1
|
Siemionow M, Bocian K, Bozyk KT, Ziemiecka A, Siemionow K. Chimeric Cell Therapy Transfers Healthy Donor Mitochondria in Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2024; 20:1819-1829. [PMID: 39017908 PMCID: PMC11445288 DOI: 10.1007/s12015-024-10756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MBN/MBN) and normal and DMD-affected donors (MBN/MBDMD), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.
Collapse
Affiliation(s)
- Maria Siemionow
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, Poznan, 61‑545, Poland.
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
- Polish Stem Cell Bank, FamiCord Group, Warsaw, 00-867, Poland
| | - Katarzyna T Bozyk
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
Siemionow M, Ziemiecka A, Bożyk K, Siemionow K. Mechanisms of Chimeric Cell Therapy in Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1996. [PMID: 39335509 PMCID: PMC11428244 DOI: 10.3390/biomedicines12091996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Despite scientific efforts, there is no cure for Duchenne muscular dystrophy (DMD), a lethal, progressive, X-linked genetic disorder caused by mutations in the dystrophin gene. DMD leads to cardiac and skeletal muscle weakness, resulting in premature death due to cardio-pulmonary complications. We have developed Dystrophin Expressing Chimeric (DEC) cell therapy, DT-DEC01, by fusing human myoblasts from healthy donors and from DMD patients. Preclinical studies on human DEC cells showed increased dystrophin expression and improved cardiac, pulmonary, and skeletal muscle function after intraosseous administration. Our clinical study confirmed the safety and efficacy of DT-DEC01 therapy up to 24 months post-administration. In this study, we conducted in vitro assays to test the composition and potency of DT-DEC01, assessing chimerism level and the presence of dystrophin, desmin, and myosin heavy chain. Myoblast fusion resulted in the transfer of healthy donor mitochondria and the creation of chimeric mitochondria within DT-DEC01. The Pappenheim assay confirmed myotube formation in the final product. This study highlights the unique properties of DT-DEC01 therapy and their relevance to DMD treatment mechanisms.
Collapse
Affiliation(s)
- Maria Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60612, USA
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
| | - Katarzyna Bożyk
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Lenardič A, Domenig SA, Zvick J, Bundschuh N, Tarnowska-Sengül M, Furrer R, Noé F, Trautmann CL, Ghosh A, Bacchin G, Gjonlleshaj P, Qabrati X, Masschelein E, De Bock K, Handschin C, Bar-Nur O. Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation. J Clin Invest 2024; 134:e166998. [PMID: 38713532 PMCID: PMC11178549 DOI: 10.1172/jci166998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected Dmdmdx mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
Collapse
MESH Headings
- Animals
- Mice
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/genetics
- Induced Pluripotent Stem Cells/transplantation
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Satellite Cells, Skeletal Muscle/transplantation
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Stem Cell Transplantation
- Humans
- Dystrophin/genetics
- Dystrophin/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mice, Inbred mdx
- Heterografts
- Transplantation, Heterologous
- Injections, Intramuscular
- Transplantation, Homologous
Collapse
Affiliation(s)
- Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Seraina A. Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christine L. Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Giada Bacchin
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
4
|
Domenig SA, Bundschuh N, Lenardič A, Ghosh A, Kim I, Qabrati X, D'Hulst G, Bar-Nur O. CRISPR/Cas9 editing of directly reprogrammed myogenic progenitors restores dystrophin expression in a mouse model of muscular dystrophy. Stem Cell Reports 2021; 17:321-336. [PMID: 34995499 PMCID: PMC8828535 DOI: 10.1016/j.stemcr.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic mutations in dystrophin manifest in Duchenne muscular dystrophy (DMD), the most commonly inherited muscle disease. Here, we report on reprogramming of fibroblasts from two DMD mouse models into induced myogenic progenitor cells (iMPCs) by MyoD overexpression in concert with small molecule treatment. DMD iMPCs proliferate extensively, while expressing myogenic stem cell markers including Pax7 and Myf5. Additionally, DMD iMPCs readily give rise to multinucleated myofibers that express mature skeletal muscle markers; however, they lack DYSTROPHIN expression. Utilizing an exon skipping-based approach with CRISPR/Cas9, we report on genetic correction of the dystrophin mutation in DMD iMPCs and restoration of protein expression in vitro. Furthermore, engraftment of corrected DMD iMPCs into the muscles of dystrophic mice restored DYSTROPHIN expression and contributed to the muscle stem cell reservoir. Collectively, our findings report on a novel in vitro cellular model for DMD and utilize it in conjunction with gene editing to restore DYSTROPHIN expression in vivo. iMPCs generated from DMD mouse models DMD iMPCs are expandable and express satellite cell and differentiation markers Correction of the dystrophin mutation in DMD iMPCs utilizing CRISPR/Cas9 Engraftment of corrected DMD iMPCs restores DYSTROPHIN expression in vivo
Collapse
Affiliation(s)
- Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, Swiss Federal Institute of Technology (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Gommaar D'Hulst
