1
|
Takeshima Y. Expansion of Splice-Switching Therapy with Antisense Oligonucleotides. Int J Mol Sci 2025; 26:2270. [PMID: 40076889 PMCID: PMC11899878 DOI: 10.3390/ijms26052270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Since 2016, splice-switching therapy, in which splicing is controlled by antisense oligonucleotides, has been applied in clinical practice for spinal muscular atrophy and Duchenne muscular dystrophy. In the former disease, this therapy induces exon inclusion, while, in the latter, it induces exon skipping, leading expression of functional proteins. Basic and clinical studies of splice-switching therapy for many monogenic diseases have now been conducted. The molecular mechanisms of splice-switching therapy include not only the induction of exon inclusion and skipping, but also the induction of pseudoexon skipping and suppression of splicing sites generated by mutations. In addition, therapies that alter protein function by regulating splicing are being investigated not only for monogenic diseases but also for non-monogenic ones such as cancer and immune-related disorders. It is expected that many of these basic studies will be translated into clinical applications. This review describes the current status of basic research and clinical applications of splice-switching therapy to promote the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| |
Collapse
|
2
|
Puerta Cavanzo N, Riesmeijer SA, Holt-Kedde IL, Werker PMN, Piersma B, Olinga P, Bank RA. Verteporfin ameliorates fibrotic aspects of Dupuytren's disease nodular fibroblasts irrespective the activation state of the cells. Sci Rep 2022; 12:13940. [PMID: 35977978 PMCID: PMC9386017 DOI: 10.1038/s41598-022-18116-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
Dupuytren’s disease is a chronic, progressive fibroproliferative condition of the hand fascia which results in digital contraction. So far, treatments do not directly interfere with the (myo)fibroblasts that are responsible for the formation of the collagen-rich cords and its contraction. Here we investigated whether verteporfin (VP) is able to inhibit the activation and subsequent differentiation of DD nodular fibroblasts into myofibroblasts. Fibroblasts were isolated from nodules of 7 Dupuytren patients. Cells are treated (1) for 48 h with 5 ng/ml transforming growth factor β1 (TGF-β1) followed by 48 h with/without 250 nM VP in the absence of TGF-β1, or treated (2) for 48 h with TGF-β1 followed by 48 h with/without VP in the presence of TGF-β1. mRNA levels were measured by means of Real-Time PCR, and proteins were visualized by means of Western blotting and/or immunofluorescence. Quantitative data were statistically analyzed with GraphPad Prism using the paired t-test. We found that fibroblasts activated for 48 h with TGF-β1 show a decrease in mRNA levels of COL1A1, COL3A1, COL4A1, PLOD2, FN1EDA, CCN2 and SERPINE1 when exposed for another 48 h with VP, whereas no decrease is seen for ACTA2, YAP1, SMAD2 and SMAD3 mRNA levels. Cells exposed for an additional 48 h with TGF-β1, but now in the presence of VP, are not further activated anymore, whereas in the absence of VP the cells continue to differentiate into myofibroblasts. Collagen type I, fibronectin-extra domain A, α-smooth muscle actin, YAP1, Smad2 and Smad3 protein levels were attenuated by both VP treatments. We conclude that VP has strong anti-fibrotic properties: it is able to halt the differentiation of fibroblasts into myofibroblasts, and is also able to reverse the activation status of fibroblasts. The decreased protein levels of YAP1, Smad2 and Smad3 in the presence of VP explain in part the strong anti-fibrotic properties of VP. Verteporfin is clinically used as a photosensitizer for photodynamic therapy to eliminate abnormal blood vessels in the eye to attenuate macular degeneration. The antifibrotic properties of VP do not rely on photo-activation, as we used the molecule in its non-photoinduced state.
