The recent findings in this field will be described and discussed.
Collapse
Affiliation(s)
- Simona Greco
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| |
Collapse
|
17
|
Ballarino M, Cipriano A, Tita R, Santini T, Desideri F, Morlando M, Colantoni A, Carrieri C, Nicoletti C, Musarò A, Carroll DO, Bozzoni I. Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice. EMBO J 2018; 37:embj.201899697. [PMID: 30177572 PMCID: PMC6138438 DOI: 10.15252/embj.201899697] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 01/03/2023] Open
Abstract
Myogenesis is a highly regulated process that involves the conversion of progenitor cells into multinucleated myofibers. Besides proteins and miRNAs, long noncoding RNAs (lncRNAs) have been shown to participate in myogenic regulatory circuitries. Here, we characterize a murine chromatin‐associated muscle‐specific lncRNA, Charme, which contributes to the robustness of the myogenic program in vitro and in vivo. In myocytes, Charme depletion triggers the disassembly of a specific chromosomal domain and the downregulation of myogenic genes contained therein. Notably, several Charme‐sensitive genes are associated with human cardiomyopathies and Charme depletion in mice results in a peculiar cardiac remodeling phenotype with changes in size, structure, and shape of the heart. Moreover, the existence of an orthologous transcript in human, regulating the same subset of target genes, suggests an important and evolutionarily conserved function for Charme. Altogether, these data describe a new example of a chromatin‐associated lncRNA regulating the robustness of skeletal and cardiac myogenesis.
Collapse
Affiliation(s)
- Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Andrea Cipriano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Rossella Tita
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Fabio Desideri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Claudia Carrieri
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Carmine Nicoletti
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.,DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Dònal O' Carroll
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy .,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.,Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
19
|
Lee NC, Lee YM, Chen PW, Byrne BJ, Hwu WL. Mutation-adapted U1 snRNA corrects a splicing error of the dopa decarboxylase gene. Hum Mol Genet 2017; 25:5142-5147. [PMID: 27658936 DOI: 10.1093/hmg/ddw323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is an inborn error of monoamine neurotransmitter synthesis, which results in dopamine, serotonin, epinephrine and norepinephrine deficiencies. The DDC gene founder mutation IVS6 + 4A > T is highly prevalent in Chinese patients with AADC deficiency. In this study, we designed several U1 snRNA vectors to adapt U1 snRNA binding sequences of the mutated DDC gene. We found that only the modified U1 snRNA (IVS-AAA) that completely matched both the intronic and exonic U1 binding sequences of the mutated DDC gene could correct splicing errors of either the mutated human DDC minigene or the mouse artificial splicing construct in vitro. We further injected an adeno-associated viral (AAV) vector to express IVS-AAA in the brain of a knock-in mouse model. This treatment was well tolerated and improved both the survival and brain dopamine and serotonin levels of mice with AADC deficiency. Therefore, mutation-adapted U1 snRNA gene therapy can be a promising method to treat genetic diseases caused by splicing errors, but the efficiency of such a treatment still needs improvements.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-May Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Wen Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Barry J Byrne
- Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
20
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
21
|
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 2017; 66:22-37.e9. [PMID: 28344082 PMCID: PMC5387670 DOI: 10.1016/j.molcel.2017.02.017] [Citation(s) in RCA: 1524] [Impact Index Per Article: 217.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/28/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. CircRNAs are conserved, abundant, and regulated in myogenesis High-throughput phenotypic screening reveals functional circRNAs Circ-ZNF609 regulates myoblast proliferation Circ-ZNF609 can be translated
Collapse
Affiliation(s)
- Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Briganti
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Olga Sthandier
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Pietro Laneve
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Institut Pasteur Italy, Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