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Gerli MFM, Moyle LA, Benedetti S, Ferrari G, Ucuncu E, Ragazzi M, Constantinou C, Louca I, Sakai H, Ala P, De Coppi P, Tajbakhsh S, Cossu G, Tedesco FS. Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells. Stem Cell Reports 2019; 12:461-473. [PMID: 30745033 PMCID: PMC6409426 DOI: 10.1016/j.stemcr.2019.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Satellite cells are responsible for skeletal muscle regeneration. Upon activation, they proliferate as transient amplifying myoblasts, most of which fuse into regenerating myofibers. Despite their remarkable differentiation potential, these cells have limited migration capacity, which curtails clinical use for widespread forms of muscular dystrophy. Conversely, skeletal muscle perivascular cells have less myogenic potential but better migration capacity than satellite cells. Here we show that modulation of Notch and PDGF pathways, involved in developmental specification of pericytes, induces perivascular cell features in adult mouse and human satellite cell-derived myoblasts. DLL4 and PDGF-BB-treated cells express markers of perivascular cells and associate with endothelial networks while also upregulating markers of satellite cell self-renewal. Moreover, treated cells acquire trans-endothelial migration ability while remaining capable of engrafting skeletal muscle upon intramuscular transplantation. These results extend our understanding of muscle stem cell fate plasticity and provide a druggable pathway with clinical relevance for muscle cell therapy.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Sara Benedetti
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, WC1N 1EH London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Ekin Ucuncu
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Chrystalla Constantinou
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Irene Louca
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, M13 9PL Manchester, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; The Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK.
| |
Collapse
|
7
|
Tasfaout H, Cowling BS, Laporte J. Centronuclear myopathies under attack: A plethora of therapeutic targets. J Neuromuscul Dis 2019; 5:387-406. [PMID: 30103348 PMCID: PMC6218136 DOI: 10.3233/jnd-180309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centronuclear myopathies are a group of congenital myopathies characterized by severe muscle weakness, genetic heterogeneity, and defects in the structural organization of muscle fibers. Their names are derived from the central position of nuclei on biopsies, while they are at the fiber periphery under normal conditions. No specific therapy exists yet for these debilitating diseases. Mutations in the myotubularin phosphoinositides phosphatase, the GTPase dynamin 2, or amphiphysin 2 have been identified to cause respectively X-linked centronuclear myopathies (also called myotubular myopathy) or autosomal dominant and recessive forms. Mutations in additional genes, as RYR1, TTN, SPEG or CACNA1S, were linked to phenotypes that can overlap with centronuclear myopathies. Numerous animal models of centronuclear myopathies have been studied over the last 15 years, ranging from invertebrate to large mammalian models. Their characterization led to a partial understanding of the pathomechanisms of these diseases and allowed the recent validation of therapeutic proof-of-concepts. Here, we review the different therapeutic strategies that have been tested so far for centronuclear myopathies, some of which may be translated to patients.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Belinda S. Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Correspondence to: Jocelyn Laporte, Tel.: 33 0 388653412; E-mail:
| |
Collapse
|
8
|
Davoudi S, Chin CY, Cooke MJ, Tam RY, Shoichet MS, Gilbert PM. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials 2018; 173:34-46. [DOI: 10.1016/j.biomaterials.2018.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
|
9
|
The muscle regulatory transcription factor MyoD participates with p53 to directly increase the expression of the pro-apoptotic Bcl2 family member PUMA. Apoptosis 2018; 22:1532-1542. [PMID: 28918507 DOI: 10.1007/s10495-017-1423-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The muscle regulatory transcription factor MyoD is a master regulator of skeletal myoblast differentiation. We have previously reported that MyoD is also necessary for the elevated expression of the pro-apoptotic Bcl2 family member PUMA, and the ensuing apoptosis, that occurs in a subset of myoblasts induced to differentiate. Herein, we report the identification of a functional MyoD binding site within the extended PUMA promoter. In silico analysis of the murine PUMA extended promoter revealed three potential MyoD binding sites within 2 kb of the transcription start site. Expression from a luciferase reporter construct containing this 2 kb fragment was enhanced by activation of MyoD in both myoblasts and fibroblasts and diminished by silencing of MyoD in myoblasts. Experiments utilizing truncated versions of this promoter region revealed that the potential binding site at position - 857 was necessary for expression. Chromatin immunoprecipitation (ChIP) analysis confirmed binding of MyoD to the DNA region encompassing position - 857. The increase in MyoD binding to the PUMA promoter as a consequence of culture in differentiation media (DM) was comparable to the increase in MyoD binding at the myogenin promoter and was diminished in myoblasts silenced for MyoD expression. Finally, ChIP analysis using an antibody specific for the transcription factor p53 demonstrated that, in myoblasts silenced for MyoD expression, p53 binding to the PUMA promoter was diminished in response to culture in DM. These data indicate that MyoD plays a direct role in regulating PUMA expression and reveal functional consequences of MyoD expression on p53 mediated transcription of PUMA.
