1
|
Leleux JA, Albershardt TC, Reeves R, James R, Krull J, Parsons AJ, ter Meulen J, Berglund P. Intratumoral expression of IL-12 from lentiviral or RNA vectors acts synergistically with TLR4 agonist (GLA) to generate anti-tumor immunological memory. PLoS One 2021; 16:e0259301. [PMID: 34855754 PMCID: PMC8638928 DOI: 10.1371/journal.pone.0259301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic interleukin-12 (IL12) anti-tumor therapy is highly potent but has had limited utility in the clinic due to severe toxicity. Here, we present two IL12-expressing vector platforms, both of which can overcome the deficiencies of previous systemic IL12 therapies: 1) an integrating lentiviral vector, and 2) a self-replicating messenger RNA formulated with polyethyleneimine. Intratumoral administration of either IL12 vector platform resulted in recruitment of immune cells, including effector T cells and dendritic cells, and the complete remission of established tumors in multiple murine models. Furthermore, concurrent intratumoral administration of the synthetic TLR4 agonist glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE) induced systemic memory T cell responses that mediated complete protection against tumor rechallenge in all survivor mice (8/8 rechallenged mice), whereas only 2/6 total rechallenged mice treated with intratrumoral IL12 monotherapy rejected the rechallenge. Taken together, expression of vectorized IL12 in combination with a TLR4 agonist represents a varied approach to broaden the applicability of intratumoral immune therapies of solid tumors.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Expression Regulation
- Genetic Vectors/administration & dosage
- Genetic Vectors/pharmacology
- Glucosides/pharmacology
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunologic Memory/drug effects
- Immunologic Memory/genetics
- Immunotherapy/methods
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/genetics
- Interleukin-12/immunology
- Lentivirus/genetics
- Lipid A/pharmacology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Toll-Like Receptor 4/agonists
- Mice
Collapse
Affiliation(s)
- Jardin A. Leleux
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Tina C. Albershardt
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Rebecca Reeves
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Reice James
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jordan Krull
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Andrea J. Parsons
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jan ter Meulen
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Peter Berglund
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
2
|
Hokello J, Sharma AL, Tyagi M. An Update on the HIV DNA Vaccine Strategy. Vaccines (Basel) 2021; 9:vaccines9060605. [PMID: 34198789 PMCID: PMC8226902 DOI: 10.3390/vaccines9060605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
In 2020, the global prevalence of human immunodeficiency virus (HIV) infection was estimated to be 38 million, and a total of 690,000 people died from acquired immunodeficiency syndrome (AIDS)–related complications. Notably, around 12.6 million people living with HIIV/AIDS did not have access to life-saving treatment. The advent of the highly active antiretroviral therapy (HAART) in the mid-1990s remarkably enhanced the life expectancy of people living with HIV/AIDS as a result of improved immune functions. However, HAART has several drawbacks, especially when it is not used properly, including a high risk for the development of drug resistance, as well as undesirable side effects such as lipodystrophy and endocrine dysfunctions, which result in HAART intolerability. HAART is also not curative. Furthermore, new HIV infections continue to occur globally at a high rate, with an estimated 1.7 million new infections occurring in 2018 alone. Therefore, there is still an urgent need for an affordable, effective, and readily available preventive vaccine against HIV/AIDS. Despite this urgent need, however, progress toward an effective HIV vaccine has been modest over the last four decades. Reasons for this slow progress are mainly associated with the unique aspects of HIV itself and its ability to rapidly mutate, targeting immune cells and escape host immune responses. Several approaches to an HIV vaccine have been undertaken. However, this review will mainly discuss progress made, including the pre-clinical and clinical trials involving vector-based HIV DNA vaccines and the use of integrating lentiviral vectors in HIV vaccine development. We concluded by recommending particularly the use of integrase-defective lentiviral vectors, owing to their safety profiles, as one of the promising vectors in HIV DNA vaccine strategies both for prophylactic and therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P.O. Box 71, Bushenyi 0256, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
3
|