Collapse
Affiliation(s)
- Nataly Puerta Cavanzo
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,MATRIX Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Sophie A Riesmeijer
- Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Iris L Holt-Kedde
- Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Paul M N Werker
- Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Bram Piersma
- MATRIX Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ruud A Bank
- MATRIX Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
3
|
Lee HH, Satish L. Biological Targets for Dupuytren Disease. Ann Plast Surg 2021; 87:355-358. [PMID: 33587458 DOI: 10.1097/sap.0000000000002739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Dupuytren disease is a connective tissue disorder occurring on the palm, causing flexion contractures of fingers. There is a pressing need for therapeutic interventions that can slow, stop, or even incrementally reverse the progression of the disease. Numerous in vitro studies have shed light on cellular and molecular agents that contribute to contractures. This article comprehensively reviews various growth factors that can be targeted to prevent and limit the progression and recurrence of Dupuytren contracture (DC). Fibroblasts are the major cell population that has been reported for the contractures in DC, and they are also known to exacerbate the cytokine production. Limiting the fibroblast function by targeting the growth factor production will be of great benefit in treating DC. This review will focus on the studies that have shown to limit the exaggerated function of fibroblasts by reducing the expression of profibrotic growth factors by using antagonizing agents.
Collapse
Affiliation(s)
- Hannah H Lee
- From the Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
4
|
Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4:232-240. [PMID: 34414317 PMCID: PMC8355726 DOI: 10.31662/jmaj.2021-0019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
In 1995, we were the first to propose antisense oligonucleotide (ASO)-mediated exon-skipping therapy for the treatment of Duchenne muscular dystrophy (DMD), a noncurable, progressive muscle-wasting disease. DMD is caused by deletion mutations in one or more exons of the DMD gene that shift the translational reading frame and create a premature stop codon, thus prohibiting dystrophin production. The therapy aims to correct out-of-frame mRNAs to produce in-frame transcripts by removing an exon during splicing, with the resumption of dystrophin production. As this treatment is recognized as the most promising, many extensive studies have been performed to develop ASOs that induce the skipping of DMD exons. In 2016, an ASO designed to skip exon 51 was first approved by the Food and Drug Administration, which accelerated studies on the use of ASOs to treat other monogenic diseases. The ease of mRNA editing by ASO-mediated exon skipping has resulted in the further application of exon-skipping therapy to nonmonogenic diseases, such as diabetes mellites. Recently, this precision medicine strategy was drastically transformed for the emergent treatment of only one patient with one ASO, which represents a future aspect of ASO-mediated exon-skipping therapy for extremely rare diseases. Herein, the invention of ASO-mediated exon-skipping therapy for DMD and the current applications of ASO-mediated exon-skipping therapies are reviewed, and future perspectives on this therapeutic strategy are discussed. This overview will encourage studies on ASO-mediated exon-skipping therapy and will especially contribute to the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
5
|
Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021; 8:644678. [PMID: 34026781 PMCID: PMC8139419 DOI: 10.3389/fmed.2021.644678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused considerable socio-economic burden, which fueled the development of treatment strategies and vaccines at an unprecedented speed. However, our knowledge on disease recovery is sparse and concerns about long-term pulmonary impairments are increasing. Causing a broad spectrum of symptoms, COVID-19 can manifest as acute respiratory distress syndrome (ARDS) in the most severely affected patients. Notably, pulmonary infection with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the causing agent of COVID-19, induces diffuse alveolar damage (DAD) followed by fibrotic remodeling and persistent reduced oxygenation in some patients. It is currently not known whether tissue scaring fully resolves or progresses to interstitial pulmonary fibrosis. The most aggressive form of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF). IPF is a fatal disease that progressively destroys alveolar architecture by uncontrolled fibroblast proliferation and the deposition of collagen and extracellular matrix (ECM) proteins. It is assumed that micro-injuries to the alveolar epithelium may be induced by inhalation of micro-particles, pathophysiological mechanical stress or viral infections, which can result in abnormal wound healing response. However, the exact underlying causes and molecular mechanisms of lung fibrosis are poorly understood due to the limited availability of clinically relevant models. Recently, the emergence of SARS-CoV-2 with the urgent need to investigate its pathogenesis and address drug options, has led to the broad application of in vivo and in vitro models to study lung diseases. In particular, advanced in vitro models including precision-cut lung slices (PCLS), lung organoids, 3D in vitro tissues and lung-on-chip (LOC) models have been successfully employed for drug screens. In order to gain a deeper understanding of SARS-CoV-2 infection and ultimately alveolar tissue regeneration, it will be crucial to optimize the available models for SARS-CoV-2 infection in multicellular systems that recapitulate tissue regeneration and fibrotic remodeling. Current evidence for SARS-CoV-2 mediated pulmonary fibrosis and a selection of classical and novel lung models will be discussed in this review.
