1
|
Chawla S, Choudhury S, Das A. Bioengineered MSC GFPCxcr2-Mmp13 Transplantation Alleviates Hepatic Fibrosis by Regulating Mammalian Target of Rapamycin Signaling. Antioxid Redox Signal 2024; 41:110-137. [PMID: 38183635 DOI: 10.1089/ars.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Lee G, Nabil A, Kwon OH, Ebara M. Design of an apoptotic cell-mimetic wound dressing using phosphoserine-chitosan hydrogels. Biomater Sci 2023; 11:7897-7908. [PMID: 37906511 DOI: 10.1039/d3bm01259j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Inflammatory M1 macrophages create a hostile environment that impedes wound healing. Phosphoserine (PS) is a naturally occurring immunosuppressive molecule capable of polarizing macrophages from an inflammatory phenotype (M1) to an anti-inflammatory phenotype (M2). In this study, we designed, fabricated, and characterized PS-immobilized chitosan hydrogels as potential wound dressing materials. A PS group precursor was synthesized via a phosphoramidite reaction and subsequently immobilized onto the chitosan chain through an EDC/N-hydroxysuccinimide reaction using a crosslink moiety HPA. The PS/HPA-conjugated chitosan (CS-PS) was successfully synthesized by deprotecting the PS group in HCl. In addition, the hydrogels were prepared by the HRP/H2O2 enzyme-catalyzed reaction with different PS group contents (0, 7.27, 44.28 and 56.88 μmol g-1). The immobilization of the PS group improved the hydrophilicity of the hydrogels. Interestingly, CS-PS hydrogel treatment upregulated both pro-inflammatory and anti-inflammatory cytokines. This treatment also resulted in alterations in the macrophage cell morphology from the M1 to M2 phenotype. The CS-PS hydrogel significantly accelerated diabetic wound healing. Overall, this study provides insights into the potential of PS-immobilized hydrogel materials for improved inflammatory disease therapy.
Collapse
Affiliation(s)
- Gyeongwoo Lee
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Oh Hyeong Kwon
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Katsushika-ku, Niijuku, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
4
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
5
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:pharmaceutics15041111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
|
6
|
Abouelezz HM, Shehatou GS, Shebl AM, Salem HA. A standardized pomegranate fruit extract ameliorates thioacetamide-induced liver fibrosis in rats via AGE-RAGE-ROS signaling. Heliyon 2023; 9:e14256. [PMID: 36938469 PMCID: PMC10015255 DOI: 10.1016/j.heliyon.2023.e14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
This work aimed to investigate a possible mechanism that may mediate the hepatoprotective effects of pomegranate fruit extract (PFE) against thioacetamide (THIO)-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly allocated into four groups (n = 8 each): control; PFE (150 mg/kg/day, orally); THIO (200 mg/kg, i.p, 3 times a week); and THIO and PFE-treated groups. Oral PFE treatment decreased liver/body weight ratio by 12.4%, diminished serum function levels of ALT, AST, ALP, LDH, and total bilirubin, increased serum albumin, boosted hepatic GSH (by 35.6%) and SOD (by 17.5%), and significantly reduced hepatic levels of ROS, MDA, 4-HNE, AGEs, and RAGE in THIO-fibrotic rats relative to untreated THIO group. Moreover, PFE administration downregulated the hepatic levels of profibrotic TGF-β1 (by 23.0%, P < 0.001) and TIMP-1 (by 41.5%, P < 0.001), attenuated α-SMA protein expression, decreased serum HA levels (by 41.3%), and reduced the hepatic levels of the fibrosis markers hydroxyproline (by 26.0%, P < 0.001), collagen type IV (by 44.3%, P < 0.001) and laminin (by 43.4%, P < 0.001) compared to the untreated THIO group. The histopathological examination has corroborated these findings, where PFE decreased hepatic nodule incidence, attenuated portal necroinflammation and reduced extent of fibrosis. These findings may suggest that oral PFE administration could slow the progression of hepatic fibrogenesis via reducing hepatic levels of AGEs, RAGE, ROS, TGF-β1, and TIMP-1.
