1
|
Ottaviano G, Qasim W. Current landscape of vector safety and genotoxicity after hematopoietic stem or immune cell gene therapy. Leukemia 2025:10.1038/s41375-025-02585-8. [PMID: 40200078 DOI: 10.1038/s41375-025-02585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Malignant transformation of gene modified haematopoietic stem cells caused anxiety following adverse events in early clinical trials using gamma-retroviral vectors (γRV) to correct haematopoietic stem cells (HSC) in monogenic immune disorders. Adoption of HIV-derived lentiviral vectors (LV) with SIN (self-inactivating) configurations greatly reduced risks and subsequently hundreds of patients have been dosed with HSC gene therapy for blood, immune and metabolic conditions. Nevertheless, as experience builds, it's now well recognised that vector integration can drive clonal expansions and these may carry long term safety risks. Documented cases of haematological malignancy after SIN-LV gene therapy have recently emerged, in particular where heterologous retroviral promoters were employed and there are concerns around certain insulator elements and other possible contributors to clonal expansions. Similarly, tens of thousands of subjects have now received engineered T cell products, and longstanding dogma that mature T cells cannot be transformed is being questioned, with reports of a small number of malignant transformation events and wider concerns around secondary malignancies in some groups of patients. We summarize current clinical information and revisit genotoxicity risks following ex-vivo gene modification of HSC and T cells.
Collapse
Affiliation(s)
- Giorgio Ottaviano
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
- Molecular and Cellular Immunology, University College London, London, UK.
| | - Waseem Qasim
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Molecular and Cellular Immunology, University College London, London, UK
| |
Collapse
|
2
|
Klepzig H, Herling M, Pflug N, Braun T. Models for T-large granular lymphocytic leukemia: how to mimic the cellular interplays in malignant autoimmunity. Leukemia 2025; 39:792-804. [PMID: 40055531 PMCID: PMC11976270 DOI: 10.1038/s41375-025-02553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025]
Abstract
T-large granular lymphocytic leukemia (T-LGLL) is a chronic lymphoproliferative disorder characterized by clonal expansions of cytotoxic T-cells. It presents with cytopenias that are not explained by the typically low leukemic burden. Notably, T-LGLL is frequently accompanied by autoimmune disorders, particularly rheumatoid arthritis (RA). As clonal T-cell expansions are also increasingly identified in autoimmune-driven conditions, better models of T-LGLL's pathogenesis as a spectrum of (auto)antigen-driven oligoclonal hierarchies towards overt leukemic escape with associated immune dysregulations would provide details to a valuable prototype for determinants of T-cell fitness and transformation as well as T-cell instructed dysfunctions of other immune cells. Such insights would advance our concepts of cancer biology and immunology. Common molecular links between T-LGLL and autoimmune diseases include activation of JAK/STAT signaling, proinflammatory cytokine environments, and antigen-driven immune responses. Current murine models address these mechanisms rather individually: JAK/STAT based systems replicate pathway activation, cytokine-driven models simulate inflammatory conditions, and RA models often mimic antigen stimulation. However, none of these fully captures the duality of clonal T-cell expansion and the complex immune dysregulations, inherent to T-LGLL. This review examines criteria for autochthonous in-vivo T-LGLL models and evaluates existing systems, identifying their strengths, limitations, and specific representations of clinico-pathologic aspects of LGLL. Prominent transgenic models, for example, not only manipulate the T-cell compartment but also indiscriminately alter the tumor microenvironment, impeding research on the specific role of elements of the LGLL micromilieu. We propose strategies to overcome such insufficiencies of present models. Overall, our critical appraisal emphasizes the need for novel comprehensive models that more faithfully integrate the key features of T-LGLL or for models that, by featuring specific pathogenetic aspects of the disease, would supplement existing incomplete systems. We expect such new model systems to aid in better understanding the cancer-immunity interface and in assessing novel therapeutic approaches for T-LGLL.
Collapse
Affiliation(s)
- Hanna Klepzig
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen Bonn Cologne Düsseldorf, Translational Research for Infectious Diseases and Oncology (TRIO), University Hospital Cologne, Cologne, Germany
| | - Marco Herling
- Department for Hematology, Cellular Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig and Cancer Center Central Germany (CCCG), Leipzig-Jena, Germany
| | - Natali Pflug
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen Bonn Cologne Düsseldorf, Translational Research for Infectious Diseases and Oncology (TRIO), University Hospital Cologne, Cologne, Germany
| | - Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen Bonn Cologne Düsseldorf, Translational Research for Infectious Diseases and Oncology (TRIO), University Hospital Cologne, Cologne, Germany.
