1
|
Escoto A, Hecksel R, Parkinson C, Crane S, Atwell B, King S, Ortiz Chavez D, Jannuzi A, Sands B, Bitler BG, Fehniger TA, Paek AL, Padi M, Schroeder J. Nuclear EGFR in breast cancer suppresses NK cell recruitment and cytotoxicity. Oncogene 2025; 44:288-295. [PMID: 39521886 PMCID: PMC11779631 DOI: 10.1038/s41388-024-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Natural Killer (NK) cells can target and destroy cancer cells, yet tumor microenvironments typically suppress NK cell recruitment and cytotoxicity. The epidermal growth factor receptor (EGFR) is a potent oncogene that can activate survival, migration, and proliferation pathways, and clinical data suggests it may also play an immunomodulating role in cancers. Recent work has demonstrated a novel role for nuclear EGFR (nEGFR) in regulating transcriptional events unique from the kinase domain. Using a novel peptide therapeutic (cSNX1.3) that inhibits retrograde trafficking of EGFR and an EGFR nuclear localization mutant, we discovered that nEGFR suppresses NK cell recruitment and cytotoxicity. RNA-Seq analysis of breast cancer cells treated with cSNX1.3 or modified to lack a nuclear localization sequence (EGFRΔNLS) revealed the EGF-dependent induction of NK activating receptor ligands, while kinase inhibition by erlotinib did not impact these genes. NanoString analysis of tumor-bearing WAP-TGFα transgenic mice treated with cSNX1.3 demonstrated an increase in immune cell populations and activating genes. Additionally, immunohistochemistry confirmed an increase in NK cells upon cSNX1.3 treatment. Finally, cSNX1.3 treatment was found to enhance NK cell recruitment and cytotoxicity in vitro. Together, the data demonstrate a unique immunomodulatory role for nEGFR.
Collapse
Affiliation(s)
- Angelica Escoto
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Ryan Hecksel
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Chance Parkinson
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Sara Crane
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Benjamin Atwell
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Shyanne King
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Daniela Ortiz Chavez
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Alison Jannuzi
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Barbara Sands
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Benjamin G Bitler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew L Paek
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA
| | - Megha Padi
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
| | - Joyce Schroeder
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Atwell B, Chalasani P, Schroeder J. Nuclear epidermal growth factor receptor as a therapeutic target. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:616-629. [PMID: 37720348 PMCID: PMC10501894 DOI: 10.37349/etat.2023.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most well-studied oncogenes with roles in proliferation, growth, metastasis, and therapeutic resistance. This intense study has led to the development of a range of targeted therapeutics including small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and nanobodies. These drugs are excellent at blocking the activation and kinase function of wild-type EGFR (wtEGFR) and several common EGFR mutants. These drugs have significantly improved outcomes for patients with cancers including head and neck, glioblastoma, colorectal, and non-small cell lung cancer (NSCLC). However, therapeutic resistance is often seen, resulting from acquired mutations or activation of compensatory signaling pathways. Additionally, these therapies are ineffective in tumors where EGFR is found predominantly in the nucleus, as can be found in triple negative breast cancer (TNBC). In TNBC, EGFR is subjected to alternative trafficking which drives the nuclear localization of the receptor. In the nucleus, EGFR interacts with several proteins to activate transcription, DNA repair, migration, and chemoresistance. Nuclear EGFR (nEGFR) correlates with metastatic disease and worse patient prognosis yet targeting its nuclear localization has proved difficult. This review provides an overview of current EGFR-targeted therapies and novel peptide-based therapies that block nEGFR, as well as their clinical applications and potential for use in oncology.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Pavani Chalasani
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
4
|
Sinclair JKL, Robertson WE, Mozumdar D, Quach K, Schepartz A. Allosteric Inhibition of the Epidermal Growth Factor Receptor. Biochemistry 2021; 60:500-512. [PMID: 33557518 DOI: 10.1021/acs.biochem.0c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported a family of hydrocarbon-stapled peptides designed to interact with the epidermal growth factor receptor (EGFR) juxtamembrane (JM) segment, blocking its ability to form a coiled coil dimer that is essential for receptor activation. These hydrocarbon-stapled peptides, most notably E1S, decreased the proliferation of cell lines that express wild-type EGFR (H2030 and A431) as well as those expressing the oncogenic mutants EGFR L858R (H3255) and L858R/T790M (H1975). Although our previous investigations provided evidence that E1S interacted with EGFR directly, the location and details of these interactions were not established. Here we apply biochemical and cross-linking mass spectrometry tools to better define the interactions between E1S and EGFR. Taken with previously reported structure-activity relationships, our results support a model in which E1S interacts simultaneously with both the JM and the C-lobe of the activator kinase, effectively displacing the JM of the receiver kinase. Our results also reveal potential interactions between E1S and the N-terminal region of the C-terminal tail. We propose a model in which E1S inhibits EGFR by both mimicking and inhibiting JM coiled coil formation. This model could be used to design novel, allosteric (and perhaps nonpeptidic) EGFR inhibitors.
