1
|
Al Mazid MF, Shkel O, Ryu E, Kim J, Shin KH, Kim YK, Lim HS, Lee JS. Aptamer and N-Degron Ensemble (AptaGron) as a Target Protein Degradation Strategy. ACS Chem Biol 2024; 19:2462-2468. [PMID: 39630150 DOI: 10.1021/acschembio.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Target protein degradation (TPD) is a promising strategy for catalytic downregulation of target proteins through various cellular proteolytic pathways. Despite numerous reports on novel TPD mechanisms, the discovery of target-specific ligands remains a major challenge. Unlike small-molecule ligands, aptamers offer significant advantages, owing to their SELEX-based systematic screening method. To fully utilize aptamers for TPD, we designed an aptamer and N-degron ensemble system (AptaGron) that circumvents the need for synthetic conjugations between aptamers and proteolysis-recruiting units. In our AptaGron system, a peptide nucleic acid containing an N-degron peptide and a sequence complementary to the aptamer was designed. Using this system, we successfully degraded three target proteins, tau, nucleolin, and eukaryotic initiation factor 4E (eIF4E), which lack specific small-molecule ligands. Our results highlight the potential of the AptaGron approach as a robust platform for targeted protein degradation.
Collapse
Affiliation(s)
- Mohammad Faysal Al Mazid
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) & Department of Biological Chemistry, KIST School UST, Seoul 02792, South Korea
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Olha Shkel
- Brain Science Institute, Korea Institute of Science and Technology (KIST) & Department of Biological Chemistry, KIST School UST, Seoul 02792, South Korea
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eunteg Ryu
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jiwon Kim
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyung Ho Shin
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yun Kyung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST) & Department of Biological Chemistry, KIST School UST, Seoul 02792, South Korea
| | - Hyun Suk Lim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| |
Collapse
|
2
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
3
|
Kleczewska N, Sikorski PJ, Warminska Z, Markiewicz L, Kasprzyk R, Baran N, Kwapiszewska K, Karpinska A, Michalski J, Holyst R, Kowalska J, Jemielity J. Cellular delivery of dinucleotides by conjugation with small molecules: targeting translation initiation for anticancer applications. Chem Sci 2021; 12:10242-10251. [PMID: 34377411 PMCID: PMC8336483 DOI: 10.1039/d1sc02143e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Targeting cap-dependent translation initiation is one of the experimental approaches that could lead to the development of novel anti-cancer therapies. Synthetic dinucleoside 5',5'-triphosphates cap analogs are potent antagonists of eukaryotic translation initiation factor 4E (eIF4E) in vitro and could counteract elevated levels of eIF4E in cancer cells; however, transformation of these compounds into therapeutic agents remains challenging - they do not easily penetrate into cells and are susceptible to enzymatic cleavage. Here, we tested the potential of several small molecule ligands - folic acid, biotin, glucose, and cholesterol - to deliver both hydrolyzable and cleavage-resistant cap analogs into cells. A broad structure-activity relationship (SAR) study using model fluorescent probes and cap-ligand conjugates showed that cholesterol greatly facilitates uptake of cap analogs without disturbing the interactions with eIF4E. The most potent cholesterol conjugate identified showed apoptosis-mediated cytotoxicity towards cancer cells.