Collapse
Affiliation(s)
- Hadeer M. Abouelezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Corresponding author.
| | - George S.G. Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Abdelhadi M. Shebl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Yasser M, Ribback S, Evert K, Utpatel K, Annweiler K, Evert M, Dombrowski F, Calvisi DF. Early Subcellular Hepatocellular Alterations in Mice Post Hydrodynamic Transfection: An Explorative Study. Cancers (Basel) 2023; 15:cancers15020328. [PMID: 36672277 PMCID: PMC9857294 DOI: 10.3390/cancers15020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene of interest that stably integrate into the hepatocyte genome with help of the other consisting sleeping beauty transposase system. The rapid injection of a large volume of DNA-solution through the tail vein induces an acute cardiac congestion that refluxed into the liver, mainly in acinus zone 3, also found through our EM study. Although, HT mediated hydrodynamic force can permeabilizes the fenestrated sinusoidal endothelium of liver, but the mechanism of plasmid incorporation into the hepatocytes remains unclear. Therefore, in the present study, we have hydrodynamically injected 2 mL volume of empty plasmid (transposon vector) or saline solution (control) into the tail vein of anesthetized C57BL/6J/129Sv mice. Liver tissue was resected at different time points from two animal group conditions, i.e., one time point per animal (1, 5, 10-20, 60 min or 24 and 48 hrs after HT) or multiple time points per animal (0, 1, 2, 5, 10, 20 min) and quickly fixed with buffered 4% osmium tetroxide. The tissues fed with only saline solution was also resected and fixed in the similar way. EM evaluation from the liver ultrathin sections reveals that swiftly after 1 min, the hepatocytes near to the central venule in the acinus zone 3 shows cytoplasmic membrane-bound vesicles. Such vesicles increased in both numbers and size to vacuoles and precisely often found in the proximity to the nucleus. Further, EM affirm these vacuoles are also optically empty and do not contain any electron dense material. Although, some of the other hepatocytes reveals sign of cell damage including swollen mitochondria, dilated endoplasmic reticulum, Golgi apparatus and disrupted plasma membrane, but most of the hepatocytes appeared normal. The ultrastructural findings in the mice injected with empty vector or saline injected control mice were similar. Therefore, we have interpreted the vacuole formation as nonspecific endocytosis without specific interactions at the plasma membrane.
Collapse
Affiliation(s)
- Mohd Yasser
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Silvia Ribback
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
- Correspondence:
| | - Katja Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Kirsten Utpatel
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Katharina Annweiler
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Matthias Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Frank Dombrowski
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Diego F. Calvisi
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Dasgupta T, Manickam V. Fibrosis in Liver and Pancreas: a Review on Pathogenic Significance, Diagnostic Options, and Current Management Strategies. Inflammation 2023; 46:824-834. [PMID: 36595108 DOI: 10.1007/s10753-022-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Inflammation is one of the most natural ways of the body's biological response against invading foreign pathogens or injured cells which eventually can lead to a chronic or acute productive response. Fibrosis is an end-stage event associated with an inflammatory response addressed with tissue hardening, discoloration, and most importantly overgrowth of associated tissue. Various organs at different diseased conditions are affected by fibrosis including the liver, pancreas, brain, kidney, and lung. Etiological factors including internal like inflammatory cytokines, growth factors, and oxidative stress and external like alcohol and viruses contribute to the development of fibrosis in both the liver and pancreas. More frequently, these organs are associated with pathogenic progression towards fibrosis from acute and chronic conditions and eventually fail in their functions. The pathogenesis of the organ-fibrotic events mainly depends on the activation of residential stellate cells; these cells help to accumulate collagen in respective organs. Various diagnostic options have been developed recently, and various therapeutic options are in trial to tackle fibrosis. In this review, an overview on fibrosis, the pathogenesis of fibrosis in the liver and pancreas, various diagnostic options developed in recent years, and possible present therapeutic measures to overcome options of fibrosis in the liver and pancreas; thus, restoring the functional status of organs is discussed.