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Georgiadis C, Preece R, Qasim W. Clinical development of allogeneic chimeric antigen receptor αβ-T cells. Mol Ther 2025:S1525-0016(25)00214-X. [PMID: 40156192 DOI: 10.1016/j.ymthe.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Ready-made banks of allogeneic chimeric antigen receptor (CAR) T cells, produced to be available at the time of need, offer the prospect of accessible and cost-effective cellular therapies. Various strategies have been developed to overcome allogeneic barriers, drawing on cell engineering platforms including RNA interference, protein-based restriction, and genome editing, including RNA-guided CRISPR-Cas and base editing tools. Alloreactivity and the risk of graft-versus-host disease from non-matched donor cells have been mitigated by disruption of αβ-T cell receptor expression on the surface of T cells and stringent removal of any residual αβ-T cell populations. In addition, host-mediated rejection has been tackled through a combination of augmented lymphodepletion and cell engineering strategies that have allowed infused cells to evade immune recognition or conferred resistance to lymphodepleting agents to promote persistence and expansion of effector populations. Early-phase studies using off-the-shelf universal donor CAR T cells have been undertaken mainly in the context of blood malignancies, where emerging data of clinical responses have supported wider adoption and further applications. These developments offer the prospect of alternatives to current autologous approaches through the emerging application of genome engineering solutions to improve safety, persistence, and function of universal donor products.
Collapse
Affiliation(s)
- Christos Georgiadis
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Roland Preece
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Waseem Qasim
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, London WC1N 1DZ, UK.
| |
Collapse
|
4
|
Bouziana S, Bouzianas D. The Current Landscape of Secondary Malignancies after CAR T-Cell Therapies: How Could Malignancies Be Prevented? Int J Mol Sci 2024; 25:9518. [PMID: 39273462 PMCID: PMC11395546 DOI: 10.3390/ijms25179518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have revolutionised the field of haematological malignancies by achieving impressive remission rates in patients with highly refractory haematological malignancies, improving overall survival. To date, six commercial anti-CD19 and anti-BCMA CAR T-cell products have been approved by the Food and Drug Administration (FDA) for the treatment of relapsed/refractory B-cell haematological malignancies and multiple myeloma. The indications for CAR T-cell therapies are gradually expanding, with these therapies being investigated in a variety of diseases, including non-malignant ones. Despite the great success, there are several challenges surrounding CAR T-cell therapies, such as non-durable responses and high-grade toxicities. In addition, a new safety concern was added by the FDA on 28 November 2023 following reports of T-cell malignancies in patients previously treated with either anti-CD19 or anti-BCMA autologous CAR T-cell therapies both in clinical trials and in the real-world setting. Since then, several reports have been published presenting the incidence and analysing the risks of other secondary malignancies after CAR T-cell therapies. In this opinion article, the current landscape of secondary malignancies after CAR T-cell therapies is presented, along with a proposed strategy for future research aiming at potentially diminishing or abrogating the risk of developing secondary malignancies after CAR T-cell therapies.
Collapse
Affiliation(s)
- Stella Bouziana
- Department of Hematology, King’s College Hospital, London SE59RS, UK
| | - Dimitrios Bouzianas
- BReMeL, Biopharmaceutical and Regenerative Medicine Laboratories, 55534 Thessaloniki, Greece;
| |
Collapse
|
5
|
Zhang D, Sun D. Current progress in CAR-based therapy for kidney disease. Front Immunol 2024; 15:1408718. [PMID: 39234257 PMCID: PMC11372788 DOI: 10.3389/fimmu.2024.1408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Despite significant breakthroughs in the understanding of immunological and pathophysiological features for immune-mediated kidney diseases, a proportion of patients exhibit poor responses to current therapies or have been categorized as refractory renal disease. Engineered T cells have emerged as a focal point of interest as a potential treatment strategy for kidney diseases. By genetically modifying T cells and arming them with chimeric antigen receptors (CARs), effectively targeting autoreactive immune cells, such as B cells or antibody-secreting plasma cells, has become feasible. The emergence of CAR T-cell therapy has shown promising potential in directing effector and regulatory T cells (Tregs) to the site of autoimmunity, paving the way for effective migration, proliferation, and execution of suppressive functions. Genetically modified T-cells equipped with artificial receptors have become a novel approach for alleviating autoimmune manifestations and reducing autoinflammatory events in the context of kidney diseases. Here, we review the latest developments in basic, translational, and clinical studies of CAR-based therapies for immune-mediated kidney diseases, highlighting their potential as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
- Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Ruella M, June CH. CAR T-cell Resistance to Oncogenic Transformation. Blood Cancer Discov 2024; 5:229-233. [PMID: 38713827 PMCID: PMC11215395 DOI: 10.1158/2643-3230.bcd-23-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024] Open
Abstract
In this commentary, we discuss the investigation into reports of T-cell malignancies following chimeric antigen receptor T-cell therapy. We argue that although these cases should be thoroughly examined, current data suggest that such risks with autologous chimeric antigen receptor T cells are remarkably low compared with other cancer treatments. We also emphasize the importance of continued research, transparent reporting, and participation in postauthorization safety studies.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