Somaiah N, Chawla SP, Block MS, Morris JC, Do K, Kim JW, Druta M, Sankhala KK, Hwu P, Jones RL, Gnjatic S, Kim-Schulze S, Tuballes K, Yishak M, Lu H, Yakovich A, Ter Meulen J, Chen M, Kenney RT, Bohac C, Pollack SM. A Phase 1b Study Evaluating the Safety, Tolerability, and Immunogenicity of CMB305, a Lentiviral-Based Prime-Boost Vaccine Regimen, in Patients with Locally Advanced, Relapsed, or Metastatic Cancer Expressing NY-ESO-1. Oncoimmunology 2020; 9:1847846. [PMID: 33312760 PMCID: PMC7714520 DOI: 10.1080/2162402x.2020.1847846] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Preclinical data suggest that a "prime-boost" vaccine regimen using a target-expressing lentiviral vector for priming, followed by a recombinant protein boost, may be effective against cancer; however, this strategy has not been evaluated in a clinical setting. CMB305 is a prime-boost vaccine designed to induce a broad anti-NY-ESO-1 immune response. It is composed of LV305, which is an NY-ESO-1 expressing lentiviral vector, and G305, a recombinant adjuvanted NY-ESO-1 protein. This multicenter phase 1b, first-in-human trial evaluated CMB305 in patients with NY-ESO-1 expressing solid tumors. Safety was examined in a 3 + 3 dose-escalation design, followed by an expansion with CMB305 alone or in a combination with either oral metronomic cyclophosphamide or intratumoral injections of a toll-like receptor agonist (glucopyranosyl lipid A). Of the 79 patients who enrolled, 81.0% had sarcomas, 86.1% had metastatic disease, and 57.0% had progressive disease at study entry. The most common adverse events were fatigue (34.2%), nausea (26.6%), and injection-site pain (24.1%). In patients with soft tissue sarcomas, a disease control rate of 61.9% and an overall survival of 26.2 months (95% CI, 22.1-NA) were observed. CMB305 induced anti-NY-ESO-1 antibody and T-cell responses in 62.9% and 47.4% of patients, respectively. This is the first trial to test a prime-boost vaccine regimen in patients with advanced cancer. This approach is feasible, can be delivered safely, and with evidence of immune response as well as suggestion of clinical benefit.
Collapse
Affiliation(s)
- Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sant P. Chawla
- Sarcoma Oncology Center, Santa Monica, CA, United States
| | - Matthew S. Block
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - John C. Morris
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Khanh Do
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph W. Kim
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, United States
| | - Mihaela Druta
- Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Kamalesh K. Sankhala
- Hematology/Oncology, Cedars-Sinai Medical Center, Beverly Hills, CA, United States
| | - Patrick Hwu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robin L. Jones
- Seattle Cancer Care Alliance, Seattle, WA
- Sarcoma Unit, Royal Marsden Hospital, London, UK
- Sarcoma Clinical Trials, Institute of Cancer Research, London, UK
| | - Sacha Gnjatic
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Tuballes
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mahlet Yishak
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hailing Lu
- Immune Design Corp., South San Francisco, CA, United States
- Biomarkers and Diagnostics, Seattle Genetics, Inc, Bothell, WA, United States
| | - Adam Yakovich
- Immune Design Corp., South San Francisco, CA, United States
- Medical Affairs, Replimune Group, Inc, Woburn, MA, United States
| | - Jan Ter Meulen
- Immune Design Corp., South San Francisco, CA, United States
| | - Michael Chen
- Immune Design Corp., South San Francisco, CA, United States
- *Sangamo Therapeutics, Inc., Brisbane, CA, United States
| | - Richard T. Kenney
- Immune Design Corp., South San Francisco, CA, United States
- Clin Reg Biologics, LLC, Potomac, MD, United States
| | - Chet Bohac
- Immune Design Corp., South San Francisco, CA, United States
- Macrogenics, Inc, Rockville, MD, United States
| | - Seth M. Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
4
|
Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses 2020; 12:v12101103. [PMID: 33003492 PMCID: PMC7600637 DOI: 10.3390/v12101103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors have been developed and used in multiple gene and cell therapy applications. One of their main advantages over other vectors is the ability to integrate the genetic material into the genome of the host. However, this can also be a disadvantage as it may lead to insertional mutagenesis. To address this, non-integrating lentiviral vectors (NILVs) were developed. To generate NILVs, it is possible to introduce mutations in the viral enzyme integrase and/or mutations on the viral DNA recognised by integrase (the attachment sites). NILVs are able to stably express transgenes from episomal DNA in non-dividing cells or transiently if the target cells divide. It has been shown that these vectors are able to transduce multiple cell types and tissues. These characteristics make NILVs ideal vectors to use in vaccination and immunotherapies, among other applications. They also open future prospects for NILVs as tools for the delivery of CRISPR/Cas9 components, a recent revolutionary technology now widely used for gene editing and repair.