Collapse
Affiliation(s)
- Tiasha Dasgupta
- Department of Bio Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- Department of Bio Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Sakai N, Kamimura K, Miyamoto H, Ko M, Nagoya T, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Soki H, Tokunaga A, Inamine T, Nakashima M, Enomoto H, Kousaka K, Tachiki H, Ohyama K, Terai S. Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression. J Gastroenterol 2023; 58:53-68. [PMID: 36301364 DOI: 10.1007/s00535-022-01929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-β, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan. .,Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata, 951-8510, Japan.
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroyuki Soki
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Ayako Tokunaga
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, 852-8588, Japan.,Organization for Research Promotion, University of the Ryukyus, Nishihara-Cho, Okinawa, 903-0213, Japan
| | - Mikiro Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Hatsune Enomoto
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kazuki Kousaka
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Hidehisa Tachiki
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan.,Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Nagasaki, 852-8501, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
10
|
Vilaseca M, Gracia-Sancho J. Drugs to Modify Liver Fibrosis Progression and Regression. PORTAL HYPERTENSION VII 2022:201-218. [DOI: 10.1007/978-3-031-08552-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Ahirwar DK, Charan M, Mishra S, Verma AK, Shilo K, Ramaswamy B, Ganju RK. Slit2 Inhibits Breast Cancer Metastasis by Activating M1-Like Phagocytic and Antifibrotic Macrophages. Cancer Res 2021; 81:5255-5267. [PMID: 34400395 DOI: 10.1158/0008-5472.can-20-3909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are heterogeneous in nature and comprise antitumor M1-like (M1-TAM) or pro-tumor M2-like (M2-TAM) TAMs. M2-TAMs are a major component of stroma in breast tumors and enhance metastasis by reducing their phagocytic ability and increasing tumor fibrosis. However, the molecular mechanisms that regulate phenotypic plasticity of TAMs are not well known. Here we report a novel tumor suppressor Slit2 in breast cancer by regulating TAMs in the tumor microenvironment. Slit2 reduced the in vivo growth and metastasis of spontaneous and syngeneic mammary tumor and xenograft breast tumor models. Slit2 increased recruitment of M1-TAMs to the tumor and enhanced the ability of M1-TAMs to phagocytose tumor cells in vitro and in vivo. This Slit2-mediated increase in M1-TAM phagocytosis occurred via suppression of IL6. Slit2 was also shown to diminish fibrosis in breast cancer mouse models by increasing the expression of matrix metalloproteinase 13 in M1-TAMs. Analysis of patient samples showed high Slit2 expression strongly associated with better patient survival and inversely correlated with the abundance of CD163+ TAMs. Overall, these studies define the role of Slit2 in inhibiting metastasis by activating M1-TAMs and depleting tumor fibrosis. Furthermore, these findings suggest that Slit2 can be a promising immunotherapeutic agent to redirect TAMs to serve as tumor killers for aggressive and metastatic breast cancers. In addition, Slit2 expression along with CD163+ TAMs could be used as an improved prognostic biomarker in patients with breast cancer. SIGNIFICANCE: This study provides evidence that the antitumor effect of Slit2 in breast cancer occurs by activating the phagocytic activity of M1-like tumor-associated macrophages against tumor cells and diminishing fibrosis.
Collapse
Affiliation(s)
- Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Manish Charan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio. .,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
12
|
Fallowfield JA, Jimenez-Ramos M, Robertson A. Emerging synthetic drugs for the treatment of liver cirrhosis. Expert Opin Emerg Drugs 2021; 26:149-163. [PMID: 33856246 DOI: 10.1080/14728214.2021.1918099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The number of deaths and prevalent cases of cirrhosis are increasing worldwide, but there are no licensed antifibrotic or pro-regenerative medicines and liver transplantation is a limited resource. Cirrhosis is characterized by extreme liver fibrosis, organ dysfunction, and complications related to portal hypertension. Advances in our understanding of liver fibrosis progression and regression following successful etiological therapy betray vulnerabilities in common and disease-specific mechanisms that could be targeted pharmacologically.Area covered: This review summarizes the cellular and molecular pathogenesis of cirrhosis as a preface to discussion of the current drug development landscape. The dominant indication for global pharma R&D pipelines is cirrhosis related to nonalcoholic steatohepatitis (NASH). We searched Clinicaltrials.gov, GlobalData, Pharmaprojects and PubMed for pertinent information on emerging synthetic drugs for cirrhosis, with a focus on compounds listed in phase 2 and phase 3 trials.Expert opinion: Although cirrhosis can regress following successful etiological treatment, there are no specific antifibrotic or pro-regenerative drugs approved for this condition. Obstacles to drug development in cirrhosis include intrinsic biological factors, a heterogeneous patient population, and lack of acceptable surrogate endpoints. Nevertheless, several synthetic drugs are being evaluated in clinical trials and the NASH field is rapidly embracing a drug combination approach.
