1
|
Kalaba MH, El-Sherbiny GM, Sharaf MH, Farghal EE. Biological Characteristics and Pathogenesis of Monkeypox Virus: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:91-109. [PMID: 38801573 DOI: 10.1007/978-3-031-57165-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Although the smallpox virus has been eradicated worldwide, the World Health Organization (WHO) has issued a warning about the virus's potential to propagate globally. The WHO labeled monkeypox a world public health emergency in July 2022, requiring urgent prevention and treatment. The monkeypox virus is a part of the Poxviridae family, Orthopoxvirus genus, and is accountable for smallpox, which has killed over a million people in the past. Natural hosts of the virus include squirrels, Gambian rodents, chimpanzees, and other monkeys. The monkeypox virus has transmitted to humans through primary vectors (various animal species) and secondary vectors, including direct touch with lesions, breathing particles from body fluids, and infected bedding. The viral particles are ovoid or brick-shaped, 200-250 nm in diameter, contain a single double-stranded DNA molecule, and reproduce only in the cytoplasm of infected cells. Monkeypox causes fever, cold, muscle pains, headache, fatigue, and backache. The phylogenetic investigation distinguished between two genetic clades of monkeypox: the more pathogenic Congo Basin clade and the West Africa clade. In recent years, the geographical spread of the human monkeypox virus has accelerated despite a paucity of information regarding the disease's emergence, ecology, and epidemiology. Using lesion samples and polymerase chain reaction (PCR), the monkeypox virus was diagnosed. In the USA, the improved Ankara vaccine can now be used to protect people who are at a higher risk of getting monkeypox. Antivirals that we have now work well against smallpox and may stop the spread of monkeypox, but there is no particular therapy for monkeypox.
Collapse
Affiliation(s)
- Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Eman E Farghal
- Clinical and Chemical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ottolino-Perry K, Mealiea D, Sellers C, Acuna SA, Angarita FA, Okamoto L, Scollard D, Ginj M, Reilly R, McCart JA. Vaccinia virus and peptide-receptor radiotherapy synergize to improve treatment of peritoneal carcinomatosis. Mol Ther Oncolytics 2023; 29:44-58. [PMID: 37180034 PMCID: PMC10173076 DOI: 10.1016/j.omto.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor-specific overexpression of receptors enables a variety of targeted cancer therapies, exemplified by peptide-receptor radiotherapy (PRRT) for somatostatin receptor (SSTR)-positive neuroendocrine tumors. While effective, PRRT is restricted to tumors with SSTR overexpression. To overcome this limitation, we propose using oncolytic vaccinia virus (vvDD)-mediated receptor gene transfer to permit molecular imaging and PRRT in tumors without endogenous SSTR overexpression, a strategy termed radiovirotherapy. We hypothesized that vvDD-SSTR combined with a radiolabeled somatostatin analog could be deployed as radiovirotherapy in a colorectal cancer peritoneal carcinomatosis model, producing tumor-specific radiopeptide accumulation. Following vvDD-SSTR and 177Lu-DOTATOC treatment, viral replication and cytotoxicity, as well as biodistribution, tumor uptake, and survival, were evaluated. Radiovirotherapy did not alter virus replication or biodistribution, but synergistically improved vvDD-SSTR-induced cell killing in a receptor-dependent manner and significantly increased the tumor-specific accumulation and tumor-to-blood ratio of 177Lu-DOTATOC, making tumors imageable by microSPECT/CT and causing no significant toxicity. 177Lu-DOTATOC significantly improved survival over virus alone when combined with vvDD-SSTR but not control virus. We have therefore demonstrated that vvDD-SSTR can convert receptor-negative tumors into receptor-positive tumors and facilitate molecular imaging and PRRT using radiolabeled somatostatin analogs. Radiovirotherapy represents a promising treatment strategy with potential applications in a wide range of cancers.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - David Mealiea
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Clara Sellers
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Sergio A. Acuna
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Fernando A. Angarita
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Lili Okamoto
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Deborah Scollard
- STTARR, Radiation Medicine Program, Princess Margaret Hospital, UHN, 610 University Avenue, M5G 2C1 Toronto, ON, Canada