Collapse
Affiliation(s)
- Marco Ruella
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Carl H. June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Ghilardi G, Fraietta JA, Gerson JN, Van Deerlin VM, Morrissette JJD, Caponetti GC, Paruzzo L, Harris JC, Chong EA, Susanibar Adaniya SP, Svoboda J, Nasta SD, Ugwuanyi OH, Landsburg DJ, Fardella E, Waxman AJ, Chong ER, Patel V, Pajarillo R, Kulikovskaya I, Lieberman DB, Cohen AD, Levine BL, Stadtmauer EA, Frey NV, Vogl DT, Hexner EO, Barta SK, Porter DL, Garfall AL, Schuster SJ, June CH, Ruella M. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat Med 2024; 30:984-989. [PMID: 38266761 DOI: 10.1038/s41591-024-02826-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
We report a T cell lymphoma (TCL) occurring 3 months after anti-CD19 chimeric antigen receptor (CAR) T cell immunotherapy for non-Hodgkin B cell lymphoma. The TCL was diagnosed from a thoracic lymph node upon surgery for lung cancer. The TCL exhibited CD8+ cytotoxic phenotype and a JAK3 variant, while the CAR transgene was very low. The T cell clone was identified at low levels in the blood before CAR T infusion and in lung cancer. To assess the overall risk of secondary primary malignancy after commercial CAR T (CD19, BCMA), we analyzed 449 patients treated at the University of Pennsylvania. At a median follow-up of 10.3 months, 16 patients (3.6%) had a secondary primary malignancy. The median onset time was 26.4 and 9.7 months for solid and hematological malignancies, respectively. The projected 5-year cumulative incidence is 15.2% for solid and 2.3% for hematological malignancies. Overall, one case of TCL was observed, suggesting a low risk of TCL after CAR T.
Collapse
Affiliation(s)
- Guido Ghilardi
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - James N Gerson
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel C Caponetti
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse C Harris
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elise A Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra P Susanibar Adaniya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunita D Nasta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma H Ugwuanyi
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Landsburg
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugenio Fardella
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam J Waxman
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Emeline R Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Vrutti Patel
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Lieberman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam D Cohen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Stadtmauer
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan T Vogl
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan K Barta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Levine BL, Pasquini MC, Connolly JE, Porter DL, Gustafson MP, Boelens JJ, Horwitz EM, Grupp SA, Maus MV, Locke FL, Ciceri F, Ruggeri A, Snowden J, Heslop HE, Mackall CL, June CH, Sureda AM, Perales MA. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat Med 2024; 30:338-341. [PMID: 38195751 PMCID: PMC11688691 DOI: 10.1038/s41591-023-02767-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Reports of T cell malignancies after CAR-T cell therapy should be investigated, but existing data from follow-up studies suggest a low risk compared with other cancer treatments.
Collapse
Affiliation(s)
- Bruce L Levine
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| | - Marcelo C Pasquini
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John E Connolly
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - David L Porter
- Cell Therapy and Transplant, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Jaap J Boelens
- Transplantation and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edwin M Horwitz
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephan A Grupp
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Mass General Cancer Center and Harvard Medical School, Cambridge, MA, USA
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Fabio Ciceri
- University Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute Milano, Milan, Italy
| | - Annalisa Ruggeri
- Hematology and BMT unit, IRCCS San Raffaele scientific institute, Milano, Italy
| | - John Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute and Departments of Pediatrics and Medicine, Stanford University, Palo Alto, CA, USA
- Parker Institute for Cancer Immunotherapy, Palo Alto, CA, USA
| | - Carl H June
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna M Sureda
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Piccaluga PP, Cascianelli C, Inghirami G. Tyrosine kinases in nodal peripheral T-cell lymphomas. Front Oncol 2023; 13:1099943. [PMID: 36845713 PMCID: PMC9946040 DOI: 10.3389/fonc.2023.1099943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Nodal peripheral T-cell lymphomas (PTCL) are uncommon and heterogeneous tumors characterized by a dismal prognosis. Targeted therapy has been proposed. However, reliable targets are mostly represented by a few surface antigens (e.g., CD52 and CD30), chemokine receptors (e.g., CCR4), and epigenetic gene expression regulation. In the last two decades, however, several studies have supported the idea that tyrosine kinase (TK) deregulation might be relevant for both the pathogenesis and treatment of PTCL. Indeed, they can be expressed or activated as a consequence of their involvement in genetic lesions, such as translocations, or by ligand overexpression. The most striking example is ALK in anaplastic large-cell lymphomas (ALCL). ALK activity is necessary to support cell proliferation and survival, and its inhibition leads to cell death. Notably, STAT3 was found to be the main downstream ALK effector. Other TKs are consistently expressed and active in PTCLs, such as PDGFRA, and members of the T-cell receptor signaling family, such as SYK. Notably, as in the case of ALK, STAT proteins have emerged as key downstream factors for most of the involved TK.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Chiara Cascianelli