Collapse
|
13
|
Chang C, Yan J, Yao Z, Zhang C, Li X, Mao H. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv Healthc Mater 2021; 10:e2001689. [PMID: 33433956 PMCID: PMC7995150 DOI: 10.1002/adhm.202001689] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as a versatile cell source for tissue regeneration and remodeling due to their potent bioactivity, which includes modulation of inflammation response, macrophage polarization toward proregenerative lineage, promotion of angiogenesis, and reduction in fibrosis. This review focuses on profiling the effects of paracrine signals of MSCs, commonly referred to as the secretome, and highlighting the various engineering approaches to tune the MSC secretome. Recent advances in biomaterials‐based therapeutic strategies for delivery of MSCs and MSC‐derived secretome in the form of extracellular vesicles are discussed, along with their advantages and challenges.
Collapse
Affiliation(s)
- Calvin Chang
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Jerry Yan
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Zhicheng Yao
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Chi Zhang
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Xiaowei Li
- Mary and Dick Holland Regenerative Medicine Program and Department of Neurological Sciences University of Nebraska Medical Center Omaha NE 68198 USA
| | - Hai‐Quan Mao
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
14
|
Effect of Diphtheria Toxin-Based Gene Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12020472. [PMID: 32085552 PMCID: PMC7072394 DOI: 10.3390/cancers12020472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global malignancy, responsible for >90% of primary liver cancers. Currently available therapeutic options have poor performances due to the highly heterogeneous nature of the tumor cells; recurrence is highly probable, and some patients develop resistances to the therapies. Accordingly, the development of a novel therapy is essential. We assessed gene therapy for HCC using a diphtheria toxin fragment A (DTA) gene-expressing plasmid, utilizing a non-viral hydrodynamics-based procedure. The antitumor effect of DTA expression in HCC cell lines (and alpha-fetoprotein (AFP) promoter selectivity) is assessed in vitro by examining HCC cell growth. Moreover, the effect and safety of the AFP promoter-selective DTA expression was examined in vivo using an HCC mice model established by the hydrodynamic gene delivery of the yes-associated protein (YAP)-expressing plasmid. The protein synthesis in DTA transfected cells is inhibited by the disappearance of tdTomato and GFP expression co-transfected upon the delivery of the DTA plasmid; the HCC cell growth is inhibited by the expression of DTA in HCC cells in an AFP promoter-selective manner. A significant inhibition of HCC occurrence and the suppression of the tumor marker of AFP and des-gamma-carboxy prothrombin can be seen in mice groups treated with hydrodynamic gene delivery of DTA, both 0 and 2 months after the YAP gene delivery. These results suggest that DTA gene therapy is effective for HCC.
Collapse
|
15
|
Antifibrotic Effect of Combination of Nilotinib and Stem Cell-Conditioned Media on CCl 4-Induced Liver Fibrosis. Stem Cells Int 2020; 2020:6574010. [PMID: 32089708 PMCID: PMC7023822 DOI: 10.1155/2020/6574010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Liver fibrosis is the excessive extracellular matrix accumulation of proteins, such as collagen, which follows the chronic liver diseases. Advanced liver fibrosis leads to cirrhosis and liver failure. Nilotinib is a second-generation tyrosine kinase inhibitor, which showed antifibrotic efficacy. Stem cell therapy still has some limitations such as oncogenesis, unexpected differentiation, and ethical consideration. Stem cells secrete cytokines and growth factors that showed paracrine-mediated antifibrotic and anti-inflammatory effects in vivo and in vitro. Thus, stem cell-conditioned medium (SC-CM), which contains the secretory proteins of stem cells, may have an antifibrotic role. This study was carried out to examine the antifibrotic effect of Nilotinib and stem cell exosomes on CCl4-induced liver fibrosis in rats. Male Wistar rats were injected intraperitoneally with CCl4 twice a week for 9 weeks and given daily treatments of Nilotinib (20 mg/kg), stem cell exosomes (0.5 ml/rat), and the combination treatment of Nilotinib and stem cell exosomes during the last 5 weeks of CCl4 intoxication. Liver fibrosis and also antifibrotic efficacy of the treatments were estimated with liver function tests, oxidative stress parameters, apoptotic parameters, histopathological examination, and hydroxyproline contents. Results showed that the combination of Nilotinib and stem cell-conditioned media had more antifibrotic effects than each one alone (P value < 0.001).
