1
|
Stokely AM, Votapka LW, Hock MT, Teitgen AE, McCammon JA, McCulloch AD, Amaro RE. NetSci: A Library for High Performance Biomolecular Simulation Network Analysis Computation. J Chem Inf Model 2024; 64:7966-7976. [PMID: 39364881 DOI: 10.1021/acs.jcim.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present the NetSci program-an open-source scientific software package designed for estimating mutual information (MI) between data sets using GPU acceleration and a k-nearest-neighbor algorithm. This approach significantly enhances calculation speed, achieving improvements of several orders of magnitude over traditional CPU-based methods, with data set size limits dictated only by available hardware. To validate NetSci, we accurately compute MI for an analytically verifiable two-dimensional Gaussian distribution and replicate the generalized correlation (GC) analysis previously conducted on the B1 domain of protein G. We also apply NetSci to molecular dynamics simulations of the Sarcoendoplasmic Reticulum Calcium-ATPase (SERCA) pump, exploring the allosteric mechanisms and pathways influenced by ATP and 2'-deoxy-ATP (dATP) binding. Our analysis reveals distinct allosteric effects induced by ATP compared to dATP, with predicted information pathways from the bound nucleotide to the calcium-binding domain differing based on the nucleotide involved. NetSci proves to be a valuable tool for estimating MI and GC in various data sets and is particularly effective for analyzing intraprotein communication and information transfer.
Collapse
Affiliation(s)
- Andrew M Stokely
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Lane W Votapka
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marcus T Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Abigail E Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Childers MC, Geeves MA, Regnier M. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. Biophys J 2024:S0006-3495(24)00685-4. [PMID: 39444161 DOI: 10.1016/j.bpj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are inhibited from performing motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state can pathologically disrupt IHM structure and the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analog called 2'-deoxy-ATP (dATP) is a potent myosin activator that destabilizes the IHM. Here, we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations of the IHM state containing ADP.Pi in both nucleotide binding pockets revealed dynamic motions of the blocked head-free head interface, light chain binding domain, and S2 in this "inactive" state of myosin. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that increased heterogeneity among residue contact pairs at the blocked head-free head interface and a 14% decrease in the interaction energy at the interface. Dynamic changes to this interface were accompanied by dynamics in the light chain binding region. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Kent, United Kingdom
| | - Michael Regnier
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
3
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
4
|
Teitgen AE, Hock MT, McCabe KJ, Childers MC, Huber GA, Marzban B, Beard DA, McCammon JA, Regnier M, McCulloch AD. Multiscale modeling shows how 2'-deoxy-ATP rescues ventricular function in heart failure. Proc Natl Acad Sci U S A 2024; 121:e2322077121. [PMID: 39172779 PMCID: PMC11363293 DOI: 10.1073/pnas.2322077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo0164, Norway
| | | | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Bahador Marzban
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
5
|
Karbassi E, Padgett R, Bertero A, Reinecke H, Klaiman JM, Yang X, Hauschka SD, Murry CE. Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium. Cell Mol Life Sci 2024; 81:95. [PMID: 38372898 PMCID: PMC10876724 DOI: 10.1007/s00018-023-05101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer opportunities to study human biology where primary cell types are limited. CRISPR technology allows forward genetic screens using engineered Cas9-expressing cells. Here, we sought to generate a CRISPR activation (CRISPRa) hiPSC line to activate endogenous genes during pluripotency and differentiation. We first targeted catalytically inactive Cas9 fused to VP64, p65 and Rta activators (dCas9-VPR) regulated by the constitutive CAG promoter to the AAVS1 safe harbor site. These CRISPRa hiPSC lines effectively activate target genes in pluripotency, however the dCas9-VPR transgene expression is silenced after differentiation into cardiomyocytes and endothelial cells. To understand this silencing, we systematically tested different safe harbor sites and different promoters. Targeting to safe harbor sites hROSA26 and CLYBL loci also yielded hiPSCs that expressed dCas9-VPR in pluripotency but silenced during differentiation. Muscle-specific regulatory cassettes, derived from cardiac troponin T or muscle creatine kinase promoters, were also silent after differentiation when dCas9-VPR was introduced. In contrast, in cell lines where the dCas9-VPR sequence was replaced with cDNAs encoding fluorescent proteins, expression persisted during differentiation in all loci and with all promoters. Promoter DNA was hypermethylated in CRISPRa-engineered lines, and demethylation with 5-azacytidine enhanced dCas9-VPR gene expression. In summary, the dCas9-VPR cDNA is readily expressed from multiple loci during pluripotency but induces silencing in a locus- and promoter-independent manner during differentiation to mesoderm derivatives. Researchers intending to use this CRISPRa strategy during stem cell differentiation should pilot their system to ensure it remains active in their population of interest.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Ruby Padgett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Stephen D Hauschka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Flint G, Kooiker K, Moussavi-Harami F. Echocardiography to Assess Cardiac Structure and Function in Genetic Cardiomyopathies. Methods Mol Biol 2024; 2735:1-15. [PMID: 38038840 DOI: 10.1007/978-1-0716-3527-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rodents are the most common experimental models used in cardiovascular research including studies of genetic cardiomyopathies. Genetic cardiomyopathies are characterized by changes in cardiac structure and function. Echocardiography allows for relatively inexpensive, non-invasive, reliable, and reproducible assessment of these changes. However, the fast heart and small size present unique challenges for investigators. To ensure accuracy and reproducibility of these measurements, investigators need to be familiar with standard practices in the field, normal values, and potential pitfalls. The goal of this chapter is to describe steps needed for reliable acquisition and analysis of echocardiography in rodent models. Additionally, we discuss some common pitfalls and challenges.