22
|
Matsuzaka Y, Tanihata J, Komaki H, Ishiyama A, Oya Y, Rüegg U, Takeda SI, Hashido K. Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 Myocytes and mdx Mice. PLoS One 2016; 11:e0167811. [PMID: 27977725 PMCID: PMC5158003 DOI: 10.1371/journal.pone.0167811] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder. Here, we show that the CD63 antigen, which is located on the surface of extracellular vesicles (EVs), is associated with increased levels of muscle-abundant miRNAs, namely myomiRs miR-1, miR-133a, and miR-206, in the sera of DMD patients and mdx mice. Furthermore, the release of EVs from the murine myoblast C2C12 cell line was found to be modulated by intracellular ceramide levels in a Ca2+-dependent manner. Next, to investigate the effects of EVs on cell survival, C2C12 myoblasts and myotubes were cultured with EVs from the sera of mdx mice or C2C12 cells overexpressing myomiRs in presence of cellular stresses. Both the exposure of C2C12 myoblasts and myotubes to EVs from the serum of mdx mice, and the overexpression of miR-133a in C2C12 cells in presence of cellular stress resulted in a significant decrease in cell death. Finally, to assess whether miRNAs regulate skeletal muscle regeneration in vivo, we intraperitoneally injected GW4869 (an inhibitor of exosome secretion) into mdx mice for 5 and 10 days. Levels of miRNAs and creatine kinase in the serum of GW4869-treated mdx mice were significantly downregulated compared with those of controls. The tibialis anterior muscles of the GW4869-treated mdx mice showed a robust decrease in Evans blue dye uptake. Collectively, these results indicate that EVs and myomiRs might protect the skeletal muscle of mdx mice from degeneration.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Urs Rüegg
- Department of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
| | - Shin-ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Balestra D, Scalet D, Pagani F, Rogalska ME, Mari R, Bernardi F, Pinotti M. An Exon-Specific U1snRNA Induces a Robust Factor IX Activity in Mice Expressing Multiple Human FIX Splicing Mutants. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e370. [PMID: 27701399 PMCID: PMC5095682 DOI: 10.1038/mtna.2016.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
Abstract
In cellular models we have demonstrated that a unique U1snRNA targeting an intronic region downstream of a defective exon (Exon-specific U1snRNA, ExSpeU1) can rescue multiple exon-skipping mutations, a relevant cause of genetic disease. Here, we explored in mice the ExSpeU1 U1fix9 toward two model Hemophilia B-causing mutations at the 5′ (c.519A > G) or 3′ (c.392-8T > G) splice sites of F9 exon 5. Hydrodynamic injection of wt-BALB/C mice with plasmids expressing the wt and mutant (hFIX-2G5′ss and hFIX-8G3′ss) splicing-competent human factor IX (hFIX) cassettes resulted in the expression of hFIX transcripts lacking exon 5 in liver, and in low plasma levels of inactive hFIX. Coinjection of U1fix9, but not of U1wt, restored exon inclusion of variants and in the intrinsically weak FIXwt context. This resulted in appreciable circulating hFIX levels (mean ± SD; hFIX-2G5′ss, 1.0 ± 0.5 µg/ml; hFIX-8G3′ss, 1.2 ± 0.3 µg/ml; and hFIXwt, 1.9 ± 0.6 µg/ml), leading to a striking shortening (from ~100 seconds of untreated mice to ~80 seconds) of FIX-dependent coagulation times, indicating a hFIX with normal specific activity. This is the first proof-of-concept in vivo that a unique ExSpeU1 can efficiently rescue gene expression impaired by distinct exon-skipping variants, which extends the applicability of ExSpeU1s to panels of mutations and thus cohort of patients.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Franco Pagani
- Internation Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Rosella Mari
- Haemostasis & Thrombosis Center, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Abstract
Noncoding RNAs (ncRNAs) such as miRNAs and long noncoding RNAs modulate gene transcription in response to environmental stressors and other stimuli. A role for ncRNAs in muscle pathologies has been demonstrated and further evidence suggests that ncRNAs also play a role in Duchenne muscular dystrophy (DMD). Studies investigating the differential expression of miRNAs in biological fluids between DMD patients and models of dystrophin deficiency (the MDX mouse model, canine models of DMD) and controls have been published, as these have a role in fibrosis. Long noncoding RNAs are differentially expressed in DMD patients and may, in part, have a mechanism of action via targeting of miRNAs. Although many of these recent findings need to be confirmed, ncRNAs may prove to be useful as potential biomarkers of disease. However, their use as therapeutic targets in DMD remains unclear.