Collapse
|
16
|
Kamimura K, Yokoo T, Abe H, Terai S. Gene Therapy for Liver Cancers: Current Status from Basic to Clinics. Cancers (Basel) 2019; 11:cancers11121865. [PMID: 31769427 PMCID: PMC6966544 DOI: 10.3390/cancers11121865] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is a key organ for metabolism, protein synthesis, detoxification, and endocrine function, and among liver diseases, including hepatitis, cirrhosis, malignant tumors, and congenital disease, liver cancer is one of the leading causes of cancer-related deaths worldwide. Conventional therapeutic options such as embolization and chemotherapy are not effective against advanced-stage liver cancer; therefore, continuous efforts focus on the development of novel therapeutic options, including molecular targeted agents and gene therapy. In this review, we will summarize the progress toward the development of gene therapies for liver cancer, with an emphasis on recent clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Kenya Kamimura
- Correspondence: ; Tel.: +81-25-227-2207; Fax: +81-25-227-0776
| | | | | | | |
Collapse
|
17
|
Chen L, Cao G, Wang M, Feng YL, Chen DQ, Vaziri ND, Zhuang S, Zhao YY. The Matrix Metalloproteinase-13 Inhibitor Poricoic Acid ZI Ameliorates Renal Fibrosis by Mitigating Epithelial-Mesenchymal Transition. Mol Nutr Food Res 2019; 63:e1900132. [PMID: 30925007 DOI: 10.1002/mnfr.201900132] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Indexed: 01/24/2023]
Abstract
SCOPE Fibrosis plays a key role in the progression of various diseases. Matrix metalloproteinases (MMPs) are important for epithelial-mesenchymal transition (EMT), which contributes to organ fibrosis. Four new poricoic acids are identified, poricoic acid ZI, ZJ, ZK, and ZL, as novel MMP inhibitors from edible mushroom Poria cocos. METHODS Molecular docking, siRNA techniques, TGF-β1-treated renal cells, and unilateral ureteral obstructed (UUO) mice are used to explore the potential efficacy of the novel MMP inhibitors in mitigating the fibrotic process. RESULTS Treatment with four poricoic acids downregulates profibrotic protein expression in TGF-β1-induced HK-2 cells. Similar results are observed in NRK-52E and NRK-49F cells, indicating that poricoic acids can suppress EMT. Furthermore, both in vitro and in vivo experiments demonstrate that poricoic acid ZI (PZI) exerts a stronger inhibitory effect on protein expression and enzymatic activity of MMP-13 than the other three compounds, which is consistent with the docking results. The inhibitory effect of PZI on MMP-13 is partially attenuated by MMP-13 RNAi in HK-2 cells and UUO mice. CONCLUSIONS The findings indicate that as a specific MMP-13 inhibitor, PZI attenuates EMT and renal fibrosis. Therefore, the MMP-13 inhibitor PZI can be a novel therapeutic candidate for limiting EMT and renal fibrosis.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Ming Wang
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
18
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
19
|
Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article. Middle East J Dig Dis 2018; 10:133-148. [PMID: 30186577 PMCID: PMC6119836 DOI: 10.15171/mejdd.2018.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
Currently, liver fibrosis and its complications are regarded as critical health problems.