Collapse
Affiliation(s)
- Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kristina Kooiker
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Division of Cardiology, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Tejero M, Duzenli OF, Caine C, Kuoch H, Aslanidi G. Bioengineered Hybrid Rep 2/6 Gene Improves Encapsulation of a Single-Stranded Expression Cassette into AAV6 Vectors. Genes (Basel) 2023; 14:1866. [PMID: 37895215 PMCID: PMC10606878 DOI: 10.3390/genes14101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The production of clinical-grade recombinant adeno-associated viral (AAV) vectors for gene therapy trials remains a major hurdle in the further advancement of the gene therapy field. During the past decades, AAV research has been predominantly focused on the development of new capsid modifications, vector-associated immunogenicity, and the scale-up vector production. However, limited studies have examined the possibility to manipulate non-structural components of AAV such as the Rep genes. Historically, naturally isolated, or recombinant library-derived AAV capsids have been produced using the AAV serotype 2 Rep gene to package ITR2-flanked vector genomes. In the current study, we mutated four variable amino acids in the conservative part of the binding domain in AAV serotype 6 Rep to generate a Rep2/6 hybrid gene. This newly generated Rep2/6 hybrid had improved packaging ability over wild-type Rep6. AAV vectors produced with Rep2/6 exhibited similar in vivo activity as standard AAV6 vectors. Furthermore, we show that this Rep2/6 hybrid also improves full/empty capsid ratios, suggesting that Rep bioengineering can be used to improve the ratio of fully encapsulated AAV vectors during upstream manufacturing processes.
Collapse
Affiliation(s)
- Marcos Tejero
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Ozgun F. Duzenli
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Colin Caine
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Hisae Kuoch
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - George Aslanidi
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Hock MT, Teitgen AE, McCabe KJ, Hirakis SP, Huber GA, Regnier M, Amaro RE, McCammon JA, McCulloch AD. Multiscale computational modeling of the effects of 2'-deoxy-ATP on cardiac muscle calcium handling. JOURNAL OF APPLIED PHYSICS 2023; 134:074905. [PMID: 37601331 PMCID: PMC10435275 DOI: 10.1063/5.0157935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
2'-Deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented myosin activator that has been shown to increase contractile force, improve pump function, and enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this are unknown. Here, we design and utilize a multiscale computational modeling framework to test the hypothesis that dATP acts on the sarcoendoplasmic reticulum calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum during cardiac relaxation. Gaussian accelerated molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which we assessed using Brownian dynamics simulations. We found that dATP increases calcium association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-contraction coupling, we found that these increased association rate constants contributed to the accelerated rates of calcium transient decay observed experimentally. This study provides clear mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions with dATP.