Collapse
Affiliation(s)
- Julie K L Sinclair
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Wesley E Robertson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Deepto Mozumdar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, University of California, Berkeley, California 94705, United States
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94705, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94705, United States
| |
Collapse
|
5
|
Abdelli F, Jellali K, Anguita E, González-Muñoz M, Villalobo E, Madroñal I, Alcalde J, Ben Ali M, Elloumi-Mseddi J, Jemel I, Tebar F, Enrich C, Aifa S, Villalobo A. The role of the calmodulin-binding and calmodulin-like domains of the epidermal growth factor receptor in tyrosine kinase activation. J Cell Physiol 2020; 236:4997-5011. [PMID: 33305427 DOI: 10.1002/jcp.30205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) harbors a calmodulin (CaM)-binding domain (CaM-BD) and a CaM-like domain (CaM-LD) upstream and downstream, respectively, of the tyrosine kinase (TK) domain. We demonstrate in this paper that deletion of the positively charged CaM-BD (EGFR/CaM-BD∆) inactivated the TK activity of the receptor. Moreover, deletion of the negatively charged CaM-LD (EGFR/CaM-LD∆), leaving a single negative residue (glutamate), reduced the activity of the receptor. In contrast, substituting the CaM-LD with a histidine/valine-rich peptide (EGFR/InvCaM-LD) caused full inactivation. We also demonstrated using confocal microscopy and flow cytometry that the chimera EGFR-green fluorescent protein (GFP)/CaM-BD∆, the EGFR/CaM-LD∆, and EGFR/InvCaM-LD mutants all bind tetramethylrhodamine-labelled EGF. These EGFR mutants were localized at the plasma membrane as the wild-type receptor does. However, only the EGFR/CaM-LD∆ and EGFR/InvCaM-LD mutants appear to undergo ligand-dependent internalization, while the EGFR-GFP/CaM-BD∆ mutant seems to be deficient in this regard. The obtained results and in silico modelling studies of the asymmetric structure of the EGFR kinase dimer support a role of a CaM-BD/CaM-LD electrostatic interaction in the allosteric activation of the EGFR TK.
Collapse
Affiliation(s)
- Faten Abdelli
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Karim Jellali
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Estefanía Anguita
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - María González-Muñoz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Madroñal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Alcalde
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jihene Elloumi-Mseddi
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Ikram Jemel
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesc Tebar
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sami Aifa
- Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
| |
Collapse
|
6
|
Patwa V, Guo S, Carter RL, Kraus L, Einspahr J, Teplitsky D, Sabri A, Tilley DG. Epidermal growth factor receptor association with β1-adrenergic receptor is mediated via its juxtamembrane domain. Cell Signal 2020; 78:109846. [PMID: 33238186 DOI: 10.1016/j.cellsig.2020.109846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/20/2023]
Abstract
β1-adrenergic receptor (β1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with β1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with β1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with β1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent β1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted β1AR-EGFR association over time and prevented β1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with β1AR, and its disruption prevents β1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting β1AR-EGFR downstream signaling.
Collapse
Affiliation(s)
- Viren Patwa
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuchi Guo
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Lindsay Kraus
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jeanette Einspahr
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - David Teplitsky
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Christoforow A, Wilke J, Binici A, Pahl A, Ostermann C, Sievers S, Waldmann H. Design, Synthesis, and Phenotypic Profiling of Pyrano-Furo-Pyridone Pseudo Natural Products. Angew Chem Int Ed Engl 2019; 58:14715-14723. [PMID: 31339620 PMCID: PMC7687248 DOI: 10.1002/anie.201907853] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Indexed: 11/23/2022]
Abstract
Natural products (NPs) inspire the design and synthesis of novel biologically relevant chemical matter, for instance through biology-oriented synthesis (BIOS). However, BIOS is limited by the partial coverage of NP-like chemical space by the guiding NPs. The design and synthesis of "pseudo NPs" overcomes these limitations by combining NP-inspired strategies with fragment-based compound design through de novo combination of NP-derived fragments to unprecedented compound classes not accessible through biosynthesis. We describe the development and biological evaluation of pyrano-furo-pyridone (PFP) pseudo NPs, which combine pyridone- and dihydropyran NP fragments in three isomeric arrangements. Cheminformatic analysis indicates that the PFPs reside in an area of NP-like chemical space not covered by existing NPs but rather by drugs and related compounds. Phenotypic profiling in a target-agnostic "cell painting" assay revealed that PFPs induce formation of reactive oxygen species and are structurally novel inhibitors of mitochondrial complex I.