| | - Mihaela Ginj
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Raymond Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, M5S 3M2 Toronto, ON, Canada
| | - J. Andrea McCart
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
- Department of Surgery, Mount Sinai Hospital and University of Toronto, 600 University Avenue, M5G 1X5 Toronto, ON, Canada
- Corresponding author: Dave Mealiea, Room 1225, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
3
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
4
|
Ling Q, Zheng B, Chen X, Ye S, Cheng Q. The employment of vaccinia virus for colorectal cancer treatment: A review of preclinical and clinical studies. Hum Vaccin Immunother 2022; 18:2143698. [PMID: 36369829 DOI: 10.1080/21645515.2022.2143698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading malignancies that causes death worldwide. Cancer vaccines and oncolytic immunotherapy bring new hope for patients with advanced CRC. The capability of vaccinia virus (VV) in carrying foreign genes as antigens or immunostimulatory factors has been demonstrated in animal models. VV of Wyeth, Western Reserve, Lister, Tian Tan, and Copenhagen strains have been engineered for the induction of antitumor response in multiple cancers. This paper summarized the preclinical and clinical application and development of VV serving as cancer vaccines and oncolytic vectors in CRC treatment. Additionally, the remaining challenges and future direction are also discussed.
Collapse
Affiliation(s)
- Qiaoyun Ling
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xudong Chen
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Shaoshun Ye
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Quan Cheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther 2022; 7:373. [PMID: 36319633 PMCID: PMC9626568 DOI: 10.1038/s41392-022-01215-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Shchelkunov SN, Bauer TV, Yakubitskiy SN, Sergeev AA, Kabanov AS, Pyankov SA. [Mutations in the A34R gene increase the immunogenicity of vaccinia virus]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:139-146. [PMID: 34901711 PMCID: PMC8627874 DOI: 10.18699/vj21.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Самым простым и надежным способом защиты от вирусных инфекций является вакцинопрофилактика. При этом наибольшей протективной эффективностью обладают живые вакцины, в основе которых
используют слабовирулентные для человека вирусы, близкородственные патогенным, или аттенуированные
(ослабленные за счет мутаций/делеций в вирусном геноме) варианты патогенного для человека вируса. Вакцинация против оспы с использованием живого вируса осповакцины (vaccinia virus, VACV), близкородственного вирусу натуральной оспы, сыграла важнейшую роль в успехе программы глобальной ликвидации оспы,
которая осуществлялась под эгидой Всемирной организации здравоохранения. Прекращение после 1980 г.
противооспенной вакцинации привело к тому, что огромная часть населения Земли в настоящее время не
имеет иммунитета не только к оспе, но и любым другим зоонозным ортопоксвирусным инфекциям. Это создает возможность циркуляции зоонозных ортопоксвирусов в человеческой популяции и, как следствие, приводит к изменению экологии и круга чувствительных хозяев для разных видов ортопоксвирусов. При этом
использование классической живой вакцины на основе VACV для защиты от этих инфекций в настоящее время не приемлемо, так как она может обусловливать тяжелые побочные реакции. В связи с этим все более
актуальной становится разработка новых безопасных вакцин против ортопоксвирусных инфекций человека
и животных. Аттенуация (ослабление вирулентности) VACV достигается в результате направленной инактивации определенных генов вируса и обычно приводит к уменьшению эффективности размножения VACV in vivo.
Следствием этого может быть снижение иммунного ответа при введении аттенуированного вируса пациентам в стандартных дозах. Часто используемым для встройки/инактивации в геноме VACV является ген тимидинкиназы, нарушение которого приводит к аттенуации вируса. В данной работе изучено, как введение двух
точечных мутаций в ген A34R аттенуированного штамма LIVP-GFP (ТК-), увеличивающих выход внеклеточных
оболочечных вирионов (EEV), влияет на свойства пато- и иммуногенности варианта VACV LIVP-GFP-A34R при
интраназальном заражении лабораторных мышей. Показано, что увеличение продукции EEV рекомбинантным штаммом VACV LIVP-GFP-A34R не меняет аттенуированный фенотип, характерный для родительского
штамма LIVP-GFP, но приводит к существенно большей продукции VACV-специфичных антител.