Collapse
Affiliation(s)
- Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Thierry Guenat
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
- Organoid Core, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Raktoe RS, van Haasterecht L, Antonovaite N, Bartolini L, van Doorn R, van Zuijlen PPM, Groot ML, El Ghalbzouri A. The effect of TGFβRI inhibition on extracellular matrix structure and stiffness in hypertrophic scar-specific fibroblast-derived matrix models. Biochem Biophys Res Commun 2021; 559:245-251. [PMID: 33964734 DOI: 10.1016/j.bbrc.2021.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Rajiv S Raktoe
- Department of Dermatology, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands.
| | - Ludo van Haasterecht
- LaserLaB Amsterdam, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands; Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, P.O. Box 1074, 1940 EB, Beverwijk, the Netherlands; Amsterdam UMC Location VUmc, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Nelda Antonovaite
- LaserLaB Amsterdam, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Luca Bartolini
- LaserLaB Amsterdam, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands
| | - Paul P M van Zuijlen
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, P.O. Box 1074, 1940 EB, Beverwijk, the Netherlands; Amsterdam UMC Location VUmc, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Marie Louise Groot
- LaserLaB Amsterdam, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | | |
Collapse
|
7
|
Raktoe RS, Rietveld MH, Out-Luiting JJ, Kruithof-de Julio M, van Zuijlen PPM, van Doorn R, El Ghalbzouri A. The effect of TGFβRI inhibition on fibroblast heterogeneity in hypertrophic scar 2D in vitro models. Burns 2021; 47:1563-1575. [PMID: 33558094 DOI: 10.1016/j.burns.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
In burn patients, wound healing is often accompanied by hypertrophic scarring (HTS), resulting in both functional and aesthetic problems. HTSs are characterized by abundant presence of myofibroblasts (MFs) residing in the dermis. HTS development and MF persistence is primarily regulated by TGF-β signalling. A promising method to target the transforming growth factor receptor I (TGFβRI; also known as activin-like kinase 5 (ALK5)) is by making use of exon skipping through antisense oligonucleotides. In HTS the distinguishing border between the papillary dermis and the reticular dermis is completely abrogated, thus exhibiting a one layered dermis containing a heterogenous fibroblast population, consisting of papillary fibroblasts (PFs), reticular fibroblasts (RFs) and MFs. It has been proposed that PFs, as opposed to RFs, exhibit anti-fibrotic properties. Currently, it is still unclear which fibroblast subtype is most affected by exon skipping treatment. Therefore, the aim of this study was to investigate the effect of TGFβRI inhibition by exon skipping in PF, RF and HTS fibroblast monocultures. Morphological analyses revealed the presence of a PF-like population after exon skipping in the different fibroblast cultures. This observation was further confirmed by the expression of genes specific for PFs, demonstrated by qPCR analyses. Further investigations on mRNA and protein level revealed that indeed MFs and to a lesser extent RFs are targeted by exon skipping. Furthermore, collagen gel contraction analysis showed that ALK5 exon skipping reduced TGF-β- induced contraction together with decreased alpha-smooth muscle actin expression levels. In conclusion, we show for the first time that exon skipping primarily targets pro-fibrotic fibroblasts. This could be a promising step towards reduced HTS development of burn tissue.
Collapse
Affiliation(s)
- Rajiv S Raktoe
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands.