Collapse
|
10
|
Um J, Lee JH, Jung DW, Williams DR. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells. Expert Opin Drug Discov 2018; 13:307-326. [PMID: 29421943 DOI: 10.1080/17460441.2018.1437140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
Collapse
Affiliation(s)
- JungIn Um
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Ji-Hyung Lee
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Da-Woon Jung
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Darren R Williams
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| |
Collapse
|
11
|
Benedetti S, Uno N, Hoshiya H, Ragazzi M, Ferrari G, Kazuki Y, Moyle LA, Tonlorenzi R, Lombardo A, Chaouch S, Mouly V, Moore M, Popplewell L, Kazuki K, Katoh M, Naldini L, Dickson G, Messina G, Oshimura M, Cossu G, Tedesco FS. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Mol Med 2018; 10:254-275. [PMID: 29242210 PMCID: PMC5801502 DOI: 10.15252/emmm.201607284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.
Collapse
Affiliation(s)
- Sara Benedetti
- Department of Cell and Developmental Biology, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Hidetoshi Hoshiya
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rossana Tonlorenzi
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Soraya Chaouch
- AIM/AFM Center for Research in Myology, Sorbonne Universités, UPMC Univ. Paris 06, INSERM UMRS974, CNRS FRE3617, Paris, France
| | - Vincent Mouly
- AIM/AFM Center for Research in Myology, Sorbonne Universités, UPMC Univ. Paris 06, INSERM UMRS974, CNRS FRE3617, Paris, France
| | - Marc Moore
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Motonobu Katoh
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Luigi Naldini
- Department of Biosciences, University of Milan, Milan, Italy
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | | | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | | |
Collapse
|
12
|
Skuk D, Tremblay JP. The Process of Engraftment of Myogenic Cells in Skeletal Muscles of Primates: Understanding Clinical Observations and Setting Directions in Cell Transplantation Research. Cell Transplant 2018; 26:1763-1779. [PMID: 29338383 PMCID: PMC5784521 DOI: 10.1177/0963689717724798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We studied in macaques the evolution of the intramuscular transplantation of muscle precursor cells between the time of administration and the time at which the graft is considered stable. Satellite cell–derived myoblasts labeled with ß-galactosidase were transplanted into 1 cm3 muscle regions following cell culture and transplantation protocols similar to our last clinical trials. These regions were biopsied 1 h, 1, 3, 7 d, and 3 wk later and analyzed by histology. We observed that the cell suspension leaks from the muscle bundles during injection toward the epimysium and perimysium, where most cells accumulate after transplantation. We observed evidence of necrosis, apoptosis, and mitosis in the accumulations of grafted cells, and of potential migration to participate in myofiber regeneration in the surrounding muscle bundles. After 3 wk, the compact accumulations of grafted cells left only some graft-derived myotubes and small myofibers in the perimysium. Hybrid myofibers were abundant in the muscle fascicles at 3 wk posttransplantation, and they most likely occur by grafted myoblasts that migrated from the peripheral accumulations than by the few remaining within the fascicles immediately after injection. These observations explain the findings in clinical trials of myoblast transplantation and provide information for the future research in cell therapy in myology.