Ключевые слова: вирус осповакцины; направленные мутации; аттенуация; иммуногенность.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T V Bauer
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S N Yakubitskiy
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A A Sergeev
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A S Kabanov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S A Pyankov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
7
|
Inoue T, Byrne T, Inoue M, Tait ME, Wall P, Wang A, Dermyer MR, Laklai H, Binder JJ, Lees C, Hollingsworth R, Maruri-Avidal L, Kirn DH, McDonald DM. Oncolytic Vaccinia Virus Gene Modification and Cytokine Expression Effects on Tumor Infection, Immune Response, and Killing. Mol Cancer Ther 2021; 20:1481-1494. [PMID: 34045231 DOI: 10.1158/1535-7163.mct-20-0863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
Oncolytic vaccinia viruses have promising efficacy and safety profiles in cancer therapy. Although antitumor activity can be increased by manipulating viral genes, the relative efficacy of individual modifications has been difficult to assess without side-by-side comparisons. This study sought to compare the initial antitumor activity after intravenous administration of five vaccinia virus variants of the same Western Reserve backbone and thymidine kinase gene deletion in RIP-Tag2 transgenic mice with spontaneous pancreatic neuroendocrine tumors. Tumors had focal regions of infection at 5 days after all viruses. Natural killer (NK) cells were restricted to these sites of infection, but CD8+ T cells and tumor cell apoptosis were widespread and varied among the viruses. Antitumor activity of virus VV-A34, bearing amino acid substitution A34K151E to increase viral spreading, and virus VV-IL2v, expressing a mouse IL2 variant (mIL2v) with attenuated IL2 receptor alpha subunit binding, was similar to control virus VV-GFP. However, antitumor activity was significantly greater after virus VV-A34/IL2v, which expressed mIL2v together with A34K151E mutation and viral B18R gene deletion, and virus VV-GMCSF that expressed mouse GM-CSF. Both viruses greatly increased expression of CD8 antigens Cd8a/Cd8b1 and cytotoxicity genes granzyme A, granzyme B, Fas ligand, and perforin-1 in tumors. VV-A34/IL2v led to higher serum IL2 and greater tumor expression of death receptor ligand TRAIL, but VV-GMCSF led to higher serum GM-CSF, greater expression of leukocyte chemokines and adhesion molecules, and more neutrophil recruitment. Together, the results show that antitumor activity is similarly increased by viral expression of GM-CSF or IL2v combined with additional genetic modifications.
Collapse
Affiliation(s)
- Tomoyoshi Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Thomas Byrne
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Mitsuko Inoue
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Madeline E Tait
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | | | - Annabel Wang
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Michael R Dermyer
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Hanane Laklai
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Joseph J Binder
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Clare Lees
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | - Robert Hollingsworth
- Cancer Vaccines & Immunotherapeutics, Oncology Research & Development, Pfizer, La Jolla, California
| | | | | | - Donald M McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
8
|
Shin DH, Nguyen T, Ozpolat B, Lang F, Alonso M, Gomez-Manzano C, Fueyo J. Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J Immunother Cancer 2021; 9:jitc-2020-002086. [PMID: 33795384 PMCID: PMC8021759 DOI: 10.1136/jitc-2020-002086] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer virotherapy is a paradigm-shifting treatment modality based on virus-mediated oncolysis and subsequent antitumor immune responses. Clinical trials of currently available virotherapies showed that robust antitumor immunity characterizes the remarkable and long-term responses observed in a subset of patients. These data suggest that future therapies should incorporate strategies to maximize the immunotherapeutic potential of oncolytic viruses. In this review, we highlight the recent evidence that the antiviral immunity of the patients may limit the immunotherapeutic potential of oncolytic viruses and summarize the most relevant approaches to strategically redirect the immune response away from the viruses and toward tumors to heighten the clinical impact of viro-immunotherapy platforms.
