1
|
Chatterjee A, Naskar P, Mishra S, Dutta S. Pore Formation by Pore Forming Proteins in Lipid Membranes: Structural Insights Through Cryo-EM. J Membr Biol 2025:10.1007/s00232-025-00344-5. [PMID: 40155553 DOI: 10.1007/s00232-025-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Many pathogenic bacteria utilize their complicated appalling arsenal, bacterial virulence factors, to attack host cells by damaging the host cell membrane and neutralizing host defense mechanisms. Bacterial pore-forming proteins (PFPs) are one of them, they include a distinct class of secreted soluble toxin monomers, which binds to the specific cell surface receptors and /or lipids, oligomerizes as an amphipathic transmembrane pore complex on host cell membranes, and deforms the integrity of the plasma membrane. Researchers have focused on characterizing the structure and function of different Pore Forming Toxins (PFTs) from various organisms, where most of the structural studies employed X-ray crystallography, single-particle cryo-EM, and cryo-electron tomography. However, historically, most of these previous studies focused on using detergent to solubilize and oligomerize the PFTs. Additionally, previous studies have also shown that lipid membranes and lipid components, including cell surface receptors, play a critical role in pore formation and oligomerization. However, there are limited studies available that aim to resolve the structure and function of PFTs in liposomes. In this review article, we majorly focused on structural and functional studies of pore-forming toxins in the presence of detergents, lipid nanodiscs, and liposomes. We will also discuss the challenges and benefits of using liposomes to study pore-forming proteins in more biologically relevant membrane environments.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Prasenjit Naskar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
2
|
Krantz BA. Anthrax Toxin: Model System for Studying Protein Translocation. J Mol Biol 2024; 436:168521. [PMID: 38458604 DOI: 10.1016/j.jmb.2024.168521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on β-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Perveen K, Bukhari NA, Alshaikh NA, Kondaveeti SB, Alsulami JA, Debnath S, Kumarasamy V. A novel front in sustainable microbial management: computational analysis of curcumin and mangiferin's synergistic action against Bacillus anthracis. Front Microbiol 2024; 15:1304234. [PMID: 38646635 PMCID: PMC11026599 DOI: 10.3389/fmicb.2024.1304234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Microorganisms are crucial in our ecosystem, offering diverse functions and adaptability. The UNGA Science Summit has underscored the importance of understanding microbes in alignment with the UN Sustainable Development Goals. Bacillus anthracis poses significant challenges among various microorganisms due to its harmful effects on both soil and public health. Our study employed computational techniques to investigate the inhibitory effects of curcumin and mangiferin on Bacillus anthracis, with the aim of presenting a novel bio-based approach to microbial management. Methods Employing high-throughput screening, we identified potential binding sites on B. anthracis. Molecular docking revealed that curcumin and mangiferin, when synergistically combined, exhibited strong binding affinities at different sites on the bacterium. Our findings demonstrated a significant drop in binding free energy, indicating a stronger interaction when these compounds were used together. Findings Results of Molecular docking indicated binding energies of -8.45 kcal/mol for mangiferin, -7.68 kcal/mol for curcumin, and a notably higher binding energy of -19.47 kcal/mol for the combination of mangiferin and curcumin with CapD protein. Molecular dynamics simulations further validated these interactions, demonstrating increased stability and structural changes in the bacterium. Conclusion This study highlights the effectiveness of natural compounds like curcumin and mangiferin in microbial management, especially against challenging pathogens like B. anthracis. It emphasizes the potential of sustainable, nature-based solutions and calls for further empirical research to expand upon these findings.
Collapse
Affiliation(s)
- Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najla A. Alshaikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suresh Babu Kondaveeti
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India
| | | | - Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan, West Bengal, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. Front Bioeng Biotechnol 2023; 11:1215773. [PMID: 37795173 PMCID: PMC10546327 DOI: 10.3389/fbioe.2023.1215773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
B. anthracis is one of the most often weaponized pathogens. States had it in their bioweapons programs and criminals and terrorists have used or attempted to use it. This study is motivated by the narrative that emerging and developing technologies today contribute to the amplification of danger through greater easiness, accessibility and affordability of steps in the making of an anthrax weapon. As states would have way better preconditions if they would decide for an offensive bioweapons program, we focus on bioterrorism. This paper analyzes and assesses the possible bioterrorism threat arising from advances in synthetic biology, genome editing, information availability, and other emerging, and converging sciences and enabling technologies. Methodologically we apply foresight methods to encourage the analysis of contemporary technological advances. We have developed a conceptual six-step foresight science framework approach. It represents a synthesis of various foresight methodologies including literature review, elements of horizon scanning, trend impact analysis, red team exercise, and free flow open-ended discussions. Our results show a significant shift in the threat landscape. Increasing affordability, widespread distribution, efficiency, as well as ease of use of DNA synthesis, and rapid advances in genome-editing and synthetic genomic technologies lead to an ever-growing number and types of actors who could potentially weaponize B. anthracis. Understanding the current and future capabilities of these technologies and their potential for misuse critically shapes the current and future threat landscape and underlines the necessary adaptation of biosecurity measures in the spheres of multi-level political decision making and in the science community.