With the studies showing the reversible nature of liver fibrogenesis, scientists have focused
on understanding the underlying mechanism of this condition in order to develop new
therapeutic strategies. Although hepatic stellate cells are known as the primary cells
responsible for liver fibrogenesis, studies have shown contributing roles for other cells,
pathways, and molecules in the development of fibrosis depending on the etiology of
liver fibrosis. Hence, interventions could be directed in the proper way for each type of
liver diseases to better address this complication. There are two main approaches in clinical
reversion of liver fibrosis; eliminating the underlying insult and targeting the fibrosis
process, which have variable clinical importance in the treatment of this disease. In this
review, we present recent concepts in molecular pathways of liver fibrosis reversibility
and their clinical implications.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor, The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Collapse
Affiliation(s)
- Aaron Dolor
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| |
Collapse
|
21
|
Liu J, Li W, Limbu MH, Li Y, Wang Z, Cheng Z, Zhang X, Chen P. Effects of Simultaneous Downregulation of PHD1 and Keap1 on Prevention and Reversal of Liver Fibrosis in Mice. Front Pharmacol 2018; 9:555. [PMID: 29899699 PMCID: PMC5988854 DOI: 10.3389/fphar.2018.00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: To investigate whether double-knockdown of PHD1 and Keap1 in mice could enhance the resolution of carbon tetrachloride (CCl4)-induced liver fibrosis. Methods: The liver fibrosis model of mice was established by intraperitoneal injection of 25% CCl4 in olive oil (4 ul/g) twice a week for 8 weeks. PHD1shRNA and Keap1shRNA eukaryotic expression plasmids were simultaneously administered from the beginning of the first to fourth week (preventive group) or from the fifth to eighth week of CCl4 injection (therapeutic group) via hydrodynamic-based tail vein injection. Successful transfection was confirmed with the expression of red fluorescent protein and green fluorescent protein in hepatocytes. Western blot was used for determining the expression of PHD1 and Keap1, HE, Sirius red, and Masson staining for evaluating the histopathological stages of fibrosis. Immunohistochemical techniques were applied to evaluate the expression of a-SMA. Results: The fluorescence of red and green were observed mainly in hepatocytes, and downregulation of PHD1 and Keap1 expression in liver was detected by western blot. Meanwhile, double-knockdown of PHD1 and Keap1 in mice alleviated liver fibrosis, and the effect was further enhanced especially in the preventive group. Immunocytochemical staining showed decreased expression of a-SMA when both PHD1 and Keap1 were knockdown. Conclusion: Downregulation of PHD1 and Keap1 expression in the liver could be achieved via hydrodynamic injection of PHD1shRNA and Keap1shRNA, thereby, preventing liver fibrosis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manoj H Limbu
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, China
| | - Yiping Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhengyuan Cheng
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoyi Zhang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
23
|
Li R, Zhang M, Wang Y, Yung KKL, Su R, Li Z, Zhao L, Dong C, Cai Z. Effects of sub-chronic exposure to atmospheric PM 2.5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats. Toxicol Res (Camb) 2018; 7:271-282. [PMID: 30090581 PMCID: PMC6062260 DOI: 10.1039/c7tx00262a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Abstract
Epidemiological studies have revealed that exposure to PM2.5 is linked to liver cancer. However, the hepatic toxicity and relevant molecular mechanisms of PM2.5 have not yet been fully described. Herein, we report on our investigation of the fibrosis, inflammation, endoplasmic reticulum (ER) stress and apoptosis in the livers of rats, caused by exposure to PM2.5 during summer and winter in Taiyuan, China. Male SD rats were sub-chronically exposed to PM2.5 (in summer: 0.2, 0.6, 1.5 mg per kg of b.w.; in winter: 0.3, 1.5, 2.7 mg per kg of b.w.) via intratracheal instillation once every 3 days for 60 days. The results showed that exposure to high dosages of PM2.5 caused the following: (1) hepatic histopathological changes and liver function decline through elevating the activities of AST, ALT, CYP450 and GST; (2) triggered liver fibrosis, in which TGF-β1, Col I, Col III, and MMP13 mRNA and protein expression were significantly upregulated, and enhanced inflammation with the overexpression of TNF-α, IL-6 and HO-1 versus the control; (3) induced liver ER stress and cell apoptosis via activating the GRP78/ATF6/CHOP/TRB3/caspase 12 pathway. The data also indicated that the liver injury induced by winter PM2.5 in Taiyuan was more serious compared to that induced by summer PM2.5. This work provides new insight into the mechanisms of PM2.5-induced liver injury, and aids the understanding of the underlying mechanisms by which PM2.5 might affect liver diseases.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Mei Zhang