Collapse
Affiliation(s)
- Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teresa Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice. Pathogens 2021; 10:pathogens10030377. [PMID: 33801026 PMCID: PMC8004012 DOI: 10.3390/pathogens10030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. The obtained data demonstrate that intradermal inoculation of the studied viruses induces higher production of VACV-specific antibodies compared to their levels after intranasal administration. Introduction of two point mutations into the A34R gene, which increase the yield of extracellular enveloped virions, and deletion of the A35R gene, the protein product of which inhibits presentation of antigens by MHC II, enhances protective potency of the created LIVP-TK--A34R*-dA35R virus against secondary lethal orthopoxvirus infection of BALB/c mice even at an intradermal dose as low as 103 plaque forming units (PFU)/mouse. This virus may be considered not only as a candidate attenuated live vaccine against smallpox and other human orthopoxvirus infections but also as a vector platform for development of safe multivalent live vaccines against other infectious diseases using genetic engineering methods.
Collapse
|
10
|
Shin J, Hong SO, Kim M, Lee H, Choi H, Kim J, Hong J, Kang H, Lee E, Lee S, Kong B, Kim M, Choi H, Kim S. Generation of a Novel Oncolytic Vaccinia Virus Using the IHD-W Strain. Hum Gene Ther 2020; 32:517-527. [PMID: 32854548 PMCID: PMC8140350 DOI: 10.1089/hum.2020.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncolytic viruses are promising cancer therapies due to their selective killing of tumor cells and ability to stimulate the host immune system. As an oncolytic virus platform, vaccinia virus has unique advantages, including rapid replication, a broad range of host targets, and a large capacity for transgene incorporation. In this study, we developed a novel oncolytic vaccinia virus with high potency and a favorable safety profile. We began with the International Health Department-White (IHD-W) strain, which had the strongest cytotoxicity against tumor cells among the four vaccinia virus strains tested. Next, several candidate viruses were constructed by deleting three viral genes (C11R, K3L, and J2R) in various combinations, and their efficacy and safety were compared. The virus ultimately selected, named KLS-3010, exhibited strong antitumor activity against broad targets in vitro and in vivo. Furthermore, KLS-3010 showed a favorable safety profile in mice, as determined by the biodistribution and body weight change. More promisingly, KLS-3010 was able to shift the tumor microenvironment to a proinflammatory state, as evidenced by an increase in activated lymphocytes after KLS-3010 administration, suggesting that this strain may elicit an oncolytic virus-mediated immune response. The KLS-3010 strain thus represents a promising platform for the further development of oncolytic virus-based cancer therapies.
Collapse
Affiliation(s)
- Jaeil Shin
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Soon-Oh Hong
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Minju Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Hyesun Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Hwanjun Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Joonsung Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Jieun Hong
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Hyesoo Kang
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Eunjin Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Soondong Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Byoungjae Kong
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Minjung Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| |
Collapse
|
11
|
Shchelkunov SN, Yakubitskiy SN, Bauer TV, Sergeev AA, Kabanov AS, Bulichev LE, Yurganova IA, Odnoshevskiy DA, Kolosova IV, Pyankov SA, Taranov OS. The Influence of an Elevated Production of Extracellular Enveloped Virions of the Vaccinia Virus on Its Properties in Infected Mice. Acta Naturae 2020; 12:120-132. [PMID: 33456984 PMCID: PMC7800600 DOI: 10.32607/actanaturae.10972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