Collapse
Affiliation(s)
- Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Resesarch Laboratory, Oslo 0164, Norway
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98109, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
9
|
Mhatre KN, Mathieu J, Martinson A, Flint G, Blakley LP, Tabesh A, Reinecke H, Yang X, Guan X, Murali E, Klaiman JM, Odom GL, Brown MB, Tian R, Hauschka SD, Raftery D, Moussavi-Harami F, Regnier M, Murry CE. Cell based dATP delivery as a therapy for chronic heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538108. [PMID: 37162854 PMCID: PMC10168250 DOI: 10.1101/2023.04.24.538108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transplanted human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) improve ventricular performance when delivered acutely post-myocardial infarction but are ineffective in chronic myocardial infarction/heart failure. 2'-deoxy-ATP (dATP) activates cardiac myosin and potently increases contractility. Here we engineered hPSC-CMs to overexpress ribonucleotide reductase, the enzyme controlling dATP production. In vivo, dATP-producing CMs formed new myocardium that transferred dATP to host cardiomyocytes via gap junctions, increasing their dATP levels. Strikingly, when transplanted into chronically infarcted hearts, dATP-producing grafts increased left ventricular function, whereas heart failure worsened with wild-type grafts or vehicle injections. dATP-donor cells recipients had greater voluntary exercise, improved cardiac metabolism, reduced pulmonary congestion and pathological cardiac hypertrophy, and improved survival. This combination of remuscularization plus enhanced host contractility offers a novel approach to treating the chronically failing heart.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington; Seattle, WA 98195, USA
| | - Amy Martinson
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
| | - Leslie P Blakley
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Arash Tabesh
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Xuan Guan
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
| | - Eesha Murali
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Guy L Odom
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Neurology, University of Washington; Seattle, WA 98195, USA
| | - Mary Beth Brown
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Washington; Seattle, WA 98195, USA
| | - Rong Tian
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington; Seattle, WA 98195, USA
- The Mitochondria and Metabolism Center (MMC), University of Washington; Seattle, WA 98109, USA
| | - Stephen D Hauschka
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington; Seattle, WA 98195, USA
- The Mitochondria and Metabolism Center (MMC), University of Washington; Seattle, WA 98109, USA
- Northwest Metabolomics Research Center, University of Washington; Seattle, WA 98109, USA
| | - Farid Moussavi-Harami
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Cardiology, University of Washington; Seattle, WA 98195, USA
| | - Michael Regnier
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Physiology and Biophysics, University of Washington; Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Cardiology, University of Washington; Seattle, WA 98195, USA
| |
Collapse
|
10
|
Mhatre KN, Murray JD, Flint G, McMillen TS, Weber G, Shakeri M, Tu AY, Steczina S, Weiss R, Marcinek DJ, Murry CE, Raftery D, Tian R, Moussavi-Harami F, Regnier M. dATP elevation induces myocardial metabolic remodeling to support improved cardiac function. J Mol Cell Cardiol 2023; 175:1-12. [PMID: 36470336 PMCID: PMC9974746 DOI: 10.1016/j.yjmcc.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hallmark features of systolic heart failure are reduced contractility and impaired metabolic flexibility of the myocardium. Cardiomyocytes (CMs) with elevated deoxy ATP (dATP) via overexpression of ribonucleotide reductase (RNR) enzyme robustly improve contractility. However, the effect of dATP elevation on cardiac metabolism is unknown. Here, we developed proteolysis-resistant versions of RNR and demonstrate that elevation of dATP/ATP to ∼1% in CMs in a transgenic mouse (TgRRB) resulted in robust improvement of cardiac function. Pharmacological approaches showed that CMs with elevated dATP have greater basal respiratory rates by shifting myosin states to more active forms, independent of its isoform, in relaxed CMs. Targeted metabolomic profiling revealed a significant reprogramming towards oxidative phosphorylation in TgRRB-CMs. Higher cristae density and activity in the mitochondria of TgRRB-CMs improved respiratory capacity. Our results revealed a critical property of dATP to modulate myosin states to enhance contractility and induce metabolic flexibility to support improved function in CMs.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jason D Murray
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Gerhard Weber
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Majid Shakeri
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Robert Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; The Mitochondria and Metabolism Center (MMC), University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; The Mitochondria and Metabolism Center (MMC), University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Wang L, Zhang Y, Yu M, Yuan W. Identification of Hub Genes in the Remodeling of Non-Infarcted Myocardium Following Acute Myocardial Infarction. J Cardiovasc Dev Dis 2022; 9:jcdd9120409. [PMID: 36547406 PMCID: PMC9788553 DOI: 10.3390/jcdd9120409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: There are few diagnostic and therapeutic targets for myocardial remodeling in the salvageable non-infarcted myocardium. (2) Methods: Hub genes were identified through comprehensive bioinformatics analysis (GSE775, GSE19322, and GSE110209 from the gene expression omnibus (GEO) database) and the biological functions of hub genes were examined by gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, the differential expression of hub genes in various cell populations between the acute myocardial infarction (AMI) and sham-operation groups was analyzed by processing scRNA data (E-MTAB-7376 from the ArrayExpress database) and RNA-seq data (GSE183168). (3) Results: Ten strongly interlinked hub genes (Timp1, Sparc, Spp1, Tgfb1, Decr1, Vim, Serpine1, Serpina3n, Thbs2, and Vcan) were identified by the construction of a protein-protein interaction network from 135 differentially expressed genes identified through comprehensive bioinformatics analysis and their reliability was verified using GSE119857. In addition, the 10 hub genes were found to influence the ventricular remodeling of non-infarcted tissue by modulating the extracellular matrix (ECM)-mediated myocardial fibrosis, macrophage-driven inflammation, and fatty acid metabolism. (4) Conclusions: Ten hub genes were identified, which may provide novel potential targets for the improvement and treatment of AMI and its complications.