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology, LUMC, Leiden, the Netherlands; Department of Urology, University of Bern, Bern, Switzerland
| | - Paul P M van Zuijlen
- Amsterdam UMC Location VUmc, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, the Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | | |
Collapse
|
8
|
Alaimo A, Lorenzoni M, Ambrosino P, Bertossi A, Bisio A, Macchia A, Zoni E, Genovesi S, Cambuli F, Foletto V, De Felice D, Soldovieri MV, Mosca I, Gandolfi F, Brunelli M, Petris G, Cereseto A, Villarroel A, Thalmann G, Carbone FG, Kruithof-de Julio M, Barbareschi M, Romanel A, Taglialatela M, Lunardi A. Calcium cytotoxicity sensitizes prostate cancer cells to standard-of-care treatments for locally advanced tumors. Cell Death Dis 2020; 11:1039. [PMID: 33288740 PMCID: PMC7721710 DOI: 10.1038/s41419-020-03256-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
Therapy resistance is a major roadblock in oncology. Exacerbation of molecular dysfunctions typical of cancer cells have proven effective in twisting oncogenic mechanisms to lethal conditions, thus offering new therapeutic avenues for cancer treatment. Here, we demonstrate that selective agonists of Transient Receptor Potential cation channel subfamily M member 8 (TRPM8), a cation channel characteristic of the prostate epithelium frequently overexpressed in advanced stage III/IV prostate cancers (PCa), sensitize therapy refractory models of PCa to radio, chemo or hormonal treatment. Overall, our study demonstrates that pharmacological-induced Ca2+ cytotoxicity is an actionable strategy to sensitize cancer cells to standard therapies.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alice Macchia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Eugenio Zoni
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Ilaria Mosca
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Francesco Gandolfi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matteo Brunelli
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
| | - George Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
9
|
van der Horst G, van de Merbel AF, Ruigrok E, van der Mark MH, Ploeg E, Appelman L, Tvingsholm S, Jäätelä M, van Uhm J, Kruithof-de Julio M, Thalmann GN, Pelger RCM, Bangma CH, Boormans JL, van der Pluijm G, Zwarthoff EC. Cationic amphiphilic drugs as potential anticancer therapy for bladder cancer. Mol Oncol 2020; 14:3121-3134. [PMID: 32896947 PMCID: PMC7718956 DOI: 10.1002/1878-0261.12793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
More effective therapy for patients with either muscle‐invasive or high‐risk non‐muscle‐invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known. Cationic amphiphilic drugs (CADs) dose‐dependently decreased the viability of a panel of human UCB lines in vitro. CADs induced lysosomal puncta formation, a hallmark of lysosomal leakage. Intravesical instillation of the CAD penfluridol in an orthotopic mouse xenograft model of human UCB resulted in significantly reduced intravesical tumor growth and metastatic progression. Furthermore, treatment of patient‐derived ex vivo cultured human UCB tissue caused significant partial or complete antitumor responses in 97% of the explanted tumor tissues. In conclusion, penfluridol represents a promising treatment option for bladder cancer patients and warrants further clinical evaluation.
Collapse
Affiliation(s)
| | | | - Eline Ruigrok
- Department of Urology, Leiden University Medical Center, The Netherlands
| | | | - Emily Ploeg
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Laura Appelman
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Siri Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäätelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Janneke van Uhm
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Rob C M Pelger
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Chris H Bangma
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Raktoe RS, Rietveld MH, Out-Luiting JJ, Kruithof-de Julio M, van Zuijlen PPM, van Doorn R, Ghalbzouri AE. Exon skipping of TGFβRI affects signalling and ECM expression in hypertrophic scar-derived fibroblasts. Scars Burn Heal 2020; 6:2059513120908857. [PMID: 32528734 PMCID: PMC7263111 DOI: 10.1177/2059513120908857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In burn patients, wound healing is often accompanied by hypertrophic scar (HS) development, resulting in both functional and aesthetic problems. HSs are characterised by abundant presence of myofibroblasts that contribute to overproduction of extracellular matrix (ECM) that is regulated by the TGF-β signalling pathway. Studies have shown that inhibition of TGF-β receptors in fibrotic diseases reduces the fibrotic load. In the present study, we aim to inactivate ALK5, also known as TGF-β receptor I, in human HS fibroblasts by exon skipping using antisense oligonucleotides (AONs). METHODS HS biopsies were used to isolate and set up fibroblast monocultures. AONs targeting ALK5 were supplemented to the fibroblast cultures to induce exon skipping, while pharmacological ALK5 inhibition was induced using SB431542. AON delivery in HS fibroblasts was examined using immunofluorescence (IF), while TGF-β signalling downstream targets, such as Smad2/3, PAI-1, ACTA2, COL1A1 and COL3A1, were analysed using touchdown polymerase chain reaction (PCR), quantitative PCR (qPCR), IF or western blotting. RESULTS Our data clearly demonstrate that AONs were successfully delivered in the nuclei of HS fibroblasts and that functional exon skipping of ALK5 took place as confirmed with touchdown PCR and qPCR. In addition, exon skipping affected the expression of ECM-related genes, such as type I/III collagens, PAI-1 and CCN2. Moreover, AON treatment did not affect the migration of HS fibroblasts in a model for wound healing. CONCLUSION Exon skipping is a promising tool to modulate the TGF-β signalling pathway in HS. This would open a therapeutic window for the treatment of patients suffering from HSs.
