1
|
Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022; 213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.
Collapse
|
2
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
3
|
Scarborough RJ, Gatignol A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses 2017; 10:E8. [PMID: 29280961 PMCID: PMC5795421 DOI: 10.3390/v10010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.
Collapse
Affiliation(s)
- Robert J Scarborough
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A0G4, Canada.
| |
Collapse
|
4
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Garg H, Lee RT, Maurer-Stroh S, Joshi A. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc. Virology 2016; 493:86-99. [DOI: 10.1016/j.virol.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
|
6
|
Garg H, Joshi A. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification. Hum Gene Ther 2016; 27:400-15. [PMID: 26800572 DOI: 10.1089/hum.2015.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.
Collapse
Affiliation(s)
- Himanshu Garg
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center , El Paso, Texas
| | - Anjali Joshi
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center , El Paso, Texas
| |
Collapse
|
7
|
Sereti I, Folkers GK, Meintjes G, Boulware DR. Towards a scalable HIV cure research agenda: the role of co-infections. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Sereti I, Folkers GK, Meintjes G, Boulware DR. Towards a scalable HIV cure research agenda: the role of co-infections. J Virus Erad 2015; 1:269-271. [PMID: 26855972 PMCID: PMC4739889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The development of a cure is among the foremost contemporary priorities in the field of HIV research. The science that underpins a potential HIV cure should be generalisable to the many millions of persons globally who enter antiretroviral treatment programs with advanced immunosuppression and/or an opportunistic infection. We provide five key suggestions for incorporation into the HIV cure research agenda to maximise the generalisability and applicability of an HIV cure once developed.
Collapse
Affiliation(s)
- Irini Sereti
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda,
Maryland,
USA,Corresponding author: Irini Sereti, NIAID, 10 Center Drive, Building 10, Room 11B-07A, Bethesda, MD 20892, USA
| | - Gregory K Folkers
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda,
Maryland,
USA
| | - Graeme Meintjes
- University of Cape Town,
Cape Town,
South Africa,Imperial College London,
London,
UK
| | | |
Collapse
|
9
|
Combinatorial hematopoietic stem cell transplantation and vaccination reduces viral pathogenesis following SHIV89.6P-challenge. Gene Ther 2015; 22:1007-12. [PMID: 26355737 DOI: 10.1038/gt.2015.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/14/2015] [Accepted: 05/19/2015] [Indexed: 11/08/2022]
Abstract
Development of curative approaches for HIV-1 infected patients requires novel approaches aimed at eliminating viral reservoirs and replacing potential target cells with infection-resistant immune cell populations. We have previously shown that autologous transplantation of genetically modified hematopoietic stem cells (HSCs) with lentiviral vectors encoding the mC46-fusion inhibitor results in a significant reduction in viral pathogenesis following challenge with the highly pathogenic dual tropic, SHIV89.6P strain. In this study, we used a combinatorial approach in which following engraftment of genetically modified HSCs, pigtailed macaques were vaccinated with a previously developed vaccinia-based vaccine expressing SIV-Gag, Pol. Using this dual therapy approach, lower viremia was detected in both the acute and chronic phase of disease with levels reaching near the lower limits of detection. In comparison with macaques receiving HSCT only, the combination approach resulted in a further log decrease in plasma viremia. Similar to our previous studies, positive selection of all CD4(+) T-cell subsets was observed; however, higher gene-modified CD4(+) T-cell levels were observed during the chronic phase when vaccination was included suggesting that combining vaccination with HSCT may lower the necessary threshold for achieving viremic control.