Collapse
Affiliation(s)
- Natalia Kleczewska
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Zofia Warminska
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Lukasz Markiewicz
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Natalia Baran
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- Faculty of Biology University of Warsaw I. Miecznikowa 1 02-096 Warsaw Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Aneta Karpinska
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jaroslaw Michalski
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Robert Holyst
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Joanna Kowalska
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| |
Collapse
|
4
|
Lu T, Zhang H, Zhou J, Ma Q, Yan W, Zhao L, Wu S, Chen H. Aptamer-targeting of Aleutian mink disease virus (AMDV) can be an effective strategy to inhibit virus replication. Sci Rep 2021; 11:4649. [PMID: 33633317 PMCID: PMC7907208 DOI: 10.1038/s41598-021-84223-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Aleutian mink disease (AMD), which is caused by Aleutian mink disease virus (AMDV), is an important contagious disease for which no effective vaccine is yet available. AMD causes major economic losses for mink farmers globally and threatens some carnivores such as skunks, genets, foxes and raccoons. Aptamers have exciting potential for the diagnosis and/or treatment of infectious viral diseases, including AMD. Using a magnetic beads-based systemic evolution of ligands by exponential enrichment (SELEX) approach, we have developed aptamers with activity against AMDV after 10 rounds of selection. After incubation with the ADVa012 aptamer (4 μM) for 48 h, the concentration of AMDV in the supernatant of infected cells was 47% lower than in the supernatant of untreated cells, whereas a random library of aptamers has no effect. The half-life of ADVa012 was ~ 32 h, which is significantly longer than that of other aptamers. Sequences and three dimensions structural modeling of selected aptamers indicated that they fold into similar stem-loop structures, which may be a preferred structure for binding to the target protein. The ADVa012 aptamer was shown to have an effective and long-lasting inhibitory effect on viral production in vitro.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui Zhang
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| | - Qin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenzhuo Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
5
|
Wu W, Yu C, Wang Q, Zhao F, He H, Liu C, Yang Q. Research advances of DNA aptasensors for foodborne pathogen detection. Crit Rev Food Sci Nutr 2019; 60:2353-2368. [PMID: 31298036 DOI: 10.1080/10408398.2019.1636763] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers, referring to single-stranded DNA or RNA molecules can specifically recognize and bind to their targets. Based on their excellent specificity, sensitivity, high affinity, and simplicity of modification, aptamers offer great potential for pathogen detection and biomolecular screening. This article reviews aptamer screening technologies and aptamer application technologies, including gold-nanoparticle lateral flow assays, fluorescence assays, electrochemical assays, colorimetric assays, and surface-enhanced Raman assays, in the detection of foodborne pathogens. Although notable progress (more rapid, sensitive, and accurate) has been achieved in the field, challenges and drawbacks in their applications still remain to be overcome.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, School of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hong He
- Clinical Laboratory, Affiliated Hospital to Qingdao University, Qingdao, China
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, School of Materials Science and Engineering, Qingdao University, Qingdao, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Steinberger J, Chu J, Maïga RI, Sleiman K, Pelletier J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell Mol Life Sci 2017; 74:1681-1692. [PMID: 28004147 PMCID: PMC11107644 DOI: 10.1007/s00018-016-2430-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jennifer Chu
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Katia Sleiman
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada.
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
7
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
8
|
High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Sci Rep 2016; 6:33697. [PMID: 27652575 PMCID: PMC5031971 DOI: 10.1038/srep33697] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct “biased sequences” and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the “biased sequences” was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy.
Collapse
|
9
|
Abstract
Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell-cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity.
Collapse
Affiliation(s)
| | - Pablo Carbonell
- Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Experimental and Health Sciences (DCEXS), Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
10
|
Application Progress of Exonuclease-Assisted Signal Amplification Strategies in Biochemical Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60874-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015; 20:11959-80. [PMID: 26133761 PMCID: PMC6331864 DOI: 10.3390/molecules200711959] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/10/2023] Open
Abstract
Aptamers and SELEX (systematic evolution of ligands by exponential enrichment) technology have gained increasing attention over the past 25 years. Despite their functional similarity to protein antibodies, oligonucleotide aptamers have many unique properties that are suitable for clinical applications and industrialization. Aptamers may be superior to antibodies in fields such as biomarker discovery, in vitro and in vivo diagnosis, precisely controlled drug release, and targeted therapy. However, aptamer commercialization has not occurred as quickly as expected, and few aptamer-based products have yet successfully entered clinical and industrial use. Thus, it is important to critically review some technical barriers of aptamer and SELEX technology per se that may impede aptamer development and application. To date, how to rapidly obtain aptamers with superior bioavailability over antibodies remains the key issue. In this review, we discuss different chemical and structural modification strategies aimed to enhance aptamer bioavailability. We also discuss improvements to SELEX process steps to shorten the selection period and improve the SELEX process success rate. Applications in which aptamers are particularly suited and perform differently or superior to antibodies are briefly introduced.
Collapse
|