Collapse
Affiliation(s)
- Rajiv S Raktoe
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | | | - Paul PM van Zuijlen
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | | |
Collapse
|
11
|
van de Merbel AF, van der Horst G, van der Mark MH, van Uhm JIM, van Gennep EJ, Kloen P, Beimers L, Pelger RCM, van der Pluijm G. An ex vivo Tissue Culture Model for the Assessment of Individualized Drug Responses in Prostate and Bladder Cancer. Front Oncol 2018; 8:400. [PMID: 30333957 PMCID: PMC6176278 DOI: 10.3389/fonc.2018.00400] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
Urological malignancies, including prostate and bladder carcinoma, represent a major clinical problem due to the frequent occurrence of therapy resistance and the formation of incurable distant metastases. As a result, there is an urgent need for versatile and predictive disease models for the assessment of the individualized drug response in urological malignancies. Compound testing on ex vivo cultured patient-derived tumor tissues could represent a promising approach. In this study, we have optimized an ex vivo culture system of explanted human prostate and bladder tumors derived from clinical specimens and human cancer cell lines xenografted in mice. The explanted and cultured tumor slices remained viable and tissue architecture could be maintained for up to 10 days of culture. Treatment of ex vivo cultured human prostate and bladder cancer tissues with docetaxel and gemcitabine, respectively, resulted in a dose-dependent anti-tumor response. The dose-dependent decrease in tumor cells upon administration of the chemotherapeutic agents was preceded by an induction of apoptosis. The implementation and optimization of the tissue slice technology may facilitate the assessment of anti-tumor efficacies of existing and candidate pharmacological agents in the complex multicellular neoplastic tissues from prostate and bladder cancer patients. Our model represents a versatile “near-patient” tool to determine tumor-targeted and/or stroma-mediated anti-neoplastic responses, thus contributing to the field of personalized therapeutics.
Collapse
Affiliation(s)
| | | | | | - Janneke I M van Uhm
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik J van Gennep
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Kloen
- Department of Orthopedic Surgery, Amsterdam UMC, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Lijkele Beimers
- Department of Orthopedic Surgery, MC Slotervaart, Amsterdam, Netherlands
| | - Rob C M Pelger
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
12
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
13
|
Astrologo L, Zoni E, Karkampouna S, Gray PC, Klima I, Grosjean J, Goumans MJ, Hawinkels LJAC, van der Pluijm G, Spahn M, Thalmann GN, Ten Dijke P, Kruithof-de Julio M. ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Front Cell Dev Biol 2017; 5:104. [PMID: 29259971 PMCID: PMC5723291 DOI: 10.3389/fcell.2017.00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.