Collapse
Affiliation(s)
- Mark M Perry
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK
| |
Collapse
|
25
|
Ballarino M, Morlando M, Fatica A, Bozzoni I. Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 2016; 126:2021-30. [PMID: 27249675 DOI: 10.1172/jci84419] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA is likely to be the most rediscovered macromolecule in biology. Periodically, new non-canonical functions have been ascribed to RNA, such as the ability to act as a catalytic molecule or to work independently from its coding capacity. Recent annotations show that more than half of the transcriptome encodes for RNA molecules lacking coding activity. Here we illustrate how these transcripts affect skeletal muscle differentiation and related disorders. We discuss the most recent scientific discoveries that have led to the identification of the molecular circuitries that are controlled by RNA during the differentiation process and that, when deregulated, lead to pathogenic events. These findings will provide insights that can aid in the development of new therapeutic interventions for muscle diseases.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Cell Differentiation
- Genetic Markers
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Muscle Development/genetics
- Muscle Development/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Musculoskeletal Diseases/genetics
- Musculoskeletal Diseases/metabolism
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/blood
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcriptome
Collapse
|
26
|
The lack of the Celf2a splicing factor converts a Duchenne genotype into a Becker phenotype. Nat Commun 2016; 7:10488. [PMID: 26796035 PMCID: PMC4736020 DOI: 10.1038/ncomms10488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023] Open
Abstract
Substitutions, deletions and duplications in the dystrophin gene lead to either the severe Duchenne muscular dystrophy (DMD) or mild Becker muscular dystrophy depending on whether out-of-frame or in-frame transcripts are produced. We identified a DMD case (GSΔ44) where the correlation between genotype and phenotype is not respected, even if carrying a typical Duchenne mutation (exon 44 deletion) a Becker-like phenotype was observed. Here we report that in this patient, partial restoration of an in-frame transcript occurs by natural skipping of exon 45 and that this is due to the lack of Celf2a, a splicing factor that interacts with exon 45 in the dystrophin pre-mRNA. Several experiments are presented that demonstrate the central role of Celf2a in controlling exon 45 splicing; our data point to this factor as a potential target for the improvement of those DMD therapeutic treatments, which requires exon 45 skipping. Muscular Dystrophy can be caused by mutations in the dystrophin gene, causing the severe Duchenne form or the mild Becker form depending on if the transcript is in or out-of-frame. Here the authors identify a Duchenne-type mutation that gives a Becker-like phenotype due to skipping of exon 45.
Collapse
|
27
|
Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Sci Rep 2015; 5:12831. [PMID: 26290039 PMCID: PMC4642533 DOI: 10.1038/srep12831] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 05/11/2015] [Indexed: 12/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle degenerating disease caused by a dystrophin deficiency. Effective suppression of the primary pathology observed in DMD is critical for treatment. Patient-derived human induced pluripotent stem cells (hiPSCs) are a promising tool for drug discovery. Here, we report an in vitro evaluation system for a DMD therapy using hiPSCs that recapitulate the primary pathology and can be used for DMD drug screening. Skeletal myotubes generated from hiPSCs are intact, which allows them to be used to model the initial pathology of DMD in vitro. Induced control and DMD myotubes were morphologically and physiologically comparable. However, electric stimulation of these myotubes for in vitro contraction caused pronounced calcium ion (Ca2+) influx only in DMD myocytes. Restoration of dystrophin by the exon-skipping technique suppressed this Ca2+ overflow and reduced the secretion of creatine kinase (CK) in DMD myotubes. These results suggest that the early pathogenesis of DMD can be effectively modelled in skeletal myotubes induced from patient-derived iPSCs, thereby enabling the development and evaluation of novel drugs.