Collapse
Affiliation(s)
- Apolonia Luis
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
5
|
Albershardt TC, Leleux J, Parsons AJ, Krull JE, Berglund P, Ter Meulen J. Intratumoral immune activation with TLR4 agonist synergizes with effector T cells to eradicate established murine tumors. NPJ Vaccines 2020; 5:50. [PMID: 32579133 PMCID: PMC7298055 DOI: 10.1038/s41541-020-0201-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Effective T cell-based immunotherapy of solid malignancies requires intratumoral activity of cytotoxic T cells and induction of protective immune memory. A major obstacle to intratumoral trafficking and activation of vaccine-primed or adoptively transferred tumor-specific T cells is the immunosuppressive tumor microenvironment (TME), which currently limits the efficacy of both anti-tumor vaccines and adoptive cell therapy (ACT). Combination treatments to overcome TME-mediated immunosuppression are therefore urgently needed. We combined intratumoral administration of the synthetic toll-like receptor 4 agonist glucopyranosyl lipid A (oil-in-water formulation, G100) with either active vaccination or adoptive transfer of tumor-specific CD8 T cells to mice bearing established melanomas or orthotopically inoculated glioblastomas. In combination with cancer vaccines or ACT, G100 significantly increased expression of innate immune genes, infiltration and expansion of activated effector T cells, antigen spreading, and durable immune responses. Complete tumor regression of both injected and non-injected tumors was observed only in mice receiving combination immunotherapy. TLR4-based intratumoral immune activation may be a viable approach to enhance the efficacy of therapeutic cancer vaccines and ACT in patients.
Collapse
Affiliation(s)
- Tina C Albershardt
- Immune Design, a wholly-owned subsidiary of Merck & Co., Inc, Kenilworth, NJ USA
| | - Jardin Leleux
- Immune Design, a wholly-owned subsidiary of Merck & Co., Inc, Kenilworth, NJ USA
| | - Andrea J Parsons
- Immune Design, a wholly-owned subsidiary of Merck & Co., Inc, Kenilworth, NJ USA
| | - Jordan E Krull
- Immune Design, a wholly-owned subsidiary of Merck & Co., Inc, Kenilworth, NJ USA
| | - Peter Berglund
- Immune Design, a wholly-owned subsidiary of Merck & Co., Inc, Kenilworth, NJ USA
| | - Jan Ter Meulen
- Immune Design, a wholly-owned subsidiary of Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
6
|
Raza A, Merhi M, Inchakalody VP, Krishnankutty R, Relecom A, Uddin S, Dermime S. Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy. J Transl Med 2020; 18:140. [PMID: 32220256 PMCID: PMC7102435 DOI: 10.1186/s12967-020-02306-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cancer Immunotherapy has recently emerged as a promising and effective modality to treat different malignancies. Antigenic profiling of cancer tissues and determination of any pre-existing immune responses to cancer antigens may help predict responses to immune intervention in cancer. NY-ESO-1, a cancer testis antigen is the most immunogenic antigen to date. The promise of NY-ESO-1 as a candidate for specific immune recognition of cancer comes from its restricted expression in normal adult tissue but frequent occurrence in multiple tumors including melanoma and carcinomas of lung, esophageal, liver, gastric, prostrate, ovarian, and bladder. MAIN BODY This review summarizes current knowledge of NY-ESO-1 as efficient biomarker and target of immunotherapy. It also addresses limitations and challenges preventing a robust immune response to NY-ESO-1 expressing cancers, and describes pre-clinical and clinical observations relevant to NY-ESO-1 immunity, holding potential therapeutic relevance for cancer treatment. CONCLUSION NY-ESO-1 induces strong immune responses in cancer patients but has limited objective clinical responses to NY-ESO-1 expressing tumors due to effect of competitive negative signaling from immune-checkpoints and immune-suppressive tumor microenvironment. We propose that combination therapy to increase the efficacy of NY-ESO-1 specific immunotherapeutic interventions should be explored to unleash the immune response against NY-ESO-1 expressing tumors.
Collapse
Affiliation(s)
- Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Allan Relecom
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar. .,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar. .,Hamad Medical Corporation, iTRI, Hamad Medical City (Building 320, Office 3-6-5), Po Box 3050, Doha, Qatar.
| |
Collapse
|
7
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
8
|
Albershardt TC, Parsons AJ, Reeves RS, Flynn PA, Campbell DJ, Ter Meulen J, Berglund P. Therapeutic efficacy of PD1/PDL1 blockade in B16 melanoma is greatly enhanced by immunization with dendritic cell-targeting lentiviral vector and protein vaccine. Vaccine 2020; 38:3369-3377. [PMID: 32088020 DOI: 10.1016/j.vaccine.2020.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
While immune checkpoint inhibition is rapidly becoming standard of care in many solid tumors, immune checkpoint inhibitors (ICIs) fail to induce clinical responses in many patients, presumably due to insufficient numbers of tumor-specific T cells in the tumor milieu. To this end, immunization protocols using viral vectors expressing tumor-associated antigens are being explored to induce T cell responses that synergize with ICIs. However, the optimal combination of vaccine and immune checkpoint regimen remains undefined. Here, a dendritic cell-targeting lentiviral vector (ZVex®) expressing the endogenous murine tyrosinase-related protein 1 (mTRP1), or the human tumor antigen NY-ESO-1, was explored as monotherapy or heterologous prime-boost (HPB) vaccine regimen together with recombinant tumor antigen in the murine B16 melanoma model. PD1/PDL1 blockade significantly enhanced ZVex/mTRP1, but not ZVex/NY-ESO-1, induced immune responses in mice, whereas the opposite effect was observed with anti-CTLA4 antibody. Anti-tumor efficacy of anti-PD1, but not anti-PDL1 or anti-CTLA4, was significantly enhanced by ZVex/mTRP1 and HPB vaccination. These results suggest mechanistic differences in the effect of checkpoint blockade on vaccine-induced immune and anti-tumor responses against self versus non-self tumor antigens, possibly due to tolerance and state of exhaustion of anti-tumor T cells.