Collapse
Affiliation(s)
- Letizia Astrologo
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sofia Karkampouna
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Irena Klima
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Joël Grosjean
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Marie J Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Lukas J A C Hawinkels
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Martin Spahn
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
14
|
Parviz M, Toshniwal P, Viola HM, Hool LC, Fear PMW, Wood FM, Gaus K, Iyer KS, Gooding JJ. Real-Time Bioimpedance Sensing of Antifibrotic Drug Action in Primary Human Cells. ACS Sens 2017; 2:1482-1490. [PMID: 28871791 DOI: 10.1021/acssensors.7b00442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibrotic diseases are among the most serious health issues with severe burdens due to their chronic nature and a large number of patients suffering from the debilitating effects and long-term sequelae. Collagenase treatment is a nonsurgical option but has limited results. To date, there is no potent noninvasive solution for fibrosis. Part of the reason for this is the lack of appropriate in vitro live cell screening tools to assess the efficacy of new therapeutical agents. Here, we demonstrate the utility of a cell-based electrochemical impedance biosensor platform to screen the efficacy of potential antifibrotic compounds. The platform employs a label-free and noninvasive strategy to detect the progression of fibrosis and the potency of the antifibrotic molecules in real-time. The fundamental principle that governs this novel system is that dynamic changes in cell shape and adhesion during fibrosis can be measured accurately by monitoring the changes in the impedance. This is achieved by growing the cells on a transparent interdigitated indium tin oxide (ITO) electrodes. It was demonstrated by monitoring the efficacy of a model antifibrotic compound, PXS64, on cells collected from patients with Dupuytren's contracture. We confirmed the validity of the developed biochemical impedance biosensor as an tool for in vitro screening of antifibrotic compounds and provided quantitative information on subcellular influences of the examined chemical molecules using correlative microscopy analyses that monitor the average cell area, cell morphology, and the amount and directionality of the deposited extracellular matrix protein collagen and measurement of cytosolic Ca2+ changes.
Collapse
Affiliation(s)
| | | | | | - Livia C. Hool
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - P. Mark W. Fear
- Burns
Service of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Fiona M. Wood
- Burns
Service of Western Australia, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | | | | | | |
Collapse
|
15
|
CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer. Oncogene 2017; 36:4739-4749. [PMID: 28394345 PMCID: PMC5562855 DOI: 10.1038/onc.2017.87] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/10/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
CRIPTO (CR-1, TDGF1) is a cell surface/secreted oncoprotein actively involved in development and cancer. Here, we report that high expression of CRIPTO correlates with poor survival in stratified risk groups of prostate cancer (PCa) patients. CRIPTO and its signaling partner glucose-regulated protein 78 (GRP78) are highly expressed in PCa metastases and display higher levels in the metastatic ALDHhigh sub-population of PC-3M-Pro4Luc2 PCa cells compared with non-metastatic ALDHlow. Coculture of the osteotropic PC-3M-Pro4Luc2 PCa cells with differentiated primary human osteoblasts induced CRIPTO and GRP78 expression in cancer cells and increases the size of the ALDHhigh sub-population. Additionally, CRIPTO or GRP78 knockdown decreases proliferation, migration, clonogenicity and the size of the metastasis-initiating ALDHhigh sub-population. CRIPTO knockdown reduces the invasion of PC-3M-Pro4Luc2 cells in zebrafish and inhibits bone metastasis in a preclinical mouse model. These results highlight a functional role for CRIPTO and GRP78 in PCa metastasis and suggest that targeting CRIPTO/GRP78 signaling may have significant therapeutic potential.
Collapse
|
16
|
Karkampouna S, Kreulen M, Obdeijn MC, Kloen P, Dorjée AL, Rivellese F, Chojnowski A, Clark I, Kruithof-de Julio M. Connective Tissue Degeneration: Mechanisms of Palmar Fascia Degeneration (Dupuytren's Disease). CURRENT MOLECULAR BIOLOGY REPORTS 2016; 2:133-140. [PMID: 27617187 PMCID: PMC4996878 DOI: 10.1007/s40610-016-0045-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dupuytren's disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated by myofibroblasts that deposit collagen and other extracellular matrix proteins. We describe the clinical profile of Dupuytren's disease along with current therapeutic schemes. Recent findings on molecular and cellular parameters that are dysregulated in Dupuytren's disease, which may contribute to the onset of the disease, and the role of resident inflammation promoting fibrosis, are highlighted. We review recent literature focusing on non-myofibroblast cell types (stem cell-like cells), their pro-inflammatory and pro-fibrotic role that may account for abnormal wound healing response.