Collapse
Affiliation(s)
- Andreas Christoforow
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Julian Wilke
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Aylin Binici
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Axel Pahl
- Compound Management and Screening Center, DortmundOtto-Hahn-Str. 1144227DortmundGermany
| | - Claude Ostermann
- Compound Management and Screening Center, DortmundOtto-Hahn-Str. 1144227DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center, DortmundOtto-Hahn-Str. 1144227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
8
|
Christoforow A, Wilke J, Binici A, Pahl A, Ostermann C, Sievers S, Waldmann H. Design, Synthesis, and Phenotypic Profiling of Pyrano‐Furo‐Pyridone Pseudo Natural Products. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Christoforow
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Julian Wilke
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Aylin Binici
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Axel Pahl
- Compound Management and Screening Center, Dortmund Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Claude Ostermann
- Compound Management and Screening Center, Dortmund Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center, Dortmund Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
9
|
Maisel SA, Broka D, Atwell B, Bunch T, Kupp R, Singh SK, Mehta S, Schroeder J. Stapled EGFR peptide reduces inflammatory breast cancer and inhibits additional HER-driven models of cancer. J Transl Med 2019; 17:201. [PMID: 31215437 PMCID: PMC6582486 DOI: 10.1186/s12967-019-1939-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background The human epidermal growth factor receptor (HER) family of transmembrane tyrosine kinases is overexpressed and correlates with poor prognosis and decreased survival in many cancers. The receptor family has been therapeutically targeted, yet tyrosine kinase inhibitors (TKIs) do not inhibit kinase-independent functions and antibody-based targeting does not affect internalized receptors. We have previously demonstrated that a peptide mimicking the internal juxtamembrane domain of HER1 (EGFR; EJ1) promotes the formation of non-functional HER dimers that inhibit kinase-dependent and kinase-independent functions of HER1 (ERBB1/EGFR), HER2 (ERBB2) and HER3 (ERBB3). Despite inducing rapid HER-dependent cell death in vitro, EJ1 peptides are rapidly cleared in vivo, limiting their efficacy. Method To stabilize EJ1 activity, hydrocarbon staples (SAH) were added to the active peptide (SAH-EJ1), resulting in a 7.2-fold increase in efficacy and decreased in vivo clearance. Viability assays were performed across HER1 and HER2 expressing cell lines, therapeutic-resistant breast cancer cells, clinically relevant HER1-mutated lung cancer cells, and patient-derived glioblastoma cells, in all cases demonstrating improved efficacy over standard of care pan-HER therapeutics. Tumor burden studies were also performed in lung, glioblastoma, and inflammatory breast cancer mouse models, evaluating tumor growth and overall survival. Results When injected into mouse models of basal-like and inflammatory breast cancers, EGFRvIII-driven glioblastoma, and lung adenocarcinoma with Erlotinib resistance, tumor growth is inhibited and overall survival is extended. Studies evaluating the toxicity of SAH-EJ1 also demonstrate a broad therapeutic window. Conclusions Taken together, these data indicate that SAH-EJ1 may be an effective therapeutic for HER-driven cancers with the potential to eliminate triple negative inflammatory breast cancer. Electronic supplementary material The online version of this article (10.1186/s12967-019-1939-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina A Maisel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Derrick Broka
- Arizona Cancer Therapeutics/Alliance Therapeutics, Tucson, AZ, USA
| | - Benjamin Atwell
- Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave 3945, Tucson, AZ, 85724, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Thomas Bunch
- Arizona Cancer Therapeutics/Alliance Therapeutics, Tucson, AZ, USA
| | - Robert Kupp
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shiv K Singh
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shwetal Mehta
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Joyce Schroeder
- Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave 3945, Tucson, AZ, 85724, USA. .,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA. .,Arizona Cancer Therapeutics/Alliance Therapeutics, Tucson, AZ, USA.
| |
Collapse
|
10
|
Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, Schroeder J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget 2018; 7:60776-60792. [PMID: 27542214 PMCID: PMC5308616 DOI: 10.18632/oncotarget.11320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that Llgl1 loss results in a gain of mesenchymal phenotypes and a loss of apicobasal and planar polarity. We now demonstrate that these changes represent a fundamental shift in cellular phenotype. Llgl1 regulates the expression of multiple cell identity markers, including CD44, CD49f, and CD24, and the nuclear translocation of TAZ and Slug. Cells lacking Llgl1 form mammospheres, where survival and transplantability is dependent upon the Epidermal Growth Factor Receptor (EGFR). Additionally, Llgl1 loss allows cells to grow in soft-agar and maintain prolonged survival as orthotopic transplants in NOD-SCIDmice. Lineage tracing and wound healing experiments demonstrate that mammosphere survival is due to enhanced EGF-dependent migration. The loss of Llgl1 drives EGFR mislocalization and an EGFR mislocalization point mutation (P667A) drives these same phenotypes, including activation of AKT and TAZ nuclear translocation. Together, these data indicate that the loss of Llgl1 results in EGFR mislocalization, promoting pre-neoplastic changes.