Collapse
Affiliation(s)
| | - Andrea Jean Parsons
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Rebecca Susan Reeves
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - David James Campbell
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jan Ter Meulen
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Peter Berglund
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
9
|
Somaiah N, Block MS, Kim JW, Shapiro GI, Do KT, Hwu P, Eder JP, Jones RL, Lu H, ter Meulen JH, Bohac C, Chen M, Hsu FJ, Gnjatic S, Pollack SM. First-in-Class, First-in-Human Study Evaluating LV305, a Dendritic-Cell Tropic Lentiviral Vector, in Sarcoma and Other Solid Tumors Expressing NY-ESO-1. Clin Cancer Res 2019; 25:5808-5817. [DOI: 10.1158/1078-0432.ccr-19-1025] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022]
|
10
|
|
11
|
Physical Characterization and Stabilization of a Lentiviral Vector Against Adsorption and Freeze-Thaw. J Pharm Sci 2018; 107:2764-2774. [DOI: 10.1016/j.xphs.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
|
12
|
Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Ther 2018; 25:454-472. [PMID: 30190607 PMCID: PMC6478381 DOI: 10.1038/s41434-018-0039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.
Collapse
|
13
|
Ma S, Chen X, Tan Q, Li D, Dai S, Wu S, Yu Y, Zang G, Tang Z. An engineered novel lentivector specifically transducing dendritic cells and eliciting robust HBV-specific CTL response by upregulating autophagy in T cells. Cell Cycle 2018; 17:1220-1234. [PMID: 30019620 DOI: 10.1080/15384101.2018.1471312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) play a predominant role in initiating cell immune responses. Here we generated a DC-targeting lentiviral vector (LVDC-UbHBcAg-LIGHT) and evaluated its capacity to elicit HBV-specific cytotoxic T lymphocyte (CTL) responses. DC-SIGN-mediated specific transduction using this construct was confirmed in DC-SIGN-expressing 293T cells and ex vivo-cultured bone marrow cells. LVDC-UbHBcAg-LIGHT-loaded DCs were highly effective in inducing HBV-specific CTLs. Mechanistic studies demonstrated autophagy blocking led to a significant increase in apoptosis and obvious inhibition of CD8 + T cells entry into S-phase, correspondingly attenuated LVDC-UbHBcAg-LIGHT-loaded DC-induced T cell responses. This observation was supported by accumulation of pro-apoptotic proteins and the main negative cell cycle regulator-CDKN1B that otherwise would be degraded in activated T cells where autophagy preferentially occured. Our findings revealed an important role of autophagy in the activation of T cells and suggested LVDC-UbHBcAg-LIGHT may potentially be used as a therapeutic strategy to combat persistent HBV infection with higher security.
Collapse
Affiliation(s)
- Siyuan Ma
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Xiaohua Chen
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Quanhui Tan
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Dan Li
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Shenglan Dai
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Shanshan Wu
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yongsheng Yu
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Guoqing Zang
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Zhenghao Tang
- a Department of Infectious Disease , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
14
|
Katz D, Palmerini E, Pollack SM. More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. Am Soc Clin Oncol Educ Book 2018; 38:925-938. [PMID: 30231352 DOI: 10.1200/edbk_205423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sarcomas are a diverse group of cancers with mesenchymal origin. Although sarcomas comprise less than 1% of cancers, there are more than 50 different subtypes that are quite different from one another in terms of both their biology and clinical behavior. Historically, the need for adequate patient numbers in clinical trials has pushed sarcoma researchers to lump these very different malignancies together and treat the patients using a "one-size-fits-all" approach. However, with improvements in our scientific understanding, we are finally ready for a histology-tailored therapeutic approach to these complex diseases. In this review, we discuss key advances in our understanding of the biology underlying selected sarcoma subtypes and how targeting these subtypes is relevant therapeutically with respect to both molecularly targeted agents as well as immunotherapy.