Collapse
|
28
|
Liang Y, Chen S, Zhu J, Zhou X, Yang C, Yao L, Zhang C. Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci 2015; 15:42-9. [PMID: 26042512 DOI: 10.17305/bjbms.2015.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/16/2023] Open
Abstract
The aim of our study was to determine the role of dystrophin hydrophobic regions in the pathogenesis of Duchenne (DMD) and Becker (BMD) muscular dystrophies, by the Kyte-Doolittle scale mean hydrophobicity profile and 3D molecular models. A total of 1038 cases diagnosed with DMD or BMD with the in-frame mutation were collected in our hospital and the Leiden DMD information database in the period 2002-2013. Correlation between clinical types and genotypes were determined on the basis of these two sources. In addition, the Kyte-Doolittle scale mean hydrophobicity of dystrophin was analyzed using BioEdit software and the models of the hydrophobic domains of dystrophin were constructed. The presence of four hydrophobic regions is confirmed. They include the calponin homology CH2 domain on the actin-binding domain (ABD), spectrin-type repeat 16, hinge III and the EF Hand domain. The severe symptoms of DMD usually develop as a result of the mutational disruption in the hydrophobic regions I, II and IV of dystrophin - those that bind associated proteins of the dystrophin-glycoprotein complex (DGC). On the other hand, when the hydrophobic region III is deleted, the connection of the ordered repeat domains of the central rod domain remains intact, resulting in the less severe clinical presentation. We conclude that mutational changes in the structure of hydrophobic regions of dystrophin play an important role in the pathogenesis of DMD.
Collapse
Affiliation(s)
- Yingyin Liang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province.
| | | | | | | | | | | | | |
Collapse
|
29
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
30
|
Cordani N, Pisa V, Pozzi L, Sciorati C, Clementi E. Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibro-adipogenic precursor differentiation. Stem Cells 2015; 32:874-85. [PMID: 24170326 DOI: 10.1002/stem.1587] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/05/2013] [Indexed: 01/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an hereditary disease characterized by loss of muscle fibers and their progressive substitution by fat and fibrous tissue. Mesenchymal fibro-adipogenic progenitors (FAPs) expressing the platelet-derived growth factor receptor alpha (PDGFRα) are an important source of fibrosis and adipogenesis in dystrophic skeletal muscle. Among the therapies suggested for dystrophy are those based on nitric oxide (NO) donating drugs, the administration of which slows disease progression. NO has been shown to act by enhancing the regenerative potential of the diseased muscle. Whether it acts also by inhibiting fibrosis and adipogenesis was not known. Here, we show in vitro that NO regulates FAP fate through inhibition of their differentiation into adipocytes. In mdx mice, an animal model of DMD, treatment with the NO donating drug molsidomine reduced the number of PDGFRα(+) cells as well as the deposition of both skeletal muscle fat and connective tissues. Inhibition of adipogenesis was due to NO-induced increased expression of miR-27b leading to downregulation of peroxisome proliferator-activated receptors gamma (Pparγ1) expression in a pathway independent of cGMP generation. These findings reveal an additional effect of NO in dystrophic muscle that conceivably synergizes with its known effects on regeneration improvement and explain why NO-based therapies appear effective in the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Nicoletta Cordani
- Scientific Institute, IRCCS E. Medea 23842 Bosisio Parini, Lecco, Italy
| | | | | | | | | |
Collapse
|
31
|
Alexander MS, Kunkel LM. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases. J Neuromuscul Dis 2015; 2:1-11. [PMID: 27547731 PMCID: PMC4988517 DOI: 10.3233/jnd-140058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small 21-24 nucleotide RNAs that are capable of regulating multiple signaling pathways across multiple tissues. MicroRNAs are dynamically regulated and change in expression levels during periods of early development, tissue regeneration, cancer, and various other disease states. Recently, microRNAs have been isolated from whole serum and muscle biopsies to identify unique diagnostic signatures for specific neuromuscular disease states. Functional studies of microRNAs in cell lines and animal models of neuromuscular diseases have elucidated their importance in contributing to neuromuscular disease progression and pathologies. The ability of microRNAs to alter the expression of an entire signaling pathway opens up their unique ability to be used as potential therapeutic entry points for the treatment of disease. Here, we will review the recent findings of key microRNAs and their dysregulation in various neuromuscular diseases. Additionally, we will highlight the current strategies being used to regulate the expression of key microRNAs as they have become important players in the clinical treatment of some of the neuromuscular diseases.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Genetics at Harvard Medical School, Boston, MA, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Genetics at Harvard Medical School, Boston, MA, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA, USA; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
32
|
Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 2014; 35:728-36. [PMID: 25512605 DOI: 10.1128/mcb.01394-14] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analysis allowed the identification of new long noncoding RNAs differentially expressed during murine myoblast differentiation. These transcripts were classified on the basis of their expression under proliferating versus differentiated conditions, muscle-restricted activation, and subcellular localization. Several species displayed preferential expression in dystrophic (mdx) versus wild-type muscles, indicating their possible link with regenerative processes. One of the identified transcripts, lnc-31, even if originating from the same nuclear precursor of miR-31, is produced by a pathway mutually exclusive. We show that lnc-31 and its human homologue hsa-lnc-31 are expressed in proliferating myoblasts, where they counteract differentiation. In line with this, both species are more abundant in mdx muscles and in human Duchenne muscular dystrophy (DMD) myoblasts, than in their normal counterparts. Altogether, these data suggest a crucial role for lnc-31 in controlling the differentiation commitment of precursor myoblasts and indicate that its function is maintained in evolution despite the poor sequence conservation with the human counterpart.