Collapse
Affiliation(s)
- S. Karkampouna
- Department of Urology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA 2333 The Netherlands
- Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, 3008 Switzerland
| | - M. Kreulen
- Department of Plastic Surgery, Rode Kruis Ziekenhuis, Vondellaan 13, Beverwijk, 1942 LE The Netherlands
| | - M. C. Obdeijn
- Department of Plastic Reconstructive and Hand Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD The Netherlands
| | - P. Kloen
- Department of Orthopedic Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD The Netherlands
| | - A. L. Dorjée
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA The Netherlands
| | - F. Rivellese
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA The Netherlands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A. Chojnowski
- Institute of Orthopaedics, Norfolk and Norwich University Hospital, Norwich, UK
| | - I. Clark
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Marianna Kruithof-de Julio
- Department of Urology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA 2333 The Netherlands
- Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, 3008 Switzerland
| |
Collapse
|
17
|
Satish L, Palmer B, Liu F, Papatheodorou L, Rigatti L, Baratz ME, Kathju S. Developing an animal model of Dupuytren's disease by orthotopic transplantation of human fibroblasts into athymic rat. BMC Musculoskelet Disord 2015; 16:138. [PMID: 26049932 PMCID: PMC4458343 DOI: 10.1186/s12891-015-0597-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Dupuytren’s disease (DD) is a slow, progressive fibroproliferative disorder affecting the palms of the hands. The disease is characterized by the formation of collagen rich- cords which gradually shorten by the action of myofibroblasts resulting in finger contractures. It is a disease that is confined to humans, and a major limiting factor in investigating this disorder has been the lack of a faithful animal model that can recapitulate its distinct biology. The aim of this study was to develop such a model by determining if Dupuytren’s disease (DD)- and control carpal tunnel (CT)-derived fibroblasts could survive in the forepaw of the nude rats and continue to exhibit the distinct characteristics they display in in vitro cultures. Methods 1x107 fluorescently labeled DD- and CT-derived fibroblasts were transplanted into the left and right forepaws of nude rats respectively. Cells were tracked at regular intervals for a period of two months by quantifying emitted fluorescent signal using an IVIS imaging system. After a period of 62 days rat forepaw connective tissues were harvested for histology and total RNA was isolated. Human-specific probes were used to perform real time RT-PCR assays to examine the expression patterns of gene products associated with fibrosis in DD. Rat forepaw skin was also harvested to serve as an internal control. Results Both CT- and DD-derived fibroblasts survived for a period of 62 days, but DD-derived cells showed a significantly greater level of persistent fluorescent signal at the end of this time than did CT-derived cells. mRNA expression levels of α-smooth muscle actin (α-SMA), type I- and type III- collagens were all significantly elevated in the forepaw receiving DD cord-derived fibroblasts in comparison to CT-derived fibroblasts. Masson’s trichrome stain confirmed increased collagen deposition in the forepaw that was injected with DD cord-derived fibroblasts. Conclusions For the first time we describe an animal model for Dupuytren’s disease at the orthotopic anatomical location. We further show that gene expression differences between control (CT) and diseased (DD) derived fibroblasts persist when these cells are transplanted to the forepaw of the nude rat. These preliminary findings indicate that, with further refinements, this animal model holds promise as a baseline for investigating novel therapeutic regimens to determine an effective strategy in treating DD.
Collapse
Affiliation(s)
- Latha Satish
- Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Scaife Hall, Room no. 685.2, Pittsburgh, PA, 15261, USA. .,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Bradley Palmer
- Department of Orthopedic Surgery, Allegheny Health Network, Pittsburgh, PA, USA.
| | - Fang Liu
- Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Scaife Hall, Room no. 685.2, Pittsburgh, PA, 15261, USA.