Collapse
|
10
|
Lentivirus-mediated Gene Transfer in Hematopoietic Stem Cells Is Impaired in SHIV-infected, ART-treated Nonhuman Primates. Mol Ther 2015; 23:943-951. [PMID: 25648264 DOI: 10.1038/mt.2015.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Recent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein. We show that SHIV(+), ART-treated animals had very low gene marking levels after HSCT. Pretransduction CD34(+) cells contained detectable levels of all three ART drugs, likely contributing to the low gene transfer efficiency. Following HSCT recovery and the cessation of ART, plasma viremia rebounded, indicating that myeloablative total body irradiation cannot completely eliminate viral reservoirs after autologous HSCT. The kinetics of recovery following autologous HSCT in SHIV(+), ART-treated macaques paralleled those observed following transplantation of control animals. However, T-cell subset analyses demonstrated a high percentage of C-C chemokine receptor 5 (CCR5)-expressing CD4(+) T-cells after HSCT. These data suggest that an extended ART interruption time may be required for more efficient lentiviral transduction. To avoid complications associated with ART interruption in the context of high percentages of CD4(+)CCR5(+)T-cells after HSCT, the use of vector systems not impaired by the presence of residual ART may also be beneficial.
Collapse
|
11
|
Esmaeilzadeh A, Farshbaf A, Erfanmanesh M. Autologous Hematopoietic Stem Cells transplantation and genetic modification of CCR5 m303/m303 mutant patient for HIV/AIDS. Med Hypotheses 2015; 84:216-8. [PMID: 25613565 DOI: 10.1016/j.mehy.2014.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/26/2014] [Indexed: 01/05/2023]
Abstract
HIV and AIDS is one of the biggest challenges all over the world. There are an approximately 34 million people living with the virus, and a large number of them become infected each year. Although there are some antiviral drugs for HIV viral load reduction, they are not sufficient. There is no cure for AIDS. Nowadays natural resistance or immunity has absorbed attentions. Because in some HIV positive patients progression trend is slow or even they indicate resistance to AIDS. One of the most interesting approaches in this category is CCR5 gene. CCR5 is a main cc-chemokine co-receptor that facilitates HIV-1 entry to macrophage and CD4(+) T cells. To now, many polymorphisms have been known by CCR5 gene that produces a truncated protein with no function. So, HIV-1 could not entry to immune-cells and the body resistant to HIV/AIDS. Δ32/Δ32 and m303/m303 homozygotes are example of mutations that could create this resistance mechanism. There is a new treatment, such as Hematopoietic Stem Cell transplantation (HSCT) in Berlin and Boston patients for Δ32/Δ32 mutation. It could eliminate co-receptor antagonist and highly-active-anti retroviral therapy (HAART) drugs problems such as toxicity, low safety and side-effects. Now there, the aim of this hypothesis will be evaluation of a new mutation CCR5 m303/m303 as autologous HSCT. This novel hypothesis indicates that autologous HSCT for m303/m303 could be effective treatment for anyone HIV/AIDS affected patient worldwide.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Alieh Farshbaf
- Department of Genetic & Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Erfanmanesh
- Young Researchers Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
12
|
Smiley ST, Singh A, Read SW, Sharma OK, Finzi D, Lane C, Rice JS. Progress toward curing HIV infections with hematopoietic stem cell transplantation. Clin Infect Dis 2014; 60:292-7. [PMID: 25273081 DOI: 10.1093/cid/ciu766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy can suppress human immunodeficiency virus (HIV) infection but cannot completely eradicate the virus. A major obstacle in the quest for a cure is the difficulty in targeting and measuring latently infected cells. To date, a single person seems to have been cured of HIV. Hematopoietic stem cell transplantation (HSCT) preceded this cancer patient's long-term sustained HIV remission, but researchers have been unable to replicate this cure, and the mechanisms that led to HIV remission remain to be established. In February 2014, the National Institute of Allergy and Infectious Diseases sponsored a workshop that provided a venue for in-depth discussion of whether HSCT could be exploited to cure HIV in cancer patients requiring such procedures. Participants also discussed how HSCT might be applied to a broader community of HIV-infected persons in whom the risks of HSCT currently outweigh the likelihood and benefits of HIV cure.
