1
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Granata S, Stallone G, Zaza G. mRNA as a medicine in nephrology: the future is now. Clin Kidney J 2023; 16:2349-2356. [PMID: 38046026 PMCID: PMC10689145 DOI: 10.1093/ckj/sfad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 12/05/2023] Open
Abstract
The successful employment of messenger RNA (mRNA) as vaccine therapy for the prevention of COVID-19 infection has spotlighted the attention of scientific community onto the potential clinical application of these molecules as innovative and alternative therapeutic approaches in different fields of medicine. As therapy, mRNAs may be advantageous due to their unique biological properties of targeting almost any genetic component within the cell, many of which may be unreachable using other pharmacological/therapeutic approaches, and encoding any proteins and peptides without the need for their transport into the nuclei of the target cells. Additionally, these molecules may be rapidly designed/produced and clinically tested. Once the chemistry of the RNA and its delivery system are optimized, the cost of developing novel variants of these medications for new selected clinical disorders is significantly reduced. However, although potentially useful as new therapeutic weapons against several kidney diseases, the complex architecture of kidney and the inability of nanoparticles that accommodate oligonucleotides to cross the integral glomerular filtration barrier have largely decreased their potential employment in nephrology. However, in the next few years, the technical improvements in mRNA that increase translational efficiency, modulate innate and adaptive immunogenicity, and increase their delivery at the site of action will overcome these limitations. Therefore, this review has the scope of summarizing the key strengths of these RNA-based therapies and illustrating potential future directions and challenges of this promising technology for widespread therapeutic use in nephrology.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
3
|
Abstract
Cancer accounted for 16% of all death worldwide in 2018. Significant progress has been made in understanding tumor occurrence, progression, diagnosis, treatment, and prognosis at the molecular level. However, genomics changes cannot truly reflect the state of protein activity in the body due to the poor correlation between genes and proteins. Quantitative proteomics, capable of quantifying the relatively different protein abundance in cancer patients, has been increasingly adopted in cancer research. Quantitative proteomics has great application potentials, including cancer diagnosis, personalized therapeutic drug selection, real-time therapeutic effects and toxicity evaluation, prognosis and drug resistance evaluation, and new therapeutic target discovery. In this review, the development, testing samples, and detection methods of quantitative proteomics are introduced. The biomarkers identified by quantitative proteomics for clinical diagnosis, prognosis, and drug resistance are reviewed. The challenges and prospects of quantitative proteomics for personalized medicine are also discussed.
Collapse
|
4
|
Ortega-Tenezaca B, González-Díaz H. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. NANOSCALE 2021; 13:1318-1330. [PMID: 33410431 DOI: 10.1039/d0nr07588d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles are useful antimicrobial drug-release systems, but some nanoparticles also exhibit antibacterial activity. However, investigation of their antibacterial activity is a difficult and slow process due to the numerous combinations of nanoparticle size, shape, and composition vs. biological tests, assay organisms, and multiple activity parameters to be measured. Additionally, the overuse of antibiotics has led to the emergence of resistant bacterial strains with different metabolic networks. Computational models may speed up this process, but the models reported to date do not to consider all the previous factors, and the data sources are dispersed and not curated. Thus, herein, we used an information fusion, perturbation-theory machine learning (IFPTML) approach, which is introduced by us for the first time, to fit a model for the discovery of antibacterial nanoparticles. The dataset studied had 15 classes of nanoparticles (1-100 nm) with most cases in the range of 1-50 nm vs. >20 pathogenic bacteria species with different metabolic networks. The nanoparticles studied included metal nanoparticles of Au, Ag, and Cu; oxide nanoparticles of Zn, Cu, La, Al, Fe, Sn, Ti, Cd, and Si; and metal salt nanoparticles of CuI and CdS. We used the SOFT.PTML software (our own application) with a user-friendly interface for the IFPTML calculations and a control statistics package. Using SOFT.PTML, we found a linear logistic regression equation that could model 4 biological activity parameters using only 8 variables with χ2 = 2265.75, p-level <0.05, sensitivity, Sn = 79.4, and specificity, Sp = 99.3, for 3213 cases (nanoparticle-bacteria pairs) in the training series. The model had Sn = 80.8 and Sp = 99.3 for 2114 cases in the external validation series. We also developed a random forest non-linear model with higher values of Sn and Sp = 98-99% in the training/validation series, although it was more complicated to use. SOFT.PTML has been demonstrated to be a useful tool for the analysis of complex data in nanotechnology. We also introduced a new anabolism-catabolism unbalance index of metabolic networks to reveal the biological connotation of the IFPTML predictions for antibacterial nanoparticles. These new models open a new door for the discovery of NPs vs. new bacterial species and strains with different topological structures of their metabolic networks.