The modern approach to developing attenuated smallpox vaccines usually consists in targeted inactivation of vaccinia virus (VACV) virulence genes. In this work, we studied how an elevated production of extracellular enveloped virions (EEVs) and the route of mouse infection can influence the virulence and immunogenicity of VACV. The research subject was the LIVP strain, which is used in Russia for smallpox vaccination. Two point mutations causing an elevated production of EEVs compared with the parental LIVP strain were inserted into the sequence of the VACV A34R gene. The created mutant LIVP-A34R strain showed lower neurovirulence in an intracerebral injection test and elevated antibody production in the intradermal injection method. This VACV variant can be a promising platform for developing an attenuated, highly immunogenic vaccine against smallpox and other orthopoxvirus infections. It can also be used as a vector for designing live-attenuated recombinant polyvalent vaccines against various infectious diseases.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - T. V. Bauer
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - A. A. Sergeev
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - A. S. Kabanov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - L. E. Bulichev
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - I. A. Yurganova
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - D. A. Odnoshevskiy
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - I. V. Kolosova
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - S. A. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - O. S. Taranov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| |
Collapse
|
12
|
Nakatake M, Kurosaki H, Kuwano N, Horita K, Ito M, Kono H, Okamura T, Hasegawa K, Yasutomi Y, Nakamura T. Partial Deletion of Glycoprotein B5R Enhances Vaccinia Virus Neutralization Escape while Preserving Oncolytic Function. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:159-171. [PMID: 31236440 PMCID: PMC6580015 DOI: 10.1016/j.omto.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/09/2019] [Indexed: 11/12/2022]
Abstract
Vaccinia virus (VV) has been utilized in oncolytic virotherapy, but it risks a host antiviral immune response. VV has an extracellular enveloped virus (EEV) form consisting of a normal virion covered with a host-derived outer membrane that enables its spread via circulation while evading host immune mechanisms. However, the immune resistance of EEV is only partial, owing to expression of the surface protein B5R, which has four short consensus repeat (SCR) domains that are targeted by host immune factors. To engineer a more effective virus for oncolytic virotherapy, we developed an enhanced immune-evading oncolytic VV by removing the SCRs from the attenuated strain LC16mO. Although deletion of only the SCRs preserved viral replication, progeny production, and oncolytic activity, deletion of whole B5R led to attenuation of the virus. Importantly, SCR-deleted EEV had higher neutralization resistance than did B5R-wild-type EEV against VV-immunized animal serum; moreover, it retained oncolytic function, thereby prolonging the survival of tumor-bearing mice treated with anti-VV antibody. These results demonstrate that partial SCR deletion increases neutralization escape without affecting the oncolytic potency of VV, making it useful for the treatment of tumors under the anti-virus antibody existence.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Nozomi Kuwano
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Kosuke Horita
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Mai Ito
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiromichi Kono
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-City, Saitama 350-1298, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Takafumi Nakamura
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
13
|
Abstract
INTRODUCTION Over the last decade, advances in biological therapies have resulted in remarkable clinical responses for the treatment of some previously incurable cancers. Oncolytic virotherapy is one of these promising novel strategies for cancer therapy. A successful oncolytic virus promotes tumor cell oncolysis and elicits a robust long-term anti-tumor immunity. AREAS COVERED Oncolytic poxviruses (Vaccinia virus and Myxoma virus) demonstrated encouraging results in multiple pre-clinical tumor models and some clinical trials for the treatment of various cancers. This review summarizes the advances made on poxvirus oncolytic virotherapy in the last five years. EXPERT OPINION Many challenges remain in poxvirus oncolytic virotherapy. Two key goals to achieve are enhancing the efficiency of viral delivery to tumor sites and overcoming local tumor immune-evasion. Additional efforts are necessary to explore the best combination of virotherapy with standard available treatments, particularly immunotherapies. By addressing these issues, this new modality will continue to improve as an adjunct biotherapy to treat malignant diseases.