Collapse
Affiliation(s)
- Dunja Manal Sabra
- Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Bogenallee, Hamburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Sundar S, Piramanayagam S, Natarajan J. A comprehensive review on human disease-causing bacterial proteases and their impeding agents. Arch Microbiol 2023; 205:276. [PMID: 37414902 DOI: 10.1007/s00203-023-03618-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
Proteases are enzymes that catalyze the amide bond dissociation in polypeptide and protein peptide units. They are categorized into seven families and are responsible for a wide spectrum of human ailments, such as various types of cancers, skin infections, urinary tract infections etc. Specifically, the bacterial proteases cause a huge impact in the disease progression. Extracellular bacterial proteases break down the host defense proteins, while intracellular proteases are essential for pathogens virulence. Due to its involvement in disease pathogenesis and virulence, bacterial proteases are considered to be potential drug targets. Several studies have reported potential bacterial protease inhibitors in both Gram-positive and Gram-negative disease causing pathogens. In this study, we have comprehensively reviewed about the various human disease-causing cysteine, metallo, and serine bacterial proteases as well as their potential inhibitors.
Collapse
Affiliation(s)
- Shobana Sundar
- Department of Biotechnology, PSG College of Technology, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
6
|
Li M, Chen S, Wang Y, Zhang S, Song D, Tian R, Geng J, Wang L. Label-free high-precise nanopore detection of endopeptidase activity of anthrax lethal factor regulated by diverse conditions. Biosens Bioelectron 2023; 219:114800. [PMID: 36274430 DOI: 10.1016/j.bios.2022.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/24/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Endopeptidase activity of anthrax lethal factor (aLF) prevents the destroy of anthracis spore intracellularly by host macrophages, meanwhile disables the signaling pathways extracellularly that leads to host lethality. Hence, inhibitory of this activity is expected to be an alternative option to cure anthrax infection. Herein, we fabricated a nanopore platform via transmembrane pore construction in vitro, which allows precise mimics, monitoring of intercellular proteinic transport and enables the quantitative detection of aLF endopeptidase activity towards MAPKK signaling protein at single molecule level. Next, we inhibited the aLF activity via screening approaches of protein-metal ion acquisition and other condition controlment (proton/hydroxide strength, adapted temperature, ionizing irradiation), which were identified by nanopore electrokinetic study. Upon the results, we found that Ca2+, Mg2+, Mn2+, Ni2+ collaborating with Zn2+ promote aLF activity efficiently. In contrary, Cd2+, Co2+, Cu2+ have great inhibitory effect. Result further revealed that, the speed of aLF endopeptidase activity with different ions functions as the nanopore signal frequency in linear manner, which enables evident distinction of those divalent ions using this proteinase assay. We also found the higher strength of the proton or hydroxide, the higher the inhibitory to aLF activity. Besides, adapted temperature and γ-ray also play integral roles in inhibiting this activity. Our results lay experimental basis for accurate detection of aLF activity, meanwhile provide new direction to screening novel stimuli-responsive inhibitors specific to aLF.
Collapse
Affiliation(s)
- Minghan Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Shanchuan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shaoxia Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Dandan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
7
|
Mondange L, Tessier É, Tournier JN. Pathogenic Bacilli as an Emerging Biothreat? Pathogens 2022; 11:pathogens11101186. [PMID: 36297243 PMCID: PMC9609551 DOI: 10.3390/pathogens11101186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus anthracis, present as a very durable endospore in soil, causes zoonotic illness which is mainly associated with herbivores and domestic animals. Human cases are scarce and often involve populations close to infected livestock. If anthrax is no longer of public health concern in developed countries, B. anthracis is one of the top-tier biological weapon agents. It is classified by the CDC as a category A agent. Since 1994, emerging strains of Bacillus cereus have been associated with anthrax-like disease in mammals. Some clinical strains of B. cereus harbor anthrax-like plasmid genes (pXO1 and pXO2) associated with non-human primate and human infections, with the same clinical presentation of inhalation anthrax and mortality rates. Although currently restricted to certain limited areas of circulation, the emergence of these new strains of B. cereus extends the list of potential agents possibly usable for bioterrorism or as a biological weapon. It is therefore important to improve our knowledge of the phylogeny within the B. cereus sensu lato group to better understand the origin of these strains. We can then more efficiently monitor the emergence of new strains to better control the risk of infection and limit potentially malicious uses.