Collapse
|
12
|
RRM2 Alleviates Doxorubicin-Induced Cardiotoxicity through the AKT/mTOR Signaling Pathway. Biomolecules 2022; 12:biom12020299. [PMID: 35204799 PMCID: PMC8869767 DOI: 10.3390/biom12020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually contributes to irreversible heart failure, has greatly limited the widespread clinical application of DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2) exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However, the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes. Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2 overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion, our experiment established that RRM2 could be a potential treatment in reversing DOX-induced cardiac dysfunction.
Collapse
|
13
|
Duelen R, Costamagna D, Gilbert G, Waele LD, Goemans N, Desloovere K, Verfaillie CM, Sipido KR, Buyse GM, Sampaolesi M. Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy. Stem Cell Reports 2022; 17:352-368. [PMID: 35090586 PMCID: PMC8828550 DOI: 10.1016/j.stemcr.2021.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy.
Collapse
Affiliation(s)
- Robin Duelen
- Translational Cardiomyology Lab, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 - O&N4 - bus 804, 3000 Leuven, Belgium
| | - Domiziana Costamagna
- Translational Cardiomyology Lab, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 - O&N4 - bus 804, 3000 Leuven, Belgium; Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Guillaume Gilbert
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Liesbeth De Waele
- Pediatric Neurology, University Hospitals Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nathalie Goemans
- Pediatric Neurology, University Hospitals Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute Leuven, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Karin R Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Gunnar M Buyse
- Pediatric Neurology, University Hospitals Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 - O&N4 - bus 804, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
14
|
Rong Z, Chen H, Zhang Z, Zhang Y, Ge L, Lv Z, Zou Y, Lv J, He Y, Li W, Chen L. Identification of cardiomyopathy-related core genes through human metabolic networks and expression data. BMC Genomics 2022; 23:47. [PMID: 35016605 PMCID: PMC8753885 DOI: 10.1186/s12864-021-08271-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistinguishable types of cardiomyopathy.
Results
Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on a human metabolic network. First, according to the differentially expressed genes between different states (DCM/ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient difference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk module that was significantly related to DCM and ICM was determined according to the significance of the module score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions significantly related to cardiomyopathy and could distinguish between samples of different states.
Conclusion
The identified core genes might serve as potential biomarkers of cardiomyopathy. This research will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of cardiomyopathy.
Collapse
|
15
|
RRM2 Improves Cardiomyocyte Proliferation after Myocardial Ischemia Reperfusion Injury through the Hippo-YAP Pathway. DISEASE MARKERS 2021; 2021:5089872. [PMID: 34868394 PMCID: PMC8639268 DOI: 10.1155/2021/5089872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Objective Ribonucleotide reductase M2 (RRM2) as an enzyme that catalyzes the deoxyreduction of nucleosides to deoxyribonucleoside triphosphate (dNTP) has been extensively studied, and it plays a crucial role in regulating cell proliferation. However, its role in ischemia-reperfusion injury (I/RI) is still unclear. Methods SD rats were used as the research object to detect the expression of RRM2 in the myocardium by constructing an I/RI model. At the same time, primary SD neonatal rat cardiomyocytes were extracted, and hypoxia/reoxygenation (H/R) treatment simulated the I/RI model. Using transfection technology to overexpress RRM2 in cardiomyocytes, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to detect the expression of RRM2, Cell Counting Kit-8 (CCK-8) assay was used to detect cell viability, and immunofluorescence staining was used to detect Ki67 and EdU-positive cells. Western blot (WB) technology was used to detect YAP and its phosphorylation expression. Results qRT-PCR results indicated that the expression of RRM2 was inhibited in the model group, and cardiomyocytes overexpressing RRM2 can obviously promote the proliferation of primary cardiomyocytes and improve the damage of cardiac structure and function caused by I/R. At the same time, RRM2 can promote the increase of YAP protein expression and the increase of Cyclin D1 mRNA expression. Conclusion RRM2 expression was downregulated in myocardial tissue with I/R. After overexpression of RRM2, cardiomyocyte proliferation was upregulated and the Hippo-YAP signaling pathway was activated.