Collapse
Affiliation(s)
- Erin Greenwood
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Sabrina Maisel
- Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Cancer Biology Program, University of Arizona, Tucson, Arizona
| | - David Ebertz
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Atlantis Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Genetics Program, University of Arizona, Tucson, Arizona
| | - Ritu Pandey
- Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona.,BIO5 Institute, University of Arizona, Tucson, Arizona.,Genetics Program, University of Arizona, Tucson, Arizona.,Cancer Biology Program, University of Arizona, Tucson, Arizona
| |
Collapse
|
11
|
Wang YY, Zhao R, Zhe H. The emerging role of CaMKII in cancer. Oncotarget 2016; 6:11725-34. [PMID: 25961153 PMCID: PMC4494900 DOI: 10.18632/oncotarget.3955] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinases best known for its critical role in learning and memory. Recent studies suggested that high levels of CaMKII also expressed in variety of malignant diseases. In this review, we focus on the structure and biology properties of CaMKII, including the role of CaMKII in the regulation of cancer progression and therapy response. We also describe the role of CaMKII in the diagnosis of different kinds of cancer and recent progress in the development of CaMKII inhibitors. These data establishes CaMKII as a novel target whose modulation presents new opportunities for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yan-yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
12
|
Liang AL, Qian HL, Zhang TT, Zhou N, Wang HJ, Men XT, Qi W, Zhang PP, Fu M, Liang X, Lin C, Liu YJ. Bifunctional fused polypeptide inhibits the growth and metastasis of breast cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5671-86. [PMID: 26527862 PMCID: PMC4621185 DOI: 10.2147/dddt.s90082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer-related death among women worldwide, with urgent need to develop new therapeutics. Targeted therapy is a promising strategy for breast cancer therapy. Stromal-derived factor-1/CXC chemokine receptor 4 (CXCR4) has been implicated in the metastasis of breast cancer, which renders it to be therapeutic target. This study aimed to evaluate the anticancer effect of fused TAT- DV1-BH3 polypeptide, an antagonist of CXCR4, and investigate the underlying mechanism for the cancer cell-killing effect in the treatment of breast cancer in vitro and in vivo. This results in a potent inhibitory effect of fused TAT-DV1-BH3 polypeptide on tumor growth and metastasis in nude mice bearing established MDA-MB-231 tumors. Fused TAT-DV1-BH3 polypeptide inhibited the proliferation of MDA-MB-231 and MCF-7 cells but did not affect that of HEK-293 cells. The fused TAT-DV1-BH3 polypeptide colocalized with mitochondria and exhibited a proapoptotic effect through the regulation of caspase-9 and -3. Furthermore, the fused TAT-DV1-BH3 polypeptide suppressed the migration and invasion of the highly metastatic breast cancer cell line MDA-MB-231 in a concentration-dependent manner. Notably, the DV1-mediated inhibition of the stromal-derived factor-1/CXCR4 pathway contributed to the antimetastasis effect, evident from the reduction in the level of phosphoinositide 3 kinase and matrix metalloproteinase 9 in MDA-MB-231 cells. Collectively, these results indicate that the apoptosis-inducing effect and migration- and invasion-suppressing effect explain the tumor regression and metastasis inhibition in vivo, with the involvement of caspase- and CXCR4-mediated signaling pathway. The data suggest that the fused TAT-DV1-BH3 polypeptide is a promising agent for the treatment of breast cancer, and more studies are warranted to fully elucidate the therapeutic targets and molecular mechanism.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ting-Ting Zhang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Ning Zhou
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hai-Juan Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi-Ting Men
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Qi
- Electroencephalogram Room, Guangdong Medical University Affiliated Hospital, Zhanjiang, Guangdong, People's Republic of China
| | - Ping-Ping Zhang
- Department of Orthopedics, Guangdong Medical University Affiliated Hospital, Zhanjiang, Guangdong, People's Republic of China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiao Liang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chen Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Omabe M, Ahmed S, Sami A, Xie Y, Tao M, Xiang J. HER2-Specific Vaccines for HER2-Positive Breast Cancer Immunotherapy. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|