Collapse
Affiliation(s)
- Daniel Skuk
- 1 Axe Neurosciences, Research Center of the CHU de Quebec-CHUL, Quebec, Canada
| | - Jacques P Tremblay
- 1 Axe Neurosciences, Research Center of the CHU de Quebec-CHUL, Quebec, Canada
| |
Collapse
|
13
|
Human myogenic reserve cells are quiescent stem cells that contribute to muscle regeneration after intramuscular transplantation in immunodeficient mice. Sci Rep 2017; 7:3462. [PMID: 28615691 PMCID: PMC5471254 DOI: 10.1038/s41598-017-03703-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/03/2017] [Indexed: 11/08/2022] Open
Abstract
Satellite cells, localized within muscles in vivo, are Pax7+ muscle stem cells supporting skeletal muscle growth and regeneration. Unfortunately, their amplification in vitro, required for their therapeutic use, is associated with reduced regenerative potential. In the present study, we investigated if human myogenic reserve cells (MRC) obtained in vitro, represented a reliable cell source for muscle repair. For this purpose, primary human myoblasts were freshly isolated and expanded. After 2 days of differentiation, 62 ± 2.9% of the nuclei were localized in myotubes and 38 ± 2.9% in the mononucleated non-fusing MRC. Eighty percent of freshly isolated human MRC expressed a phenotype similar to human quiescent satellite cells (CD56+/Pax7+/MyoD−/Ki67− cells). Fourteen days and 21 days after cell transplantation in immunodeficient mice, live human cells were significantly more numerous and the percentage of Pax7+/human lamin A/C+ cells was 2 fold higher in muscles of animals injected with MRC compared to those injected with human myoblasts, despite that percentage of spectrin+ and lamin A/C+ human fibers in both groups MRC were similar. Taken together, these data provide evidence that MRC generated in vitro represent a promising source of cells for improving regeneration of injured skeletal muscles.
Collapse
|
14
|
Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2016; 11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction & School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Christian Medical College Bagayam Campus, Centre for Stem Cell Research, Vellore, 632002, India
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.
- Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Boston, MA, 02139, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
15
|
Iyombe-Engembe JP, Ouellet DL, Barbeau X, Rousseau J, Chapdelaine P, Lagüe P, Tremblay JP. Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e283. [PMID: 26812655 PMCID: PMC5012554 DOI: 10.1038/mtna.2015.58] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides.
Collapse
Affiliation(s)
- Jean-Paul Iyombe-Engembe
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec, Neurosciences Axis, Quebec City, Québec, Canada
- Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
| | - Dominique L Ouellet
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec, Neurosciences Axis, Quebec City, Québec, Canada
- Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
| | - Xavier Barbeau
- Department of Chemistry, Université Laval, Quebec City, Québec, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, Québec, Canada
| | - Joël Rousseau
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec, Neurosciences Axis, Quebec City, Québec, Canada
- Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
| | - Pierre Chapdelaine
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec, Neurosciences Axis, Quebec City, Québec, Canada
- Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
| | - Patrick Lagüe
- Department of Chemistry, Université Laval, Quebec City, Québec, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, Québec, Canada
| | - Jacques P Tremblay
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec, Neurosciences Axis, Quebec City, Québec, Canada
- Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
16
|
Negroni E, Bigot A, Butler-Browne GS, Trollet C, Mouly V. Cellular Therapies for Muscular Dystrophies: Frustrations and Clinical Successes. Hum Gene Ther 2016; 27:117-26. [PMID: 26652770 DOI: 10.1089/hum.2015.139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapy for muscular dystrophies was initiated in humans after promising results obtained in murine models. Early trials failed to show substantial clinical benefit, sending researchers back to the bench, which led to the discovery of many hurdles as well as many new venues to optimize this therapeutic strategy. In this review we summarize progress in preclinical cell therapy approaches, with a special emphasis on human cells potentially attractive for human clinical trials. Future perspectives for cell therapy in skeletal muscle are discussed, including the perspective of combined therapeutic approaches.
Collapse
Affiliation(s)
- Elisa Negroni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Anne Bigot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Gillian S Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| |
Collapse
|
17
|
Tedesco FS. Human artificial chromosomes for Duchenne muscular dystrophy and beyond: challenges and hopes. Chromosome Res 2015; 23:135-41. [PMID: 25596829 DOI: 10.1007/s10577-014-9460-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Safe and efficacious vectors able to carry large or several transgenes are of key importance for gene therapy. Human artificial chromosomes can fulfil this essential requirement; moreover, they do not integrate into the host genome. However, drawbacks such as the low efficiency of chromosome transfer and their relatively complex engineering still limit their widespread use. In this article, I summarise the key steps that brought human artificial chromosomes into preclinical research for Duchenne muscular dystrophy, an X-linked, monogenic disorder. I will also review possible future pre-clinical and clinical perspectives for this technology.
Collapse
Affiliation(s)
- Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, 21 University Street, London, WC1E 6DE, UK,
| |
Collapse
|