Collapse
Affiliation(s)
- Daniela Katz
- From the Institute of Oncology, Assaf Harofeh Medical Center, Zrifin, Beer Yaakov, Israel; Medical Oncology, Istituto Ortopedico Rizzoli, Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University, Bologna, Italy; Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| | - Emanuela Palmerini
- From the Institute of Oncology, Assaf Harofeh Medical Center, Zrifin, Beer Yaakov, Israel; Medical Oncology, Istituto Ortopedico Rizzoli, Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University, Bologna, Italy; Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| | - Seth M Pollack
- From the Institute of Oncology, Assaf Harofeh Medical Center, Zrifin, Beer Yaakov, Israel; Medical Oncology, Istituto Ortopedico Rizzoli, Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University, Bologna, Italy; Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Pollack SM. The potential of the CMB305 vaccine regimen to target NY-ESO-1 and improve outcomes for synovial sarcoma and myxoid/round cell liposarcoma patients. Expert Rev Vaccines 2018; 17:107-114. [PMID: 29280411 PMCID: PMC6521962 DOI: 10.1080/14760584.2018.1419068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Synovial Sarcoma (SS) and Myxoid Round Cell Liposarcoma (MRCL) are devastating sarcoma subtypes with few treatment options and poor outcomes in the advanced setting. However, both these diseases may be ideal for novel immunotherapies targeting the cancer-testis antigen, NY-ESO-1. AREAS COVERED In this review, we discuss the novel NY-ESO-1 targeted vaccine regimen, CMB305. This regimen uses a unique integration-deficient, dendritic-cell targeting lentiviral vector from the ZVex® platform, LV305, in order to prime NY-ESO-1 specific T cells. LV305 has single agent activity, and, in one case, caused a durable partial response in a refractory SS patient. CMB305 also includes a boost from a NY-ESO-1 protein vaccine given along with a potent toll-like-4 receptor agonist, glycopyranosyl lipid A. CMB305 induces NY-ESO-1 specific T cell responses in both SS and MRC patients and these patients had excellent overall survival (OS) outcomes in the initial phase I study. EXPERT COMMENTARY CMB305 is a therapeutic vaccine regimen targeting NY-ESO-1 based on the lentiviral vaccine vector, LV305. Phase I studies have proven this vaccine is active immunologically. Data suggesting this vaccine may improve OS for SS and MRCL patients is exciting but early, and on-going work is testing the impact of CMB305 on patient outcomes.
Collapse
Affiliation(s)
- Seth M Pollack
- a Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
- b Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
16
|
Pollack SM, Ingham M, Spraker MB, Schwartz GK. Emerging Targeted and Immune-Based Therapies in Sarcoma. J Clin Oncol 2018; 36:125-135. [DOI: 10.1200/jco.2017.75.1610] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soft tissue and bone sarcomas are malignancies of mesenchymal origin, and more than 50 subtypes are defined. For most sarcomas, locally advanced or unresectable disease is still treated with cytotoxic chemotherapy. Recently, our understanding of subtype-specific cancer biology has expanded, and it has revealed distinct molecular alterations responsible for tumor initiation and progression. These findings have motivated the development of targeted therapies that are being evaluated in subtype-specific or biomarker-driven clinical trials. Indeed, the spectrum of targeted drug development in sarcoma now spans many of the most active paradigms in cancer research and includes agents that target cancer-related vulnerabilities in receptor tyrosine kinases and intracellular signaling pathways, epigenetics, metabolism, nuclear-cytoplasmic transport, and many others. Our understanding of the sarcoma immune microenvironment and heterogeneous mechanisms of tumor immune evasion has also expanded. Although a subset of sarcomas appears inflamed and responsive to immune checkpoint blockade with programmed death 1 (PD-1) targeted agents, novel immunotherapies and combinations likely will be needed for most subtypes. A variety of approaches—including targeting immune checkpoints other than PD-1; modulating tumor-associated macrophage phenotype from tumor-promoting to tumor-suppressive status; using cellular-based therapies, such as chimeric antigen and high-affinity T-cell receptors to deepen the adaptive immune response; and reinvigorating older approaches, such as vaccines and oncolytic virus-based treatments—are being investigated. The goal of these new approaches is to harness subtype-specific insights into cancer and immune biology to bring more effective and less toxic treatments to the clinic for the benefit of patients with sarcoma.