| | - Loukia Papatheodorou
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Lora Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark E Baratz
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Sandeep Kathju
- Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Scaife Hall, Room no. 685.2, Pittsburgh, PA, 15261, USA. .,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Karkampouna S, Kloen P, Obdeijn MC, Riester SM, van Wijnen AJ, Kruithof-de Julio M. Human Dupuytren's Ex Vivo Culture for the Study of Myofibroblasts and Extracellular Matrix Interactions. J Vis Exp 2015. [PMID: 25938583 DOI: 10.3791/52534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Organ fibrosis or "scarring" is known to account for a high death toll due to the extensive amount of disorders and organs affected (from cirrhosis to cardiovascular diseases). There is no effective treatment and the in vitro tools available do not mimic the in vivo situation rendering the progress of the out of control wound healing process still enigmatic. To date, 2D and 3D cultures of fibroblasts derived from DD patients are the main experimental models available. Primary cell cultures have many limitations; the fibroblasts derived from DD are altered by the culture conditions, lack cellular context and interactions, which are crucial for the development of fibrosis and weakly represent the derived tissue. Real-time PCR analysis of fibroblasts derived from control and DD samples show that little difference is detectable. 3D cultures of fibroblasts include addition of extracellular matrix that alters the native conditions of these cells. As a way to characterize the fibrotic, proliferative properties of these resection specimens we have developed a 3D culture system, using intact human resections of the nodule part of the cord. The system is based on transwell plates with an attached nitrocellulose membrane that allows contact of the tissue with the medium but not with the plastic, thus, preventing the alteration of the tissue. No collagen gel or other extracellular matrix protein substrate is required. The tissue resection specimens maintain their viability and proliferative properties for 7 days. This is the first "organ" culture system that allows human resection specimens from DD patients to be grown ex vivo and functionally tested, recapitulating the in vivo situation.
Collapse
Affiliation(s)
- Sofia Karkampouna
- Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center
| | - Peter Kloen
- Department of Orthopedic Surgery, Academic Medical Center
| | - Miryam C Obdeijn
- Department of Plastic, Reconstructive and Hand Surgery, Academic Medical Center
| | | | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic; Department of Biochemistry and Molecular Biology, Mayo Clinic
| | - Marianna Kruithof-de Julio
- Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center; Department of Dermatology, Leiden University Medical Center;
| |
Collapse
|
19
|
Buijs JT, Matula KM, Cheung H, Kruithof-de Julio M, van der Mark MH, Snoeks TJ, Cohen R, Corver WE, Mohammad KS, Jonkers J, Guise TA, van der Pluijm G. Spontaneous bone metastases in a preclinical orthotopic model of invasive lobular carcinoma; the effect of pharmacological targeting TGFβ receptor I kinase. J Pathol 2015; 235:745-59. [PMID: 25421310 PMCID: PMC4407922 DOI: 10.1002/path.4488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/28/2022]
Abstract
Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most frequently occurring histological subtypes of breast cancer, accounting for 80–90% and 10–15% of the total cases, respectively. At the time of diagnosis and surgical resection of the primary tumour, most patients do not have clinical signs of metastases, but bone micrometastases may already be present. Our aim was to develop a novel preclinical ILC model of spontaneous bone micrometastasis. We used murine invasive lobular breast carcinoma cells (KEP) that were generated by targeted deletion of E-cadherin and p53 in a conditional K14cre;Cdh1(F/F);Trp53(F/F) mouse model of de novo mammary tumour formation. After surgical resection of the growing orthotopically implanted KEP cells, distant metastases were formed. In contrast to other orthotopic breast cancer models, KEP cells readily formed skeletal metastases with minimal lung involvement. Continuous treatment with SD-208 (60 mg/kg per day), an orally available TGFβ receptor I kinase inhibitor, increased the tumour growth at the primary site and increased the number of distant metastases. Furthermore, when SD-208 treatment was started after surgical resection of the orthotopic tumour, increased bone colonisation was also observed (versus vehicle). Both our in vitro and in vivo data show that SD-208 treatment reduced TGFβ signalling, inhibited apoptosis, and increased proliferation. In conclusion, we have demonstrated that orthotopic implantation of murine ILC cells represent a new breast cancer model of minimal residual disease in vivo, which comprises key steps of the metastatic cascade. The cancer cells are sensitive to the anti-tumour effects of TGFβ. Our in vivo model is ideally suited for functional studies and evaluation of new pharmacological intervention strategies that may target one or more steps along the metastatic cascade of events. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jeroen T Buijs
- Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e156. [PMID: 24691207 PMCID: PMC4011125 DOI: 10.1038/mtna.2014.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/06/2014] [Indexed: 11/17/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β) is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5). Antisense oligonucleotides (AONs) were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.
Collapse
|