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Ying Wang
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Ken Kin Lam Yung
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
- State Key Laboratory of Environmental and Biological Analysis , Department of Biology , Hong Kong Baptist University , Hong Kong SAR , China . ; ; Tel: (+852)-34117070
| | - Ruijun Su
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Zhuoyu Li
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Liping Zhao
- Shanxi Provincial People's Hospital , Taiyuan , PR China
| | - Chuan Dong
- Institute of Environmental Science , Institute of Biotechnology Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis , Department of Biology , Hong Kong Baptist University , Hong Kong SAR , China . ; ; Tel: (+852)-34117070
| |
Collapse
|
24
|
Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 2018; 19:25. [PMID: 29482575 PMCID: PMC5828090 DOI: 10.1186/s13059-018-1400-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
We present a robust method called improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) that delivers CRISPR ribonucleoproteins to E0.7 embryos via in situ electroporation. The method generates mouse models containing single-base changes, kilobase-sized deletions, and knock-ins. The efficiency of i-GONAD is comparable to that of traditional microinjection methods, which rely on ex vivo handling of zygotes and require recipient animals for embryo transfer. In contrast, i-GONAD avoids these technically difficult steps, and it can be performed at any laboratory with simple equipment and technical expertise. Further, i-GONAD-treated females retain reproductive function, suggesting future use of the method for germline gene therapy.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Minami-ku, Okayama, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Minami-ku, Okayama, Japan
| | - Naomi Arifin
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Kenta Wada
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
25
|
Efficacy and Safety of Pancreas-Targeted Hydrodynamic Gene Delivery in Rats. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:80-88. [PMID: 29246326 PMCID: PMC5612811 DOI: 10.1016/j.omtn.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Development of an effective, safe, and convenient method for gene delivery to the pancreas is a critical step toward gene therapy for pancreatic diseases. Therefore, we tested the possibility of applying the principle of hydrodynamic gene delivery for successful gene transfer to pancreas using rats as a model. The established procedure involves the insertion of a catheter into the superior mesenteric vein with temporary blood flow occlusion at the portal vein and hydrodynamic injection of DNA solution. We demonstrated that our procedure achieved efficient pancreas-specific gene expression that was 2,000-fold higher than that seen in the pancreas after the systemic hydrodynamic gene delivery. In addition, the level of gene expression achieved in the pancreas by the pancreas-specific gene delivery was comparable to the level in the liver achieved by a liver-specific hydrodynamic gene delivery. The optimal level of reporter gene expression in the pancreas requires an injection volume equivalent to 2.0% body weight with flow rate of 1 mL/s and plasmid DNA concentration at 5 μg/mL. With the exception of transient expansion of intercellular spaces and elevation of serum amylase levels, which recovered within 3 days, no permanent tissue damage was observed. These results suggest that pancreas-targeted hydrodynamic gene delivery is an effective and safe method for gene delivery to the pancreas and clinically applicable.
Collapse
|
26
|
Biochemical and Biological Attributes of Matrix Metalloproteinases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:1-73. [PMID: 28413025 DOI: 10.1016/bs.pmbts.2017.02.005] [Citation(s) in RCA: 778] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are involved in the degradation of various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation of their latent zymogen form. MMPs are often secreted as inactive pro-MMP form which is cleaved to the active form by various proteinases including other MMPs. MMPs cause degradation of ECM proteins such as collagen and elastin, but could influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in tissue remodeling during various physiological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair, as well as in pathological conditions such as myocardial infarction, fibrotic disorders, osteoarthritis, and cancer. Increases in specific MMPs could play a role in arterial remodeling, aneurysm formation, venous dilation, and lower extremity venous disorders. MMPs also play a major role in leukocyte infiltration and tissue inflammation. MMPs have been detected in cancer, and elevated MMP levels have been associated with tumor progression and invasiveness. MMPs can be regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs have been proposed as biomarkers for numerous pathological conditions and are being examined as potential therapeutic targets in various cardiovascular and musculoskeletal disorders as well as cancer.