Collapse
Affiliation(s)
- Lino E Torres-Domínguez
- a Biodesign Center for Immunotherapy, Vaccines and Virotherapy , Arizona State University , Tempe , AZ , USA
| | - Grant McFadden
- a Biodesign Center for Immunotherapy, Vaccines and Virotherapy , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
14
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Improved immune response against HIV-1 Env antigen by enhancing EEV production via a K151E mutation in the A34R gene of replication-competent vaccinia virus Tiantan. Antiviral Res 2018; 153:49-59. [DOI: 10.1016/j.antiviral.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
|
16
|
Obermajer N, Urban J, Wieckowski E, Muthuswamy R, Ravindranathan R, Bartlett DL, Kalinski P. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat Protoc 2018; 13:335-357. [PMID: 29345636 DOI: 10.1038/nprot.2017.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This protocol describes how to induce large numbers of tumor-specific cytotoxic T cells (CTLs) in the spleens and lymph nodes of mice receiving dendritic cell (DC) vaccines and how to modulate tumor microenvironments (TMEs) to ensure effective homing of the vaccination-induced CTLs to tumor tissues. We also describe how to evaluate the numbers of tumor-specific CTLs within tumors. The protocol contains detailed information describing how to generate a specialized DC vaccine with augmented ability to induce tumor-specific CTLs. We also describe methods to modulate the production of chemokines in the TME and show how to quantify tumor-specific CTLs in the lymphoid organs and tumor tissues of mice receiving different treatments. The combined experimental procedure, including tumor implantation, DC vaccine generation, chemokine-modulating (CKM) approaches, and the analyses of tumor-specific systemic and intratumoral immunity is performed over 30-40 d. The presented ELISpot-based ex vivo CTL assay takes 6 h to set up and 5 h to develop. In contrast to other methods of evaluating tumor-specific immunity in tumor tissues, our approach allows detection of intratumoral T-cell responses to nonmanipulated weakly immunogenic cancers. This detection method can be performed using basic laboratory skills, and facilitates the development and preclinical evaluation of new immunotherapies.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie Urban
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Wieckowski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Francis L, Guo ZS, Liu Z, Ravindranathan R, Urban JA, Sathaiah M, Magge D, Kalinski P, Bartlett DL. Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget 2017; 7:22174-85. [PMID: 26956047 PMCID: PMC5008353 DOI: 10.18632/oncotarget.7907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
An oncolytic poxvirus such as vvDD-CXCL11 can generate potent systemic antitumor immunity as well as targeted oncolysis, yet the antitumor effect is limited probably due to limited homing to and suppressed activity of tumor-specific adaptive immune cells in the tumor microenvironment (TME). We reasoned that a chemokine modulating (CKM) drug cocktail, consisting of IFN-α, poly I:C, and a COX-2 inhibitor, may skew the chemokine (CK) and cytokine profile into a favorable one in the TME, and this pharmaceutical modulation would enhance both the trafficking into and function of antitumor immune cells in the TME, thus increasing therapeutic efficacy of the oncolytic virus. In this study we show for the first time in vivo that the CKM modulates the CK microenvironment but it does not modulate antitumor immunity by itself in a MC38 colon cancer model. Sequential treatment with the virus and then CKM results in the upregulation of Th1-attracting CKs and reduction of Treg-attracting CKs (CCL22 and CXCL12), concurrent with enhanced trafficking of tumor-specific CD8+ T cells and NK cells into the TME, thus resulting in the most significant antitumor activity and long term survival of tumor-bearing mice. This novel combined regimen, with the oncolytic virus (vvDD-CXCL11) inducing direct oncolysis and eliciting potent antitumor immunity, and the CKM inducing a favorable chemokine profile in the TME that promotes the trafficking and function of antitumor Tc1/Th1 and NK cells, may have great utility for oncolytic immunotherapy for cancer.
Collapse
Affiliation(s)
- Lily Francis
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie A Urban
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magesh Sathaiah
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepa Magge
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Guo ZS, Liu Z, Sathaiah M, Wang J, Ravindranathan R, Kim E, Huang S, Kenniston TW, Bell JC, Zeh HJ, Butterfield LH, Gambotto A, Bartlett DL. Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a Clinical-Grade Oncolytic Vaccinia Virus. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:112-122. [PMID: 29085848 PMCID: PMC5651493 DOI: 10.1016/j.omtm.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
Recombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic) selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al. have previously developed a selectable and excisable marker (SEM) system for the rapid generation of recombinant vaccinia virus. In the current study, we describe an improved methodology for rapid creation and selection of recombinant poxviruses with multiple genetic manipulations solely based on expression of a fluorescent protein and with no requirement for drug selection that can lead to cellular stress and the risk of adventitious mutations throughout the viral genome. Using this improved procedure combined with the SEM system, we have constructed multiple marker-free oncolytic poxviruses expressing different cytokines and other therapeutic genes. The high fidelity of inserted DNA sequences validates the utility of this improved procedure for generation of therapeutic viruses for human patients. We have created an oncolytic poxvirus expressing human chemokine CCL5, designated as vvDD-A34R-hCCL5, with manipulations at two genetic loci in a single virus. Finally, we have produced and purified this virus in clinical grade for its use in a phase I clinical trial and presented data on initial in vitro characterization of the virus.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author: Zong Sheng Guo, PhD, UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zuqiang Liu
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magesh Sathaiah
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiahu Wang
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Roshni Ravindranathan
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eun Kim
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shaohua Huang
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas W. Kenniston
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C. Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Herbert J. Zeh
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lisa H. Butterfield
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Medicine and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrea Gambotto
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L. Bartlett
- UPMC Hillman Cancer Center and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Irwin CR, Hitt MM, Evans DH. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front Oncol 2017; 7:229. [PMID: 29018771 PMCID: PMC5622948 DOI: 10.3389/fonc.2017.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The rapid growth of tumors depends upon elevated levels of dNTPs, and while dNTP concentrations are tightly regulated in normal cells, this control is often lost in transformed cells. This feature of cancer cells has been used to advantage to develop oncolytic DNA viruses. DNA viruses employ many different mechanisms to increase dNTP levels in infected cells, because the low concentration of dNTPs found in non-cycling cells can inhibit virus replication. By disrupting the virus-encoded gene(s) that normally promote dNTP biosynthesis, one can assemble oncolytic versions of these agents that replicate selectively in cancer cells. This review covers the pathways involved in dNTP production, how they are dysregulated in cancer cells, and the various approaches that have been used to exploit this biology to improve the tumor specificity of oncolytic viruses. In particular, we compare and contrast the ways that the different types of oncolytic virus candidates can directly modulate these processes. We limit our review to the large DNA viruses that naturally encode homologs of the cellular enzymes that catalyze dNTP biogenesis. Lastly, we consider how this knowledge might guide future development of oncolytic viruses.
Collapse
Affiliation(s)
- Chad R Irwin
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL, Obermajer N. Suppressive IL-17A +Foxp3 + and ex-Th17 IL-17A negFoxp3 + T reg cells are a source of tumour-associated T reg cells. Nat Commun 2017; 8:14649. [PMID: 28290453 PMCID: PMC5355894 DOI: 10.1038/ncomms14649] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/20/2017] [Indexed: 01/05/2023] Open
Abstract
Th17 and regulatory T (Treg) cells are integral in maintaining immune homeostasis and Th17–Treg imbalance is associated with inflammatory immunosuppression in cancer. Here we show that Th17 cells are a source of tumour-induced Foxp3+ cells. In addition to natural (n)Treg and induced (i)Treg cells that develop from naive precursors, suppressive IL-17A+Foxp3+ and ex-Th17 Foxp3+ cells are converted from IL-17A+Foxp3neg cells in tumour-bearing mice. Metabolic phenotyping of Foxp3-expressing IL-17A+, ex-Th17 and iTreg cells demonstrates the dissociation between the metabolic fitness and the suppressive function of Foxp3-expressing Treg cell subsets. Although all Foxp3-expressing subsets are immunosuppressive, glycolysis is a prominent metabolic pathway exerted only by IL-17A+Foxp3+ cells. Transcriptome analysis and flow cytometry of IL-17A+Foxp3+ cells indicate that Folr4, GARP, Itgb8, Pglyrp1, Il1rl1, Itgae, TIGIT and ICOS are Th17-to-Treg cell transdifferentiation-associated markers. Tumour-associated Th17-to-Treg cell conversion identified here provides insights for targeting the dynamism of Th17–Treg cells in cancer immunotherapy. Th17 cells can transdifferentiate into regulatory T (Treg) cells. Here the authors characterize tumour-driven Th17-to-Treg cell transdifferentiation and identify potential cancer therapy targets.