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
| | - Giorgio Inghirami
- Immunopathology and Hematopathology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
10
|
|
11
|
miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin Sci (Lond) 2020; 134:807-825. [PMID: 32219336 DOI: 10.1042/cs20200039] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
It has been generally believed that cancer-associated fibroblasts (CAFs) have the ability to increase the process of tumor angiogenesis. However, the potential mechanisms by which cancer-derived exosomes in lung cancer (LC) remains to be investigated. LC-derived exosomes were administrated to NIH/3T3 cells. A variety of experiments were conducted to investigate the proangiogenic factors of CAFs, including Western blot, RT-PCR, colony formation assay, tube formation assay, Matrigel plug assay et al. In addition, the impact of JAK2/STAT3 signaling pathway were also explored. The role of hsa-miR-210 was identified with microarray profiling and validated in vitro and in vivo assays. The target of miR-210 was screened by RNA pull down, RNA-sequencing and then verified. It was shown that LC-derived exosomes could induce cell reprogramming, thus promoting the fibroblasts transferring into CAFs. In addition, the exosomes with overexpressed miR-210 could increase the level of angiogenesis and vice versa, which suggested the miR-210 secreted by the LC-derived exosomes may initiate the CAF proangiogenic switch. According to our analysis, the miR-210 had the ability of elevating the expression of some proangiogenic factors such as MMP9, FGF2 and vascular endothelial growth factor (VEGF) a (VEGFa) by activating the JAK2/STAT3 signaling pathway, ten-eleven translocation 2 (TET2) was identified as the target of miR-210 in CAFs which has been involved in proangiogenic switch. miR-210 was overexpressed in serum exosomes of untreated non-small cell LC (NSCLC) patients. We concluded that the promotion effect of exosomal miR-210 on proangiogenic switch of CAFs may be explained by the modulation of JAK2/STAT3 signaling pathway and TET2 in recipient fibroblasts.
Collapse
|
12
|
STAT3 Mutation Is Associated with STAT3 Activation in CD30 + ALK - ALCL. Cancers (Basel) 2020; 12:cancers12030702. [PMID: 32188095 PMCID: PMC7140109 DOI: 10.3390/cancers12030702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCL) are a heterogeneous, and often aggressive group of non-Hodgkin lymphomas. Recent advances in the molecular and genetic characterization of PTCLs have helped to delineate differences and similarities between the various subtypes, and the JAK/STAT pathway has been found to play an important oncogenic role. Here, we aimed to characterize the JAK/STAT pathway in PTCL subtypes and investigate whether the activation of the pathway correlates with the frequency of STAT gene mutations. Patient samples from AITL (n = 30), ALCL (n = 21) and PTCL-NOS (n = 12) cases were sequenced for STAT3, STAT5B, JAK1, JAK3, and RHOA mutations using amplicon sequencing and stained immunohistochemically for pSTAT3, pMAPK, and pAKT. We discovered STAT3 mutations in 13% of AITL, 13% of ALK+ ALCL, 38% of ALK− ALCL and 17% of PTCL-NOS cases. However, no STAT5B mutations were found and JAK mutations were only present in ALK- ALCL (15%). Concurrent mutations were found in all subgroups except ALK+ ALCL where STAT3 mutations were always seen alone. High pY-STAT3 expression was observed especially in AITL and ALCL samples. When studying JAK-STAT pathway mutations, pY-STAT3 expression was highest in PTCLs harboring either JAK1 or STAT3 mutations and CD30+ phenotype representing primarily ALK− ALCLs. Further investigation is needed to elucidate the molecular mechanisms of JAK-STAT pathway activation in PTCL.
Collapse
|
13
|
Pützer S, Varghese L, von Jan J, Braun T, Giri AK, Mayer P, Riet N, Timonen S, Oberbeck S, Kuusanmäki H, Mustjoki S, Stern MH, Aittokallio T, Newrzela S, Schrader A, Herling M. Reinstated p53 response and high anti-T-cell leukemia activity by the novel alkylating deacetylase inhibitor tinostamustine. Leukemia 2020; 34:2513-2518. [PMID: 32099034 DOI: 10.1038/s41375-020-0772-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/29/2019] [Accepted: 02/13/2020] [Indexed: 11/09/2022]
Affiliation(s)
- S Pützer
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - L Varghese
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - J von Jan
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - T Braun
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - A K Giri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - P Mayer
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - N Riet
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - S Timonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital, Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - S Oberbeck
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - H Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital, Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - S Mustjoki
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital, Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - M-H Stern
- INSERM U830, Institut Curie, PSL Research University, Paris, 75013, France
| | - T Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - S Newrzela
- Senckenberg Institute of Pathology, Goethe-University, Frankfurt am Main, Germany
| | - A Schrader
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany
| | - M Herling
- Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University of Cologne (UoC), Cologne, Germany. .,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), UoC, Cologne, Germany.