Collapse
Affiliation(s)
- Seth M. Pollack
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| | - Matthew Ingham
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| | - Matthew B. Spraker
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| | - Gary K. Schwartz
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| |
Collapse
|
17
|
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am 2017; 31:753-770. [DOI: 10.1016/j.hoc.2017.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Wee EG, Ondondo B, Berglund P, Archer J, McMichael AJ, Baltimore D, Ter Meulen JH, Hanke T. HIV-1 Conserved Mosaics Delivered by Regimens with Integration-Deficient DC-Targeting Lentiviral Vector Induce Robust T Cells. Mol Ther 2017; 25:494-503. [PMID: 28153096 PMCID: PMC5368423 DOI: 10.1016/j.ymthe.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
To be effective against HIV type 1 (HIV-1), vaccine-induced T cells must selectively target epitopes, which are functionally conserved (present in the majority of currently circulating and reactivated HIV-1 strains) and, at the same time, beneficial (responses to which are associated with better clinical status and control of HIV-1 replication), and rapidly reach protective frequencies upon exposure to the virus. Heterologous prime-boost regimens using virally vectored vaccines are currently the most promising vaccine strategies; nevertheless, induction of robust long-term memory remains challenging. To this end, lentiviral vectors induce high frequencies of memory cells due to their low-inflammatory nature, while typically inducing only low anti-vector immune responses. Here, we describe construction of novel candidate vaccines ZVex.tHIVconsv1 and ZVex.tHIVconsv2, which are based on an integration-deficient lentiviral vector platform with preferential transduction of human dendritic cells and express a bivalent mosaic of conserved-region T cell immunogens with a high global HIV-1 match. Each of the two mosaic vaccines was individually immunogenic. When administered together in heterologous prime-boost regimens with chimpanzee adenovirus and/or poxvirus modified vaccinia virus Ankara (MVA) vaccines to BALB/c and outbred CD1-Swiss mice, they induced a median frequency of over 6,000 T cells/106 splenocytes, which were plurifunctional, broadly specific, and cross-reactive. These results support further development of this vaccine concept.
Collapse
Affiliation(s)
- Edmund G Wee
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
19
|
McAllery SA, Ahlenstiel CL, Suzuki K, Symonds GP, Kelleher AD, Turville SG. The feasibility of incorporating Vpx into lentiviral gene therapy vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16066. [PMID: 27790625 PMCID: PMC5070512 DOI: 10.1038/mtm.2016.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022]
Abstract
While current antiretroviral therapy has significantly improved, challenges still remain in life-long targeting of HIV-1 reservoirs. Lentiviral gene therapy has the potential to deliver protective genes into the HIV-1 reservoir. However, inefficient reverse transcription (RT) occurs in HIV-1 reservoirs during lentiviral gene delivery. The viral protein Vpx is capable of increasing lentiviral RT by antagonizing the restriction factor SAMHD1. Incorporating Vpx into lentiviral vectors could substantially increase gene delivery into the HIV-1 reservoir. The feasibility of this Vpx approach was tested in resting cell models utilizing macrophages and dendritic cells. Our results showed Vpx exposure led to increased permissiveness of cells over a period that exceeded 2 weeks. Consequently, significant lower potency of HIV-1 antiretrovirals inhibiting RT and integration was observed. When Vpx was incorporated with anti-HIV-1 genes inhibiting either pre-RT or post-RT stages of the viral life-cycle, transduction levels significantly increased. However, a stronger antiviral effect was only observed with constructs that inhibit pre-RT stages of the viral life cycle. In conclusion this study demonstrates a way to overcome the major delivery obstacle of gene delivery into HIV-1 reservoir cell types. Importantly, incorporating Vpx with pre-RT anti-HIV-1 genes, demonstrated the greatest protection against HIV-1 infection.
Collapse
Affiliation(s)
| | | | - Kazuo Suzuki
- St Vincent's Center for Applied Medical Research , Darlinghurst, Australia
| | - Geoff P Symonds
- St Vincent's Center for Applied Medical Research, Darlinghurst, Australia; Calimmune Pty Ltd., Darlinghurst, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, Australia; St Vincent's Center for Applied Medical Research, Darlinghurst, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales , Sydney, Australia
| |
Collapse
|
20
|
Shaw AM, Joseph GL, Jasti AC, Sastry-Dent L, Witting S, Cornetta K. Differences in vector-genome processing and illegitimate integration of non-integrating lentiviral vectors. Gene Ther 2016; 24:12-20. [PMID: 27682478 PMCID: PMC5269419 DOI: 10.1038/gt.2016.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
A variety of mutations in lentiviral vector expression systems have been shown to generate a non-integrating phenotype. We studied a novel 12 base-pair U3-long terminal repeats (LTR) integrase (IN) attachment site deletion (U3-LTR att site) mutant and found similar physical titers to the previously reported IN catalytic core mutant IN/D116N. Both mutations led to a greater than two log reduction in vector integration; with IN/D116N providing lower illegitimate integration frequency, whereas the U3-LTR att site mutant provided a higher level of transgene expression. The improved expression of the U3-LTR att site mutant could not be explained solely based on an observed modest increase in integration frequency. In evaluating processing, we noted significant differences in unintegrated vector forms, with the U3-LTR att site mutant leading to a predominance of 1-LTR circles. The mutations also differed in the manner of illegitimate integration. The U3-LTR att site mutant vector demonstrated IN-mediated integration at the intact U5-LTR att site and non-IN-mediated integration at the mutated U3-LTR att site. Finally, we combined a variety of mutations and modifications and assessed transgene expression and integration frequency to show that combining modifications can improve the potential clinical utility of non-integrating lentiviral vectors.