Collapse
Affiliation(s)
- Stephanie Downs-Canner
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Sara Berkey
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Greg M Delgoffe
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Tumour Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, 5115 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Magee-Womens Research Institute Ovarian Cancer Center of Excellence, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Robert P Edwards
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Magee-Womens Research Institute Ovarian Cancer Center of Excellence, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Peritoneal/Ovarian Cancer Specialty Care Center, Pittsburgh, Pennsylvania 15213, USA
| | - Tyler Curiel
- UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Kunle Odunsi
- Departments of Gynecologic Oncology and Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA
| | - David L Bartlett
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Nataša Obermajer
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
21
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Liu Z, Ravindranathan R, Li J, Kalinski P, Guo ZS, Bartlett DL. CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 2015; 5:e1091554. [PMID: 27141352 PMCID: PMC4839379 DOI: 10.1080/2162402x.2015.1091554] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
We have armed a tumor-selective oncolytic vaccinia virus (vvDD) with the chemokine (CK) CXCL11, in order to enhance its ability to attract CXCR3+ antitumor CTLs and possibly NK cells to the tumor microenvironment (TME) and improve its therapeutic efficacy. As expected, vvDD-CXCL11 attracted high numbers of tumor-specific T cells to the TME in a murine AB12 mesothelioma model. Intratumoral virus-directed CXCL11 expression enhanced local numbers of CD8+ CTLs and levels of granzyme B, while reducing expression of several suppressive molecules, TGF-β, COX2, and CCL22 in the TME. Unexpectedly, we observed that vvDD-CXCL11, but not parental vvDD, induced a systemic increase in tumor-specific IFNγ-producing CD8+ T cells in the spleen and other lymph organs, indicating the induction of systemic antitumor immunity. This effect was associated with enhanced therapeutic efficacy and a survival benefit in tumor-bearing mice treated with vvDD-CXCL11, mediated by CD8+ T cells and IFNγ, but not CD4+ T cells. These results demonstrate that intratumoral expression of CXCL11, in addition to promoting local trafficking of T cells and to a lesser extent NK cells, has a novel function as a factor eliciting systemic immunity to cancer-associated antigens. Our data provide a rationale for expressing CXCL11 to enhance the therapeutic efficacy of oncolytic viruses (OVs) and cancer vaccines.
Collapse
Affiliation(s)
- Zuqiang Liu
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Li
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pawel Kalinski
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Z Sheng Guo
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L Bartlett
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2014; 23:202-14. [PMID: 25292189 DOI: 10.1038/mt.2014.194] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viral therapy utilizes a tumor-selective replicating virus which preferentially infects and destroys cancer cells and triggers antitumor immunity. The Western Reserve strain of vaccinia virus (VV) is the most virulent strain of VV in animal models and has been engineered for tumor selectivity through two targeted gene deletions (vvDD). We performed the first-in-human phase 1, intratumoral dose escalation clinical trial of vvDD in 16 patients with advanced solid tumors. In addition to safety, we evaluated signs of vvDD replication and spread to distant tumors, pharmacokinetics and pharmacodynamics, clinical and immune responses to vvDD. Dose escalation proceeded without dose-limiting toxicities to a maximum feasible dose of 3 × 10(9) pfu. vvDD replication in tumors was reproducible. vvDD genomes and/or infectious particles were recovered from injected (n = 5 patients) and noninjected (n = 2 patients) tumors. At the two highest doses, vvDD genomes were detected acutely in blood in all patients while delayed re-emergence of vvDD genomes in blood was detected in two patients. Fifteen of 16 patients exhibited late symptoms, consistent with ongoing vvDD replication. In summary, intratumoral injection of the oncolytic vaccinia vvDD was well-tolerated in patients and resulted in selective infection of injected and noninjected tumors and antitumor activity.
Collapse
|
24
|
Abstract
Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
25
|
Irwin CR, Favis NA, Agopsowicz KC, Hitt MM, Evans DH. Myxoma virus oncolytic efficiency can be enhanced through chemical or genetic disruption of the actin cytoskeleton. PLoS One 2013; 8:e84134. [PMID: 24391902 PMCID: PMC3877188 DOI: 10.1371/journal.pone.0084134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/12/2013] [Indexed: 12/29/2022] Open
Abstract
Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L+) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L+ MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies.
Collapse
Affiliation(s)
- Chad R. Irwin
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton Alberta, Canada
| | - Nicole A. Favis
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton Alberta, Canada
| | | | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton Alberta, Canada
- Li Ka-Shing Institute of Virology, University of Alberta, Edmonton Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton Alberta, Canada
- Li Ka-Shing Institute of Virology, University of Alberta, Edmonton Alberta, Canada
- * E-mail:
| |
Collapse
|