| |
Collapse
|
14
|
Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy 2020; 22:57-69. [PMID: 32014447 PMCID: PMC7036015 DOI: 10.1016/j.jcyt.2019.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
Thirty years after initial publications of the concept of a chimeric antigen receptor (CAR), the U.S. Food and Drug Administration (FDA) approved the first anti-CD19 CAR T-cell therapy. Unlike other immunotherapies, such as immune checkpoint inhibitors and bispecific antibodies, CAR T cells are unique as they are "living drugs," that is, gene-edited killer cells that can recognize and kill cancer. During these 30 years of development, the CAR construct, T-cell manufacturing process, and clinical patient management have gone through rounds of failures and successes that drove continuous improvement. Tisagenlecleucel was the first gene therapy to receive approval from the FDA for any indication. The initial approval was for relapsed or refractory (r/r) pediatric and young-adult B-cell acute lymphoblastic leukemia in August 2017 and in May 2018 for adult r/r diffuse large B-cell lymphoma. Here we review the preclinical and clinical development of what began as CART19 at the University of Pennsylvania and later developed into tisagenlecleucel.
Collapse
Affiliation(s)
- Peter Braendstrup
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Hematology, Herlev University Hospital, Denmark; Department of Hematology, Zealand University Hospital Roskilde, Denmark
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
15
|
Maurer B, Nivarthi H, Wingelhofer B, Pham HTT, Schlederer M, Suske T, Grausenburger R, Schiefer AI, Prchal-Murphy M, Chen D, Winkler S, Merkel O, Kornauth C, Hofbauer M, Hochgatterer B, Hoermann G, Hoelbl-Kovacic A, Prochazkova J, Lobello C, Cumaraswamy AA, Latzka J, Kitzwögerer M, Chott A, Janikova A, Pospíšilova Š, Loizou JI, Kubicek S, Valent P, Kolbe T, Grebien F, Kenner L, Gunning PT, Kralovics R, Herling M, Müller M, Rülicke T, Sexl V, Moriggl R. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica 2020; 105:435-447. [PMID: 31123029 PMCID: PMC7012494 DOI: 10.3324/haematol.2019.216986] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Recurrent gain-of-function mutations in the transcription factors STAT5A and much more in STAT5B were found in hematopoietic malignancies with the highest proportion in mature T- and natural killer-cell neoplasms (peripheral T-cell lymphoma, PTCL). No targeted therapy exists for these heterogeneous and often aggressive diseases. Given the shortage of models for PTCL, we mimicked graded STAT5A or STAT5B activity by expressing hyperactive Stat5a or STAT5B variants at low or high levels in the hematopoietic system of transgenic mice. Only mice with high activity levels developed a lethal disease resembling human PTCL. Neoplasia displayed massive expansion of CD8+ T cells and destructive organ infiltration. T cells were cytokine-hypersensitive with activated memory CD8+ T-lymphocyte characteristics. Histopathology and mRNA expression profiles revealed close correlation with distinct subtypes of PTCL. Pronounced STAT5 expression and activity in samples from patients with different subsets underline the relevance of JAK/STAT as a therapeutic target. JAK inhibitors or a selective STAT5 SH2 domain inhibitor induced cell death and ruxolitinib blocked T-cell neoplasia in vivo. We conclude that enhanced STAT5A or STAT5B action both drive PTCL development, defining both STAT5 molecules as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Maurer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Harini Nivarthi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Chen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanne Winkler
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Olaf Merkel
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cosimo Lobello
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Johanna Latzka
- Karl Landsteiner Institute of Dermatological Research, St. Poelten, Austria and Department of Dermatology and Venereology, Karl Landsteiner University for Health Sciences, St. Poelten, Austria
| | - Melitta Kitzwögerer
- Department of Clinical Pathology, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Andreas Chott
- Institute of Pathology and Microbiology, Wilheminenspital, Vienna, Austria
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Šárka Pospíšilova
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria.,IFA-Tulln, University of Natural Resources and Applied Life Sciences, Tulln, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Patrick T Gunning