Collapse
|
33
|
Zhao C, Farruggio AP, Bjornson CRR, Chavez CL, Geisinger JM, Neal TL, Karow M, Calos MP. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells. PLoS One 2014; 9:e96279. [PMID: 24781921 PMCID: PMC4004573 DOI: 10.1371/journal.pone.0096279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/07/2014] [Indexed: 01/07/2023] Open
Abstract
A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alfonso P. Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher R. R. Bjornson
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher L. Chavez
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jonathan M. Geisinger
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tawny L. Neal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marisa Karow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michele P. Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 2014; 53:506-14. [PMID: 24440503 PMCID: PMC3919156 DOI: 10.1016/j.molcel.2013.12.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/25/2013] [Accepted: 12/11/2013] [Indexed: 01/02/2023]
Abstract
The muscle-specific long noncoding RNA linc-MD1 was shown to be expressed during early phases of muscle differentiation and to trigger the switch to later stages by acting as a sponge for miR-133 and miR-135. Notably, linc-MD1 is also the host transcript of miR-133b, and their biogenesis is mutually exclusive. Here, we describe that this alternative synthesis is controlled by the HuR protein, which favors linc-MD1 accumulation through its ability to bind linc-MD1 and repress Drosha cleavage. We show that HuR is under the repressive control of miR-133 and that the sponging activity of linc-MD1 consolidates HuR expression in a feedforward positive loop. Finally, we show that HuR also acts in the cytoplasm, reinforcing linc-MD1 sponge activity by cooperating for miRNA recruitment. An increase in miR-133 synthesis, mainly from the two unrelated miR-133a coding genomic loci, is likely to trigger the exit from this circuitry and progression to later differentiation stages. A feedforward positive loop exists between linc-MD1 and HuR during myogenesis HuR controls the relative biogenesis of miR-133b and its host linc-MD1 RNA Linc-MD1, by sponging miR-133, alleviates its repression on HuR expression Cytoplasmic HuR reinforces linc-MD1 activity by cooperating for miRNA recruitment
Collapse
Affiliation(s)
- Ivano Legnini
- Department of Biology and Biotechnology "Charles Darwin" and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology "Charles Darwin" and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Arianna Mangiavacchi
- Department of Biology and Biotechnology "Charles Darwin" and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin" and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology "Charles Darwin" and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
35
|
Blázquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, García L, Valcárcel J, Fortes P, López de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat 2013; 34:1387-95. [PMID: 23864287 DOI: 10.1002/humu.22379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.
Collapse
Affiliation(s)
- Lorea Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Neuroscience Area, Health Research Institute Biodonostia, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Benedetti S, Hoshiya H, Tedesco FS. Repair or replace? Exploiting novel gene and cell therapy strategies for muscular dystrophies. FEBS J 2013; 280:4263-80. [PMID: 23387802 DOI: 10.1111/febs.12178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Muscular dystrophies are genetic disorders characterized by skeletal muscle wasting and weakness. Although there is no effective therapy, a number of experimental strategies have been developed over recent years and some of them are undergoing clinical investigation. In this review, we highlight recent developments and key challenges for strategies based upon gene replacement and gene/expression repair, including exon-skipping, vector-mediated gene therapy and cell therapy. Therapeutic strategies for different forms of muscular dystrophy are discussed, with an emphasis on Duchenne muscular dystrophy, given the severity and the relatively advanced status of clinical studies for this disease.
Collapse
Affiliation(s)
- Sara Benedetti
- Department of Cell and Developmental Biology, University College London, UK
| | | | | |
Collapse
|