Collapse
|
16
|
Barrick SK, Greenberg MJ. Cardiac myosin contraction and mechanotransduction in health and disease. J Biol Chem 2021; 297:101297. [PMID: 34634306 PMCID: PMC8559575 DOI: 10.1016/j.jbc.2021.101297] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
17
|
He L, Wang X, Jin Y, Xu W, Guan Y, Wu J, Han S, Liu G. Identification and validation of the miRNA-mRNA regulatory network in fetoplacental arterial endothelial cells of gestational diabetes mellitus. Bioengineered 2021; 12:3503-3515. [PMID: 34233591 PMCID: PMC8806558 DOI: 10.1080/21655979.2021.1950279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) increases the risk of fetal heart malformations, though little is known about the mechanism of hyperglycemia-induced heart malformations. Thus, we aimed to reveal the global landscape of miRNAs and mRNAs in GDM-exposed fetoplacental arterial endothelial cells (dAECs) and establish regulatory networks for exploring the pathophysiological mechanism of fetal heart malformations in maternal hyperglycemia. Gene Expression Omnibus (GEO) datasets were used, and identification of differentially expressed miRNAs (DEMs) and genes (DEGs) in GDM was based on a previous sequencing analysis of dAECs. A miRNA-mRNA network containing 20 DEMs and 65 DEGs was established using DEMs altered in opposite directions to DEGs. In an in vivo study, we established a streptozotocin-induced pregestational diabetes mellitus (PGDM) mouse model and found the fetal cardiac wall thickness in different regions to be dramatically increased in the PGDM grouValidation of DEMs and DEGs in the fetal heart showed significantly upregulated expression of let-7e-5p, miR-139-5p and miR-195-5p and downregulated expression of SGOL1, RRM2, RGS5, CDK1 and CENPA. In summary, we reveal the miRNA-mRNA regulatory network related to fetal cardiac development disorders in offspring, which may shed light on the potential molecular mechanisms of fetal cardiac development disorders during maternal hyperglycemia.
Collapse
Affiliation(s)
- Longkai He
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ya Jin
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weipeng Xu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yi Guan
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jingchao Wu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shasha Han
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Guosheng Liu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Prakoso D, Tate M, Blasio M, Ritchie R. Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci (Lond) 2021; 135:1369-1387. [PMID: 34076247 PMCID: PMC8187922 DOI: 10.1042/cs20210052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the prevalence of heart failure by 6-8-fold, independent of other comorbidities such as hypertension and coronary artery disease, a phenomenon termed diabetic cardiomyopathy. Several key signalling pathways have been identified that drive the pathological changes associated with diabetes-induced heart failure. This has led to the development of multiple pharmacological agents that are currently available for clinical use. While fairly effective at delaying disease progression, these treatments do not reverse the cardiac damage associated with diabetes. One potential alternative avenue for targeting diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene therapy, which has shown great versatility in a multitude of disease settings. AAV gene therapy has the potential to target specific cells or tissues, has a low host immune response and has the possibility to represent a lifelong cure, not possible with current conventional pharmacotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy as a treatment for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Darnel Prakoso
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
| | - Mitchel Tate
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
| | - Miles J. De Blasio
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H. Ritchie
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
20
|
Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Arch Biochem Biophys 2020; 699:108733. [PMID: 33388313 DOI: 10.1016/j.abb.2020.108733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.
Collapse
|
21
|
Powers JD, Kooiker KB, Mason AB, Teitgen AE, Flint GV, Tardiff JC, Schwartz SD, McCulloch AD, Regnier M, Davis J, Moussavi-Harami F. Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts. JCI Insight 2020; 5:142446. [PMID: 32931484 PMCID: PMC7605524 DOI: 10.1172/jci.insight.142446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension–generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies. Tuning the molecular mechanisms that govern the twitch tension of cardiomyopathic hearts counteracts mechanical drivers of adverse remodeling.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Kristina B Kooiker
- Division of Cardiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Allison B Mason
- Department of Chemistry and Biochemistry, College of Science, and
| | - Abigail E Teitgen
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Galina V Flint
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrew D McCulloch
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Regnier
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jennifer Davis
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
McCabe KJ, Aboelkassem Y, Teitgen AE, Huber GA, McCammon JA, Regnier M, McCulloch AD. Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere. Arch Biochem Biophys 2020; 695:108582. [PMID: 32956632 DOI: 10.1016/j.abb.2020.108582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
2'-deoxy-ATP (dATP) is a naturally occurring small molecule that has shown promise as a therapeutic because it significantly increases cardiac myocyte force development even at low dATP/ATP ratios. To investigate mechanisms by which dATP alters myosin crossbridge dynamics, we used Brownian dynamics simulations to calculate association rates between actin and ADP- or dADP-bound myosin. These rates were then directly incorporated in a mechanistic Monte Carlo Markov Chain model of cooperative sarcomere contraction. A unique combination of increased powerstroke and detachment rates was required to match experimental steady-state and kinetic data for dATP force production in rat cardiac myocytes when the myosin attachment rate in the model was constrained by the results of a Brownian dynamics simulation. Nearest-neighbor cooperativity was seen to contribute to, but not fully explain, the steep relationship between dATP/ATP ratio and steady-state force-development observed at lower dATP concentrations. Dynamic twitch simulations performed using measured calcium transients as inputs showed that the effects of dATP on the crossbridge alone were not sufficient to explain experimentally observed enhancement of relaxation kinetics by dATP treatment. Hence, dATP may also affect calcium handling even at low concentrations. By enabling the effects of dATP on sarcomere mechanics to be predicted, this multi-scale modeling framework may elucidate the molecular mechanisms by which dATP can have therapeutic effects on cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325, Lysaker, Norway.