Collapse
Affiliation(s)
- A M Shaw
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G L Joseph
- Departments of Microbiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A C Jasti
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Sastry-Dent
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Witting
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - K Cornetta
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Departments of Microbiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Departments of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Norton TD, Miller EA. Recent Advances in Lentiviral Vaccines for HIV-1 Infection. Front Immunol 2016; 7:243. [PMID: 27446074 PMCID: PMC4914507 DOI: 10.3389/fimmu.2016.00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022] Open
Abstract
The development of an effective HIV vaccine to prevent and/or cure HIV remains a global health priority. Given their central role in the initiation of adaptive immune responses, dendritic cell (DC)-based vaccines are being increasingly explored as immunotherapeutic strategies to enhance HIV-specific T cells in infected individuals and, thus, promote immune responses that may help facilitate a functional cure. HIV-1-based lentiviral (LV) vectors have inherent advantages as DC vaccine vectors due to their ability to transduce non-dividing cells and integrate into the target cell genomic DNA, allowing for expression of encoded antigens over the lifespan of the cell. Moreover, LV vectors may express additional immunostimulatory and immunoregulatory proteins that enhance DC function and direct antigen-specific T cells responses. Recent basic and clinical research efforts have broadened our understanding of LV vectors as DC-based vaccines. In this review, we provide an overview of the pre-clinical and clinical LV vector vaccine studies for treating HIV to date. We also discuss advances in LV vector designs that have enhanced DC transduction efficiency, target cell specificity, and immunogenicity, and address potential safety concerns regarding LV vector-based vaccines.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, NYU School of Medicine , New York, NY , USA
| | - Elizabeth A Miller
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
22
|
Albershardt TC, Campbell DJ, Parsons AJ, Slough MM, Ter Meulen J, Berglund P. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16010. [PMID: 27626061 PMCID: PMC5008268 DOI: 10.1038/mto.2016.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022]
Abstract
We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1.
Collapse
Affiliation(s)
| | | | | | | | - Jan Ter Meulen
- In Vivo Biology, Immune Design , Seattle, Washington, USA
| | - Peter Berglund
- In Vivo Biology, Immune Design , Seattle, Washington, USA
| |
Collapse
|
23
|
Design of a titering assay for lentiviral vectors utilizing direct extraction of DNA from transduced cells in microtiter plates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16005. [PMID: 26942209 PMCID: PMC4756768 DOI: 10.1038/mtm.2016.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022]
Abstract
Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform). Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated) DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method’s specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.
Collapse
|
24
|
Virological and preclinical characterization of a dendritic cell targeting, integration-deficient lentiviral vector for cancer immunotherapy. J Immunother 2015; 38:41-53. [PMID: 25658613 PMCID: PMC4323576 DOI: 10.1097/cji.0000000000000067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.
Collapse
|
25
|
Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. J Immunol Res 2015; 2015:785634. [PMID: 26583156 PMCID: PMC4637118 DOI: 10.1155/2015/785634] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.
Collapse
|
26
|
Lévy C, Verhoeyen E, Cosset FL. Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Curr Opin Pharmacol 2015; 24:79-85. [DOI: 10.1016/j.coph.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
27
|
Retrovirus-based vectors for transient and permanent cell modification. Curr Opin Pharmacol 2015; 24:135-46. [PMID: 26433198 DOI: 10.1016/j.coph.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 01/19/2023]
Abstract
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas.
Collapse
|
28
|
Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15025. [PMID: 26229972 PMCID: PMC4510976 DOI: 10.1038/mtm.2015.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/29/2022]
Abstract
The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV) systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN) vector and a novel polypurine tract (PPT)-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (~10(7) infectious units (IU)/ml) cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 10(8) IU/mL, which upon concentration increased to 10(10) IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications.
Collapse
|
29
|
Farley DC, McCloskey L, Thorne BA, Tareen SU, Nicolai CJ, Campbell DJ, Bannister R, Stewart HJ, Pearson LJ, Moyer BJ, Robbins SH, Zielinski L, Kim T, Radcliffe PA, Mitrophanous KA, Gombotz WR, Miskin JE, Kelley-Clarke B. Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15017. [PMID: 26029728 PMCID: PMC4445008 DOI: 10.1038/mtm.2015.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 01/06/2023]
Abstract
It is a current regulatory requirement to demonstrate absence of detectable replication-competent lentivirus (RCL) in lentiviral vector products prior to use in clinical trials. Immune Design previously described an HIV-1-based integration-deficient lentiviral vector for use in cancer immunotherapy (VP02). VP02 is enveloped with E1001, a modified Sindbis virus glycoprotein which targets dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) expressed on dendritic cells in vivo. Vector enveloped with E1001 does not transduce T-cell lines used in standard HIV-1-based RCL assays, making current RCL testing formats unsuitable for testing VP02. We therefore developed a novel assay to test for RCL in clinical lots of VP02. This assay, which utilizes a murine leukemia positive control virus and a 293F cell line expressing the E1001 receptor DC-SIGN, meets a series of evaluation criteria defined in collaboration with US regulatory authorities and demonstrates the ability of the assay format to amplify and detect a hypothetical RCL derived from VP02 vector components. This assay was qualified and used to test six independent GMP production lots of VP02, in which no RCL was detected. We propose that the evaluation criteria used to rationally design this novel method should be considered when developing an RCL assay for any lentiviral vector.