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria .,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL. Cancers (Basel) 2019; 11:cancers11121833. [PMID: 31766351 PMCID: PMC6966610 DOI: 10.3390/cancers11121833] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell leukemia. Recent studies detected genomic aberrations affecting JAK and STAT genes in T-PLL. Due to the limited number of primary patient samples available, genomic analyses of the JAK/STAT pathway have been performed in rather small cohorts. Therefore, we conducted—via a primary-data based pipeline—a meta-analysis that re-evaluated the genomic landscape of T-PLL. It included all available data sets with sequence information on JAK or STAT gene loci in 275 T-PLL. We eliminated overlapping cases and determined a cumulative rate of 62.1% of cases with mutated JAK or STAT genes. Most frequently, JAK1 (6.3%), JAK3 (36.4%), and STAT5B (18.8%) carried somatic single-nucleotide variants (SNVs), with missense mutations in the SH2 or pseudokinase domains as most prevalent. Importantly, these lesions were predominantly subclonal. We did not detect any strong association between mutations of a JAK or STAT gene with clinical characteristics. Irrespective of the presence of gain-of-function (GOF) SNVs, basal phosphorylation of STAT5B was elevated in all analyzed T-PLL. Fittingly, a significant proportion of genes encoding for potential negative regulators of STAT5B showed genomic losses (in 71.4% of T-PLL in total, in 68.4% of T-PLL without any JAK or STAT mutations). They included DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9. Overall, considering such losses of negative regulators and the GOF mutations in JAK and STAT genes, a total of 89.8% of T-PLL revealed a genomic aberration potentially explaining enhanced STAT5B activity. In essence, we present a comprehensive meta-analysis on the highly prevalent genomic lesions that affect genes encoding JAK/STAT signaling components. This provides an overview of possible modes of activation of this pathway in a large cohort of T-PLL. In light of new advances in JAK/STAT inhibitor development, we also outline translational contexts for harnessing active JAK/STAT signaling, which has emerged as a ‘secondary’ hallmark of T-PLL.
Collapse
|
17
|
Ng SY, Jacobsen ED. Peripheral T-Cell Lymphoma: Moving Toward Targeted Therapies. Hematol Oncol Clin North Am 2019; 33:657-668. [PMID: 31229161 DOI: 10.1016/j.hoc.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic advances for peripheral T-cell non-Hodgkin lymphoma (PTCL) have lagged behind their B-cell NHL counterparts in part because novel agents to treat PTCL have been developed empirically. The recent clinical success of brentuximab-vedotin suggests that novel therapies for PTCL can significantly improve outcomes when properly targeted. Aberrancies in T-cell receptor, Jak/STAT, and DNA methylation pathways play critical roles in T-NHL pathogenesis based on genomic studies and preclinical experimental validation. New strategies targeting these pathways in patients with PTCL are underway, and this clinical trial experience will possibly contribute to additional improvements in outcome for patients with these diseases.
Collapse
Affiliation(s)
- Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Eric D Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
18
|
Wang XY, Yi DD, Wang TY, Wu YF, Chai YR, Xu DH, Zhao CP, Song C. Enhancing expression level and stability of transgene mediated by episomal vector via buffering DNA methyltransferase in transfected CHO cells. J Cell Biochem 2019; 120:15661-15670. [PMID: 31074065 DOI: 10.1002/jcb.28835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2'-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Dan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Fang Wu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, University of Zhengzhou, Zhengzhou, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao Song
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
19
|
STAT3 is constitutively activated in chronic active Epstein-Barr virus infection and can be a therapeutic target. Oncotarget 2018; 9:31077-31089. [PMID: 30123428 PMCID: PMC6089567 DOI: 10.18632/oncotarget.25780] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is a lymphoproliferative disorder characterized by the clonal proliferation of EBV-infected T or NK cells and is related to severe systemic inflammation. This study aims to investigate STAT3 to elucidate the mechanism underlying the CAEBV development. We determined that STAT3 was constitutively activated in EBV-positive T- or NK-cell lines. We also determined that STAT3 was activated in the peripheral blood mononuclear cells (PBMCs) containing EBV-infected clonally proliferating T or NK cells in six of seven patients with CAEBV. We conducted direct sequencing of the STAT3 Src homology 2 (SH2) domain, which has previously been reported to be mutated in T- or NK-cell neoplasms. No mutation was detected in the STAT3 SH2 domain in patients with CAEBV. Next, we investigated the effects of ruxolitinib, an inhibitor of both JAK1 and JAK2, which phosphorylates and activates STAT3. Ruxolitinib suppressed the phosphorylation of STAT3 in EBV-positive T- or NK-cell lines. Ruxolitinib also decreased the viable cell number of EBV-positive T- or NK-cell lines and PBMCs from patients with CAEBV. Furthermore, ruxolitinib suppressed the production of inflammatory cytokines in the cell lines and CAEBV patient-derived cells. In conclusion, constitutively activated STAT3, which promotes survival and cytokine production, could be a therapeutic target for CAEBV.