| | - Yasser Aboelkassem
- San Diego State University, Department of Mechanical Engineering, 5500 Campanile Drive San Diego, CA, 92182, USA
| | - Abigail E Teitgen
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| | - Gary A Huber
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - J Andrew McCammon
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Box 355061 Seattle, WA, 98195, USA
| | - Andrew D McCulloch
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Saxena R, Weintraub NL, Tang Y. Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation. Med Hypotheses 2020; 135:109451. [PMID: 31731058 PMCID: PMC6983341 DOI: 10.1016/j.mehy.2019.109451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023]
Abstract
Ischemic cardiac preconditioning protects the heart during myocardial infarction by activating critical cardioprotective genes such as eNOS, SOD, and HO-1. Clinical trials only show marginal effects of conventional preconditioning strategies, however, in part due to transient activation of cardioprotective genes. Recent studies have shown that N6-methyladenosine (m6A) mRNA methylation is the most abundant RNA modification in eukaryotes, and governs mRNA stability and, in turn, the level of protein expression. We hypothesize that regulation of m6A mRNA methylation levels of cardioprotective mRNAs will result in stable expression of the cardioprotective proteins, rendering ischemic cardiac preconditioning more robust and reducing infarct size. To test this hypothesis, we will test the effects of introducing m6A methylases/demethylases into ischemic preconditioned/post conditioned hearts and subjecting them to myocardial infarction. We will assess the half-life of key cardioprotective mRNAs (e.g., eNOS, SOD, and HO-1) and cardiac apoptosis to determine which m6A methylases/demethylases have a synergistic effect on cardiac preconditioning.
Collapse
Affiliation(s)
- Richa Saxena
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Ardrey Kell High School, Charlotte, NC, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
24
|
Kolwicz SC, Hall JK, Moussavi-Harami F, Chen X, Hauschka SD, Chamberlain JS, Regnier M, Odom GL. Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate. JACC Basic Transl Sci 2019; 4:778-791. [PMID: 31998848 PMCID: PMC6978556 DOI: 10.1016/j.jacbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
Abstract
Mutations in the gene encoding for dystrophin leads to structural and functional deterioration of cardiomyocytes and is a hallmark of cardiomyopathy in Duchenne muscular dystrophy (DMD) patients. Administration of recombinant adeno-associated viral vectors delivering microdystrophin or ribonucleotide reductase (RNR), under muscle-specific regulatory control, rescues both baseline and high workload-challenged hearts in an aged, DMD mouse model. However, only RNR treatments improved both systolic and diastolic function under those conditions. Cardiac-specific recombinant adeno-associated viral treatment of RNR holds therapeutic promise for improvement of cardiomyopathy in DMD patients.
Collapse
Key Words
- CK8, miniaturized murine creatine kinase regulatory cassette
- CMV, cytomegalovirus
- DMD, Duchenne muscular dystrophy
- RNR, ribonucleotide reductase
- cTnT, cardiac troponin T
- cardiomyopathy
- dADP, deoxy-adenosine diphosphate
- dATP, deoxy-adenosine triphosphate
- diastolic dysfunction
- dystrophin
- mdx, mouse muscular dystrophy model
- rAAV, recombinant adeno-associated viral vector
- recombinant adeno-associated virus vectors
- ribonucleotide reductase
- μDys, microdystrophin
Collapse
Affiliation(s)
- Stephen C. Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Xiolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Stephen D. Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Michael Regnier
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Powers JD, Yuan CC, McCabe KJ, Murray JD, Childers MC, Flint GV, Moussavi-Harami F, Mohran S, Castillo R, Zuzek C, Ma W, Daggett V, McCulloch AD, Irving TC, Regnier M. Cardiac myosin activation with 2-deoxy-ATP via increased electrostatic interactions with actin. Proc Natl Acad Sci U S A 2019; 116:11502-11507. [PMID: 31110001 PMCID: PMC6561254 DOI: 10.1073/pnas.1905028116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The naturally occurring nucleotide 2-deoxy-adenosine 5'-triphosphate (dATP) can be used by cardiac muscle as an alternative energy substrate for myosin chemomechanical activity. We and others have previously shown that dATP increases contractile force in normal hearts and models of depressed systolic function, but the structural basis of these effects has remained unresolved. In this work, we combine multiple techniques to provide structural and functional information at the angstrom-nanometer and millisecond time scales, demonstrating the ability to make both structural measurements and quantitative kinetic estimates of weak actin-myosin interactions that underpin sarcomere dynamics. Exploiting dATP as a molecular probe, we assess how small changes in myosin structure translate to electrostatic-based changes in sarcomere function to augment contractility in cardiac muscle. Through Brownian dynamics simulation and computational structural analysis, we found that deoxy-hydrolysis products [2-deoxy-adenosine 5'-diphosphate (dADP) and inorganic phosphate (Pi)] bound to prepowerstroke myosin induce an allosteric restructuring of the actin-binding surface on myosin to increase the rate of cross-bridge formation. We then show experimentally that this predicted effect translates into increased electrostatic interactions between actin and cardiac myosin in vitro. Finally, using small-angle X-ray diffraction analysis of sarcomere structure, we demonstrate that the proposed increased electrostatic affinity of myosin for actin causes a disruption of the resting conformation of myosin motors, resulting in their repositioning toward the thin filament before activation. The dATP-mediated structural alterations in myosin reported here may provide insight into an improved criterion for the design or selection of small molecules to be developed as therapeutic agents to treat systolic dysfunction.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle, WA 98109;