Collapse
Affiliation(s)
| | | | | | | | | | - Clifford Lane
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation
| | - Jeffrey S Rice
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 2014; 111:11461-6. [PMID: 25049410 PMCID: PMC4128125 DOI: 10.1073/pnas.1405186111] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIDS remains incurable due to the permanent integration of HIV-1 into the host genome, imparting risk of viral reactivation even after antiretroviral therapy. New strategies are needed to ablate the viral genome from latently infected cells, because current methods are too inefficient and prone to adverse off-target effects. To eliminate the integrated HIV-1 genome, we used the Cas9/guide RNA (gRNA) system, in single and multiplex configurations. We identified highly specific targets within the HIV-1 LTR U3 region that were efficiently edited by Cas9/gRNA, inactivating viral gene expression and replication in latently infected microglial, promonocytic, and T cells. Cas9/gRNAs caused neither genotoxicity nor off-target editing to the host cells, and completely excised a 9,709-bp fragment of integrated proviral DNA that spanned from its 5' to 3' LTRs. Furthermore, the presence of multiplex gRNAs within Cas9-expressing cells prevented HIV-1 infection. Our results suggest that Cas9/gRNA can be engineered to provide a specific, efficacious prophylactic and therapeutic approach against AIDS.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140;
| | - Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Fan Yang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Yonggang Zhang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Laura Cosentino
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Fang Li
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Biao Luo
- Cancer Genome Institute, Fox Chase Cancer Center, Temple University School of Medicine, Philadelphia, PA 19111
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140;
| |
Collapse
|
14
|
Chung J, Scherer LJ, Gu A, Gardner AM, Torres-Coronado M, Epps EW, DiGiusto DL, Rossi JJ. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene. Mol Ther 2014; 22:952-63. [PMID: 24576853 PMCID: PMC4015224 DOI: 10.1038/mt.2014.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/21/2014] [Indexed: 01/20/2023] Open
Abstract
Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMT(P140K) marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS.
Collapse
Affiliation(s)
- Janet Chung
- Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lisa J Scherer
- Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Angel Gu
- Laboratory for Cellular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Agnes M Gardner
- Laboratory for Cellular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Monica Torres-Coronado
- Laboratory for Cellular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Elizabeth W Epps
- Laboratory for Cellular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - David L DiGiusto
- Laboratory for Cellular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
- Department of Virology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John J Rossi
- Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
15
|
Badley AD. "Much ado to achieve nothing: prospects for curing HIV infection". MOLECULAR AND CELLULAR THERAPIES 2014; 2:9. [PMID: 26056578 PMCID: PMC4452067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 11/21/2023]
Abstract
Currently there is significant scientific effort being directed at developing ways to create either a sterilizing cure, or functional cure for HIV infection. Multiple approaches are being evaluated under the broad headings of gene therapy, immune based interventions, and treatments which depend upon HIV reactivation from latency to cause the death of cells which harbor the virus. Molecular and Cellular Therapies (MCT) welcomes all manuscripts devoted to increasing our understanding of determinants of affecting a cure for HIV and mechanistic studies determine the cellular and viral interventions necessary for achieving HIV cure.
Collapse
Affiliation(s)
- Andrew D Badley
- />Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota USA
- />Division of Molecular Medicine, Mayo Clinic, Rochester, Minnesota USA
| |
Collapse
|
16
|
Badley AD. "Much ado to achieve nothing: prospects for curing HIV infection". MOLECULAR AND CELLULAR THERAPIES 2014; 2:9. [PMID: 26056578 PMCID: PMC4452067 DOI: 10.1186/2052-8426-2-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 11/10/2022]
Abstract
Currently there is significant scientific effort being directed at developing ways to create either a sterilizing cure, or functional cure for HIV infection. Multiple approaches are being evaluated under the broad headings of gene therapy, immune based interventions, and treatments which depend upon HIV reactivation from latency to cause the death of cells which harbor the virus. Molecular and Cellular Therapies (MCT) welcomes all manuscripts devoted to increasing our understanding of determinants of affecting a cure for HIV and mechanistic studies determine the cellular and viral interventions necessary for achieving HIV cure.
Collapse
Affiliation(s)
- Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota USA ; Division of Molecular Medicine, Mayo Clinic, Rochester, Minnesota USA
| |
Collapse
|