Collapse
Affiliation(s)
- Bernabé Ortega-Tenezaca
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, 15071 A Coruña, Spain and Amazon State University UEA, Puyo, Pastaza, Ecuador and Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain. and Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006 A Coruña, Spain and Center for Investigation on Technologies of Information and Communication (CITIC), University of Coruña (UDC), Campus de Elviña s/n, 15071 A Coruña, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain. and Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940 Leioa, Spain and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
5
|
Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. NATURE NANOTECHNOLOGY 2020; 15:819-829. [PMID: 32895522 DOI: 10.1038/s41565-020-0759-5] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 05/22/2023]
Abstract
The delivery of medical agents to a specific diseased tissue or cell is critical for diagnosing and treating patients. Nanomaterials are promising vehicles to transport agents that include drugs, contrast agents, immunotherapies and gene editors. They can be engineered to have different physical and chemical properties that influence their interactions with their biological environments and delivery destinations. In this Review Article, we discuss nanoparticle delivery systems and how the biology of disease should inform their design. We propose developing a framework for building optimal delivery systems that uses nanoparticle-biological interaction data and computational analyses to guide future nanomaterial designs and delivery strategies.
Collapse
Affiliation(s)
- Wilson Poon
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin R Kingston
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ben Ouyang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- MD/PhD Program, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Materials Science & Engineering, University of Toronto, Toronto, Ontaro, Canada.
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines 2017; 5:biomedicines5030045. [PMID: 28792479 PMCID: PMC5618303 DOI: 10.3390/biomedicines5030045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted.
Collapse
|
7
|
Li K, Xiu CL, Gao LM, Liang HG, Xu SF, Shi M, Li J, Liu ZW. Screening of specific nucleic acid aptamers binding tumor markers in the serum of the lung cancer patients and identification of their activities. Tumour Biol 2017; 39:1010428317717123. [PMID: 28718373 DOI: 10.1177/1010428317717123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lung cancer is by far the leading cause of cancer death in the world. Despite the improvements in diagnostic methods, the status of early detection was not achieved. So, a new diagnostic method is needed. The aim of this study is to obtain the highly specific nucleic acid aptamers with strong affinity to tumor markers in the serum of the lung cancer patients for targeting the serum. Aptamers specifically binding to tumor markers in the serum of the lung cancer patients were screened from the random single-stranded DNA library with agarose beads as supports and the serum as a target by target-substituting subtractive SELEX technique and real-time quantitative polymerase chain reaction technique. Subsequently, the secondary single-stranded DNA library obtained by 10 rounds of screening was amplified to double-stranded DNA, followed by high-throughput genome sequence analysis to screen aptamers with specific affinity to tumor markers in the serum of the lung cancer patients. Finally, six aptamers obtained by 10 rounds of screening were identified with high specific affinity to tumor markers in the serum of the lung cancer patients. Compared with other five aptamers, the aptamer 43 was identified both with the highest specificity to bind target molecule and without any obvious affinity to non-specific proteins. The screened aptamers have relatively high specificity to combine tumor markers in the serum of the lung cancer patients, which provides breakthrough points for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Kun Li
- 1 College of Environment & Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| | - Chen-Lin Xiu
- 1 College of Environment & Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| | - Li-Ming Gao
- 2 The First Hospital of Qinhuangdao, Qinhuangdao, China
| | | | - Shu-Feng Xu
- 2 The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ming Shi
- 1 College of Environment & Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| | - Jian Li
- 1 College of Environment & Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| | - Zhi-Wei Liu
- 1 College of Environment & Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| |
Collapse
|
8
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Ding F, Gao Y, He X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg Med Chem Lett 2017; 27:4256-4269. [PMID: 28803753 DOI: 10.1016/j.bmcl.2017.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them.
Collapse
Affiliation(s)
- Fei Ding
- Wuhan Economic and Technological Development Zone, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China.
| | - Yangguang Gao
- Wuhan Economic and Technological Development Zone, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, PR China
| | - Xianran He
- Wuhan Economic and Technological Development Zone, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, PR China
| |
Collapse
|
10
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|