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Chen-Ching Yuan
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Kimberly J McCabe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Jason D Murray
- Department of Bioengineering, University of Washington, Seattle, WA 98109
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109
| | | | - Galina V Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Romi Castillo
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Carla Zuzek
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Andrew D McCulloch
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109;
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109
| |
Collapse
|
26
|
Nunez Lopez YO, Messi ML, Pratley RE, Zhang T, Delbono O. Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. Exp Gerontol 2018; 108:35-40. [PMID: 29596868 DOI: 10.1016/j.exger.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/25/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022]
Abstract
We recently reported that in addition to its classical cytoplasmic location, the fast skeletal muscle Troponin T3 (TnT3) shuttles to the nucleus, where it appears to perform nonclassical transcription regulatory functions. Importantly, changes in the composition of the nucleus-localized pool of TnT3 and its fragments contribute to age-dependent muscle damage and wasting. Here, using ChIP-Seq, we demonstrate that TnT3 associates with DNA consensus sequences including the TGCCT motif, which is required for p53 binding to the promoter area of p53-related genes. Gene set enrichment analysis further demonstrated that the p53 pathway was the most significantly enriched pathway among genes annotated to the TnT3 ChIP-Seq peaks. We further demonstrated a strong correlation (r = 0.78, P = 1 × 10-4) between the expression levels of TNNT3 and TP53-inducible ribonucleotide reductase regulatory subunit M2B (RRM2B) in skeletal muscle tissue of 21 lean non-diabetic human subjects and a significant (P < 0.05) reduction in the levels of both gene transcripts in the third age-tertile group [42.3-70 years of age (yoa)] as compared to the second age-tertile (31.3-42.3 yoa). Of note, both TNNT3 and RRM2B expression levels negatively associated with total body fat mass (each with r = 0.49, P < 0.05), whereas RRM2B positively correlated with pancreatic β cell function (rRRM2B~HOMA-B = 0.47, P = 0.047). This work suggests that reduced TNNT3 gene expression is another mechanism leading to reduced TnT3 and excitation-contraction coupling with aging. Consequently, TnT3 appears to contribute to age-related sarcopenia and possibly other age-related deficiencies such as muscle insulin resistance and β cell dysfunction by interacting with TnT3-binding sequences in the promoter area of p53-related genes, among others, and consequently modulating the transcriptional regulation of these target genes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, United States.
| | - Maria Laura Messi
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, United States
| | - Tan Zhang
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Osvaldo Delbono
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
27
|
Adeno-Associated Virus Gene Therapy: Translational Progress and Future Prospects in the Treatment of Heart Failure. Heart Lung Circ 2018; 27:1285-1300. [PMID: 29703647 DOI: 10.1016/j.hlc.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in treatment over the past decade, heart failure remains a significant public health burden and a leading cause of death in the developed world. Gene therapy provides a promising approach for preventing and reversing cardiac abnormalities, however, clinical application has shown limited success to date. A substantial effort is being invested into the development of recombinant adeno-associated viruses (AAVs) for cardiac gene therapy as AAV gene therapy offers a high safety profile and provides sustained and efficient transgene expression following a once-off administration. Due to the physiological, anatomical and genetic similarities between large animals and humans, preclinical studies using large animal models for AAV gene therapy are crucial stepping stones between the laboratory and the clinic. Many molecular targets selected to treat heart failure using AAV gene therapy have been chosen because of their potential to regulate and restore cardiac contractility. Other genes targeted with AAV are involved with regulating angiogenesis, beta-adrenergic sensitivity, inflammation, physiological signalling and metabolism. While significant progress continues to be made in the field of AAV cardiac gene therapy, challenges remain in overcoming host neutralising antibodies, improving AAV vector cardiac-transduction efficiency and selectivity, and optimising the dose, route and method of delivery.