Collapse
Affiliation(s)
- Lou Mondange
- Bacteriology Unit, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- Yersinia Unit, Institut Pasteur, 75015 Paris, France
- Correspondence: (L.M.); (J.-N.T.)
| | - Émilie Tessier
- Immunopathology Unit, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Jean-Nicolas Tournier
- CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75015 Paris, France
- Correspondence: (L.M.); (J.-N.T.)
| |
Collapse
|
8
|
Zuo Z, Liu J, Sun Z, Silverstein R, Zou M, Finkel T, Bugge TH, Leppla SH, Liu S. A potent tumor-selective ERK pathway inactivator with high therapeutic index. PNAS NEXUS 2022; 1:pgac104. [PMID: 35899070 PMCID: PMC9308561 DOI: 10.1093/pnasnexus/pgac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
FDA-approved BRAF and MEK small molecule inhibitors have demonstrated some level of efficacy in patients with metastatic melanomas. However, these "targeted" therapeutics have a very low therapeutic index, since these agents affect normal cells, causing undesirable, even fatal, side effects. To address these significant drawbacks, here, we have reengineered the anthrax toxin-based protein delivery system to develop a potent, tumor-selective MEK inactivator. This toxin-based MEK inactivator exhibits potent activity against a wide range of solid tumors, with the highest activity seen when directed toward tumors containing the BRAFV600E mutation. We demonstrate that this reengineered MEK inactivator also exhibits an extremely high therapeutic index (>15), due to its in vitro and in vivo activity being strictly dependent on the expression of multiple tumor-associated factors including tumor-associated proteases matrix metalloproteinase, urokinase plasminogen activator, and anthrax toxin receptor capillary morphogenesis protein-2. Furthermore, we have improved the specificity of this MEK inactivator, restricting its enzymatic activity to only target the ERK pathway, thereby greatly diminishing off-target toxicity. Together, these data suggest that engineered bacterial toxins can be modified to have significant in vitro and in vivo therapeutic effects with high therapeutic index.
Collapse
Affiliation(s)
- Zehua Zuo
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jie Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Zhihao Sun
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Rachel Silverstein
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Meijuan Zou
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shihui Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
9
|
Structure-Functional Characteristics of the Svx Protein—The Virulence Factor of the Phytopathogenic Bacterium Pectobacterium atrosepticum. Int J Mol Sci 2022; 23:ijms23136914. [PMID: 35805920 PMCID: PMC9266454 DOI: 10.3390/ijms23136914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The Svx proteins are virulence factors of phytopathogenic bacteria of the Pectobacterium genus. The specific functions of these proteins are unknown. Here we show that most of the phytopathogenic species of Pectobacterium, Dickeya, and Xanthomonas genera have genes encoding Svx proteins, as well as some plant-non-associated species of different bacterial genera. As such, the Svx-like proteins of phytopathogenic species form a distinct clade, pointing to the directed evolution of these proteins to provide effective interactions with plants. To get a better insight into the structure and functions of the Svx proteins, we analyzed the Svx of Pectobacterium atrosepticum (Pba)—an extracellular virulence factor secreted into the host plant cell wall (PCW). Using in silico analyses and by obtaining and analyzing the recombinant Pba Svx and its mutant forms, we showed that this protein was a gluzincin metallopeptidase. The 3D structure model of the Pba Svx was built and benchmarked against the experimental overall secondary structure content. Structure-based substrate specificity analysis using molecular docking revealed that the Pba Svx substrate-binding pocket might accept α-glycosylated proteins represented in the PCW by extensins—proteins that strengthen the PCW. Thus, these results elucidate the way in which the Pba Svx may contribute to the Pba virulence.