Collapse
|
27
|
Yokoo T, Kamimura K, Abe H, Kobayashi Y, Kanefuji T, Ogawa K, Goto R, Oda M, Suda T, Terai S. Liver-targeted hydrodynamic gene therapy: Recent advances in the technique. World J Gastroenterol 2016; 22:8862-8868. [PMID: 27833377 PMCID: PMC5083791 DOI: 10.3748/wjg.v22.i40.8862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
One of the major research focuses in the field of gene therapy is the development of clinically applicable, safe, and effective gene-delivery methods. Since the first case of human gene therapy was performed in 1990, a number of gene-delivery methods have been developed, evaluated for efficacy and safety, and modified for human application. To date, viral-vector-mediated deliveries have shown effective therapeutic results. However, the risk of lethal immune response and carcinogenesis have been reported, and it is still controversial to be applied as a standard therapeutic option. On the other hand, delivery methods for nonviral vector systems have been developed, extensively studied, and utilized in in vivo gene-transfer studies. Compared to viral-vector mediated gene transfer, nonviral systems have less risk of biological reactions. However, the lower gene-transfer efficiency was a critical hurdle for applying them to human gene therapy. Among a number of nonviral vector systems, our studies focus on hydrodynamic gene delivery to utilize physical force to deliver naked DNA into the cells in the living animals. This method achieves a high gene-transfer level by DNA solution injections into the tail vein of rodents, especially in the liver. With the development of genome editing methods, in vivo gene-transfer therapy using this method is currently the focus in this research field. This review explains the method principle, efficiency, safety, and procedural modifications to achieve a high level of reproducibility in large-animal models.
Collapse
|
28
|
Kobayashi Y, Kamimura K, Abe H, Yokoo T, Ogawa K, Shinagawa-Kobayashi Y, Goto R, Inoue R, Ohtsuka M, Miura H, Kanefuji T, Suda T, Tsuchida M, Aoyagi Y, Zhang G, Liu D, Terai S. Effects of Fibrotic Tissue on Liver-targeted Hydrodynamic Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e359. [PMID: 27574785 PMCID: PMC5023407 DOI: 10.1038/mtna.2016.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Hydrodynamic gene delivery is a common method for gene transfer to the liver of small animals, and its clinical applicability in large animals has been demonstrated. Previous studies focused on functional analyses of therapeutic genes in animals with normal livers and little, however, is known regarding its effectiveness and safety in animals with liver fibrosis. Therefore, this study aimed to examine the effects of liver fibrosis on hydrodynamic gene delivery efficiency using a rat liver fibrosis model. We demonstrated for the first time, using pCMV-Luc plasmid, that this procedure is safe and that the amount of fibrotic tissue in the liver decreases gene delivery efficiency, resulting in decrease in luciferase activity depending on the volume of fibrotic tissue in the liver and the number of hepatocytes that are immunohistochemically stained positive for transgene product. We further demonstrate that antifibrotic gene therapy with matrix metalloproteinase-13 gene reduces liver fibrosis and improves efficiency of hydrodynamic gene delivery. These results demonstrate the negative effects of fibrotic tissue on hydrodynamic gene delivery and its recovery by appropriate antifibrotic therapy.
Collapse
Affiliation(s)
- Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
- Division of Gastroenterology and Hepatology,Graduate School of Medical and Dental Sciences, Niigata University, 1–757 Asahimachi–dori, Chuo–ku, Niigata, Niigata, 9518510, Japan. E-mail:
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Yoko Shinagawa-Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Ryo Goto
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa Japan
| | - Hiromi Miura
- Department of Regenerative Medicine, Basic Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Tsutomu Kanefuji
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Masanori Tsuchida
- Division of Thoracic and Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| |
Collapse
|
29
|
Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ. Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. J Cell Physiol 2016; 231:2599-621. [PMID: 27187048 DOI: 10.1002/jcp.25430] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Kunal Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Prem Chapagain
- Department of Physics; Florida International University; Miami Florida
- Biomolecular Science Institute; Florida International University; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
- Department of Biochemistry; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|