Collapse
|
28
|
Teichman SL, Thomson KS, Regnier M. Cardiac Myosin Activation with Gene Therapy Produces Sustained Inotropic Effects and May Treat Heart Failure with Reduced Ejection Fraction. Handb Exp Pharmacol 2017; 243:447-464. [PMID: 27590227 DOI: 10.1007/164_2016_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inotropic therapy is effective for the treatment of heart failure with reduced ejection fraction, but has been limited by adverse long-term safety profiles, development of tolerance, and the need for chronic parenteral administration. A safe and convenient therapeutic agent that produces sustained inotropic effects could improve symptoms, functional capacity, and quality of life. Small amounts of 2-deoxy-adenosine triphosphate (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin crossbridge cycling with greater force generation during each contraction. This paper describes the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy to deliver and upregulate ribonucleotide reductase (R1R2), the enzyme responsible for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with a benign safety profile. Further animal studies are appropriate with the goal of testing this agent in patients with heart failure.
Collapse
Affiliation(s)
- Sam L Teichman
- BEAT Biotherapeutics Corp, 1380 112th Ave., NE, Suite 200, Seattle, WA, 98004, USA.
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Olafsson S, Whittington D, Murray J, Regnier M, Moussavi-Harami F. Fast and sensitive HPLC-MS/MS method for direct quantification of intracellular deoxyribonucleoside triphosphates from tissue and cells. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:90-97. [PMID: 29032043 DOI: 10.1016/j.jchromb.2017.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023]
Abstract
Deoxyribonucleoside triphosphates (dNTPs) are used in DNA synthesis and repair. Even slight imbalances can have adverse biological effects. This study validates a fast and sensitive HPLC-MS/MS method for direct quantification of intracellular dNTPs from tissue. Equal volumes of methanol and water were used for nucleotide extraction from mouse heart and gastrocnemius muscle and isolated cardiomyocytes followed by centrifugation to remove particulates. The resulting supernatant was analyzed on a porous graphitic carbon chromatography column using an elution gradient of ammonium acetate in water and ammonium hydroxide in acetonitrile with a run time of just 10min. Calibration curves of all dNTPs ranged from 62.5 to 2500fmol injections and demonstrated excellent linearity (r2>0.99). The within day and between day precision, as measured by the coefficient of variation (CV (%)), was <25% for all points, including the lower limit of quantification (LLOQ). The inter-day accuracy was within 12% of expected concentration for the LLOQ and within 7% for all other points on the calibration curve. The intra-day accuracy was within 22% for the LLOQ and within 11% for all points on the curve. Compared to existing methods, this study presents a faster and more sensitive method for dNTP quantification.
Collapse
Affiliation(s)
- Sigurast Olafsson
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109, United States
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Box 357610 H172, Health Science Building, Seattle, WA 98195-7610, United States
| | - Jason Murray
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, HSB Room G424, Box 357290, Seattle, WA 98195-7290, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, United States
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
30
|
Regnier M, Moussavi-Harami F. Gene Therapy for Nonischemic Cardiomyopathy: Moving Forward by Learning From Lessons of the Past. J Am Coll Cardiol 2017; 70:1757-1759. [PMID: 28958333 DOI: 10.1016/j.jacc.2017.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Michael Regnier
- Department of Bioengineering, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
31
|
Nowakowski SG, Regnier M, Daggett V. Molecular mechanisms underlying deoxy-ADP.Pi activation of pre-powerstroke myosin. Protein Sci 2017; 26:749-762. [PMID: 28097776 DOI: 10.1002/pro.3121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/19/2023]
Abstract
Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2-deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross-bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross-bridge formation and reveal a potential mechanism that may underlie dATP-induced improvements in cardiac function.
Collapse
Affiliation(s)
- Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013
| |
Collapse
|
32
|
Translation of Cardiac Myosin Activation with 2-deoxy-ATP to Treat Heart Failure via an Experimental Ribonucleotide Reductase-Based Gene Therapy. JACC Basic Transl Sci 2016; 1:666-679. [PMID: 28553667 PMCID: PMC5444879 DOI: 10.1016/j.jacbts.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite recent advances, chronic heart failure remains a significant and growing unmet medical need, reaching epidemic proportions carrying substantial morbidity, mortality, and costs. A safe and convenient therapeutic agent that produces sustained inotropic effects could ameliorate symptoms and improve functional capacity and quality of life. The authors discovered that small amounts of 2-deoxy-ATP (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin cross-bridge cycling with greater force generation during each contraction. They describe the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy that up-regulates ribonucleotide reductase, the rate-limiting enzyme for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with no toxicity or safety concerns identified to date. Further animal studies are being conducted with the goal of testing this agent in patients with heart failure.
Collapse
|
33
|
Abstract
Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA.
| | - Michael G Katz
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| | - Charles R Bridges
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| | - Roger J Hajjar
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| |
Collapse
|