Collapse
Affiliation(s)
- Daniel C Farley
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | - Laura McCloskey
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | | | | | | | | | - Richard Bannister
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | - Hannah J Stewart
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | - Laura Je Pearson
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | | | | | | | - Tae Kim
- Immune Design , Seattle, Washington, USA
| | - Pippa A Radcliffe
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | | | | | - James E Miskin
- Oxford BioMedica (UK) Limited, Windrush Court, Transport Way , Oxford, UK
| | | |
Collapse
|
30
|
Kajaste-Rudnitski A, Naldini L. Cellular innate immunity and restriction of viral infection: implications for lentiviral gene therapy in human hematopoietic cells. Hum Gene Ther 2015; 26:201-9. [PMID: 25808164 DOI: 10.1089/hum.2015.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic gene therapy has tremendous potential to treat human disease. Nevertheless, for gene therapy to be efficacious, effective gene transfer into target cells must be reached without inducing detrimental effects on their biological properties. This remains a great challenge for the field as high vector doses and prolonged ex vivo culture conditions are still required to reach significant transduction levels of clinically relevant human hematopoietic stem and progenitor cells (HSPCs), while other potential target cells such as primary macrophages can hardly be transduced. The reasons behind poor permissiveness of primary human hematopoietic cells to gene transfer partly reside in the retroviral origin of lentiviral vectors (LVs). In particular, host antiviral factors referred to as restriction factors targeting the retroviral life cycle can hamper LV transduction efficiency. Furthermore, LVs may activate innate immune sensors not only in differentiated hematopoietic cells but also in HSPCs, with potential consequences on transduction efficiency as well as their biological properties. Therefore, better understanding of the vector-host interactions in the context of hematopoietic gene transfer is important for the development of safer and more efficient gene therapy strategies. In this review, we briefly summarize the current knowledge regarding innate immune recognition of lentiviruses in primary human hematopoietic cells as well as discuss its relevance for LV-based ex vivo gene therapy approaches.
Collapse
Affiliation(s)
- Anna Kajaste-Rudnitski
- 1 Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute , Milan 20132, Italy
| | | |
Collapse
|
31
|
Norton TD, Miller EA, Bhardwaj N, Landau NR. Vpx-containing dendritic cell vaccine induces CTLs and reactivates latent HIV-1 in vitro. Gene Ther 2015; 22:227-36. [PMID: 25567537 PMCID: PMC4698816 DOI: 10.1038/gt.2014.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/25/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Eradication of human immunodeficiency virus-1 (HIV-1) from an infected individual requires a means of inducing production of virus from latently infected cells and stimulating an immune response against the infected cells. We report the development of lentiviral vectors that transduce dendritic cells (DCs) to both induce production of virus from latently infected cells and stimulate antigen-specific cytotoxic T lymphocytes (CTLs). The vectors package Vpx, a lentiviral accessory protein that counteracts the SAMHD1-mediated block to DC transduction, allowing for long-term expression of vector-encoded proteins. The vectors encode influenza or HIV-1-derived epitopes fused via a self-cleaving peptide to CD40L that releases the peptide into the endoplasmic reticulum for entry into the antigen presentation pathway. Expression of CD40L caused transduced DCs to mature and produce Th1-skewing cytokines. The DCs presented antigen to CD8 T cells, enhancing antigen-specific CTLs. Coculture of the transduced DCs with latently infected cells induced high-level virus production, an effect that was mediated by tumor necrosis factor alpha. The ability of a DC vaccine to reactivate latent HIV-1 and stimulate an adaptive immune response provide a means to reduce the size of the latent reservoir in patients. This strategy can also be applied to develop DC vaccines for other diseases.
Collapse
Affiliation(s)
- Thomas D. Norton
- Department of Medicine, NYU School of Medicine; New York, NY
- Department of Microbiology, NYU School of Medicine; New York, NY
| | - Elizabeth A. Miller
- Department of Medicine, Icahn School of Medicine at Mount Sinai; New York, NY
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|