Collapse
|
20
|
Andersson EI, Pützer S, Yadav B, Dufva O, Khan S, He L, Sellner L, Schrader A, Crispatzu G, Oleś M, Zhang H, Adnan-Awad S, Lagström S, Bellanger D, Mpindi JP, Eldfors S, Pemovska T, Pietarinen P, Lauhio A, Tomska K, Cuesta-Mateos C, Faber E, Koschmieder S, Brümmendorf TH, Kytölä S, Savolainen ER, Siitonen T, Ellonen P, Kallioniemi O, Wennerberg K, Ding W, Stern MH, Huber W, Anders S, Tang J, Aittokallio T, Zenz T, Herling M, Mustjoki S. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia 2017; 32:774-787. [PMID: 28804127 DOI: 10.1038/leu.2017.252] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive neoplasm of mature T-cells with an urgent need for rationally designed therapies to address its notoriously chemo-refractory behavior. The median survival of T-PLL patients is <2 years and clinical trials are difficult to execute. Here we systematically explored the diversity of drug responses in T-PLL patient samples using an ex vivo drug sensitivity and resistance testing platform and correlated the findings with somatic mutations and gene expression profiles. Intriguingly, all T-PLL samples were sensitive to the cyclin-dependent kinase inhibitor SNS-032, which overcame stromal-cell-mediated protection and elicited robust p53-activation and apoptosis. Across all patients, the most effective classes of compounds were histone deacetylase, phosphoinositide-3 kinase/AKT/mammalian target of rapamycin, heat-shock protein 90 and BH3-family protein inhibitors as well as p53 activators, indicating previously unexplored, novel targeted approaches for treating T-PLL. Although Janus-activated kinase-signal transducer and activator of transcription factor (JAK-STAT) pathway mutations were common in T-PLL (71% of patients), JAK-STAT inhibitor responses were not directly linked to those or other T-PLL-specific lesions. Overall, we found that genetic markers do not readily translate into novel effective therapeutic vulnerabilities. In conclusion, novel classes of compounds with high efficacy in T-PLL were discovered with the comprehensive ex vivo drug screening platform warranting further studies of synergisms and clinical testing.
Collapse
Affiliation(s)
- E I Andersson
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Pützer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - B Yadav
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Dufva
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Khan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L Sellner
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - A Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - G Crispatzu
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - M Oleś
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - H Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S Adnan-Awad
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Lagström
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - D Bellanger
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - J P Mpindi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - S Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - T Pemovska
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - P Pietarinen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - A Lauhio
- Department of Medicine, Division of Infectious Disease, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - K Tomska
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - C Cuesta-Mateos
- Departamento de Immunología, Hospital Universitario de la Princesa, Madrid, Spain
| | - E Faber
- Department of Hemato-oncology, University Hospital Olomouc, Olomouc, Czech Republic
| | - S Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - S Kytölä
- Helsinki University Central Hospital (HUCH), Laboratory of Genetics, HUSLAB, Helsinki, Finland
| | - E-R Savolainen
- Nordlab Oulu, Hematology Laboratory, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T Siitonen
- Department of Hematology, Oulu University Hospital, MRC Oulu, University of Oulu, Oulu, Finland
| | - P Ellonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - K Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - W Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M-H Stern
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - W Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - S Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - J Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Zenz
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - M Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - S Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
21
|
Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, Zhang J, Wang T. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J Cell Mol Med 2017; 21:3044-3054. [PMID: 28557288 PMCID: PMC5661254 DOI: 10.1111/jcmm.13216] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/01/2017] [Indexed: 02/03/2023] Open
Abstract
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, China
| | - Zhongjie Xu
- Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhengwei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xi Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Danhua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qin Li
- Test Laboratory, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
22
|
Impact of Different Promoters on Episomal Vectors Harbouring Characteristic Motifs of Matrix Attachment Regions. Sci Rep 2016; 6:26446. [PMID: 27226236 PMCID: PMC4881036 DOI: 10.1038/srep26446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that the characteristic sequence of matrix attachment regions (MARs) allows transgenes to be maintained episomally in CHO cells. In the present study, six commonly used promoters from human cytomegalovirus major immediate-early (CMV), simian vacuolating virus 40 (SV40), Rous sarcoma virus, Homo sapiens ubiquitin C, phosphoglycerate kinase, and β-globin, respectively, were evaluated to determine their effects on transgene expression and stability in CHO cells stably transfected via the episomal vector harbouring characteristic MAR motifs. The CHO cells were transfected with vectors and then screened using G418, after which the stably transfected cells were split into two and further cultured either in the presence or absence of G418. Of the six promoters, the CMV promoter yielded the highest transgene expression levels and the highest transfection efficiency, whereas the SV40 promoter maintained transgene expression more stably during long-term culture than the other promoters did. The CMV and SV40 promoter-containing vectors were furthermore episomally maintained and conferred sustained eGFP expression in the cells even under nonselective conditions. On the basis of these findings, we conclude that the CMV promoter performs best in terms of yielding both high expression levels and high levels of stability using this episomal vector system.
Collapse
|
23
|
Abstract
Advances in molecular technologies have led to the discovery of many disease-related genetic mutations as well as elucidation of aberrant gene and protein expression patterns in several human diseases, including cancer. This information has driven the development of novel therapeutic strategies, such as the utilization of small molecules to target specific cellular pathways and the use of retroviral vectors to retarget immune cells to recognize and eliminate tumor cells. Retroviral-mediated gene transfer has allowed efficient production of T cells engineered with chimeric antigen receptors (CARs), which have demonstrated marked success in the treatment of hematological malignancies. As a safety point, these modified cells can be outfitted with suicide genes. Customized gene editing tools, such as clustered regularly interspaced short palindromic repeats-CRISPR-associated nucleases (CRISPR-Cas9), zinc-finger nucleases (ZFNs), or TAL-effector nucleases (TALENs), may also be combined with retroviral delivery to specifically delete oncogenes, inactivate oncogenic signaling pathways, or deliver wild-type genes. Additionally, the feasibility of retroviral gene transfer strategies to protect the hematopoietic stem cells (HSC) from the dose-limiting toxic effects of chemotherapy and radiotherapy was demonstrated. While some of these approaches have yet to be translated into clinical application, the potential implications for improved cellular replacement therapies to enhance and/or support the current treatment modalities are enormous.
Collapse
|
24
|
Abstract
Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and infectious diseases have provided safety and feasibility data and important information about persistence of engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in engineered T cell therapies.
Collapse
|
25
|
Alpharetroviral vectors: from a cancer-causing agent to a useful tool for human gene therapy. Viruses 2014; 6:4811-38. [PMID: 25490763 PMCID: PMC4276931 DOI: 10.3390/v6124811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022] Open
Abstract
Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.
Collapse
|
26
|
Abstract
Proof-of-concept studies have demonstrated the therapeutic potential of engineered T cells. Transfer of recombinant antigen-specific T cell receptors (TCR) and chimaeric antigen receptors (CARs) against tumour and viral antigens are under investigation by multiple approaches, including viral- and nonviral-mediated gene transfer into both autologous and allogeneic T cell populations. There have been notable successes recently using viral vector-mediated transfer of CARs specific for B cell antigens, but also reports of anticipated and unanticipated complications in these and other studies. We review progress in this promising area of cellular therapy, and consider developments in antigen receptor therapies including the application of emerging gene-editing technologies.
Collapse
Affiliation(s)
- Waseem Qasim
- Molecular & Cellular Immunology, Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital Trust, London, UK
| | | |
Collapse
|
27
|
Xu D, Yin C, Wang S, Xiao Y. JAK-STAT in lipid metabolism of adipocytes. JAKSTAT 2013; 2:e27203. [PMID: 24498541 DOI: 10.4161/jkst.27203] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/19/2022] Open
Abstract
JAK-STAT signaling pathway plays an important role in the cells' development and homeostasis. Over the past decades, the studies have identified the role of the JAK-STAT pathway in cell proliferation and apoptosis. Here, we want to discuss that whether and how the JAK-STAT pathway affects the lipid metabolism of adipose tissue. A host of cytokines and hormones can regulate lipid metabolism through activating the JAK-STAT signaling pathway. Activated STATs can regulate lipid metabolism directly by influencing the expression of enzymes. We have summarized the relevant research and articles of JAK-STAT during the recent years. Within this review, we will introduce you the recent research and highlight the unresolved problems in understanding how JAK-STAT signaling pathway contribute to the lipid metabolism in mature adipocytes and preadipocytes. Dysregulation of the JAK-STAT pathway would lead to a multiple metabolism disorders and medicines for this signaling pathway maybe become a new idea for diseases such as metabolic syndrome, especially in children.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pediatrics; Second Affiliated Hospital of Medical School of Xi'an; Jiaotong University; Xi'an, Shaanxi PR China
| | - Chunyan Yin
- Department of Pediatrics; Second Affiliated Hospital of Medical School of Xi'an; Jiaotong University; Xi'an, Shaanxi PR China
| | - Sisi Wang
- Department of Pediatrics; Second Affiliated Hospital of Medical School of Xi'an; Jiaotong University; Xi'an, Shaanxi PR China
| | - Yanfeng Xiao
- Department of Pediatrics; Second Affiliated Hospital of Medical School of Xi'an; Jiaotong University; Xi'an, Shaanxi PR China
| |
Collapse
|
28
|
T lymphocytes are not immune. Mol Ther 2013; 21:1114-5. [PMID: 23728254 DOI: 10.1038/mt.2013.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|