Collapse
|
10
|
Afshar Bakshloo M, Kasianowicz JJ, Pastoriza-Gallego M, Mathé J, Daniel R, Piguet F, Oukhaled A. Nanopore-Based Protein Identification. J Am Chem Soc 2022; 144:2716-2725. [PMID: 35120294 DOI: 10.1021/jacs.1c11758] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin. Specifically, three different water-soluble proteins treated with the same protease, trypsin, produce different polypeptide fragments defined by the degree by which the latter reduce the nanopore's ionic current. The fragments identified with the aerolysin nanopore are consistent with the predicted fragments that trypsin could produce.
Collapse
Affiliation(s)
| | - John J Kasianowicz
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States.,Freiburg Institute for Advanced Studies, Universität Freiburg, 79104 Freiburg, Germany
| | | | - Jérôme Mathé
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, 91000, France
| | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, 91000, France
| | - Fabien Piguet
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, 95000, France
| | | |
Collapse
|
11
|
Hou R, He Y, Yan G, Hou S, Xie Z, Liao C. Zinc enzymes in medicinal chemistry. Eur J Med Chem 2021; 226:113877. [PMID: 34624823 DOI: 10.1016/j.ejmech.2021.113877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022]
Abstract
In humans, more than three hundred diverse enzymes that require zinc as an essential cofactor have been identified. These zinc enzymes have demonstrated different and important physiological functions and some of them have been considered as valuable therapeutic targets for drug discovery. Indeed, many drugs targeting a few zinc enzymes have been marketed to treat a variety of diseases. This review discusses drug discovery and drug development based on a dozen of zinc enzymes, including their biological functions and pathogenic roles, their best in class inhibitors (and clinical trial data when available), coordination and binding modes of representative inhibitors, and their implications for further drug design. The opportunities and challenges in developing zinc enzyme inhibitors for the treatment of human disorders are highlighted, too.
Collapse
Affiliation(s)
- Rui Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan He
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guangwei Yan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuzeng Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
12
|
Sequence Variability of pXO1-Located Pathogenicity Genes of Bacillus anthracis Natural Strains of Different Geographic Origin. Pathogens 2021; 10:pathogens10121556. [PMID: 34959512 PMCID: PMC8703917 DOI: 10.3390/pathogens10121556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
The main pathogenic factor of Bacillus anthracis is a three-component toxin encoded by the pagA, lef, and cya genes, which are located on the pXO1 plasmid. The atxA gene, which encodes the primary regulator of pathogenicity factor expression, is located on the same plasmid. In this work, we evaluated the polymorphism of the pagA, lef, cya, and atxA genes for 85 B. anthracis strains from different evolutionary lineages and canSNP groups. We have found a strong correlation of 19 genotypes with the main evolutionary lineages, but the correlation with the canSNP group of the strain was not as strong. We have detected several genetic markers indicating the geographical origin of the strains, for example, their source from the steppe zone of the former USSR. We also found that strains of the B.Br.001/002 group caused an anthrax epidemic in Russia in 2016 and strains isolated during paleontological excavations in the Russian Arctic have the same genotype as the strains of the B.Br.CNEVA group circulating in Central Europe. This data could testify in favor of the genetic relationship of these two groups of strains and hypothesize the ways of distribution of their ancestral forms between Europe and the Arctic.
Collapse
|
13
|
Abdous M, Hasannia S, Salmanian AH, Arab SS. Efficacy assessment of a triple anthrax chimeric antigen as a vaccine candidate in guinea pigs: challenge test with Bacillus anthracis 17 JB strain spores. Immunopharmacol Immunotoxicol 2021; 43:495-502. [PMID: 34259590 DOI: 10.1080/08923973.2021.1945087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Bacillus anthracis secretes a tripartite toxin comprising protective antigen (PA), edema factor (EF), and lethal factor (LF). The human anthrax vaccine is mainly composed of the anthrax protective antigen (PA). Considerable efforts are being directed towards improving the efficacy of vaccines because the use of commercial anthrax vaccines (human/veterinary) is associated with several limitations. OBJECTIVE In this study, a triple chimeric antigen referred to as ELP (gene accession no: MT590758) comprising highly immunogenic domains of PA, LF, and EF was designed, constructed, and assessed for the immunization capacity against anthrax in a guinea pig model. MATERIALS AND METHODS Immunization was carried out considering antigen titration and immunization protocol. The immunoprotective efficacy of the ELP was evaluated in guinea pigs and compared with the potency of veterinary anthrax vaccine using a challenge test with B. anthracis 17JB strain spores. RESULTS The results demonstrated that the ELP antigen induced strong humoral responses. The T-cell response of the ELP was found to be similar to PA, and showed that the ELP could protect 100%, 100%, 100%, 80% and 60% of the animals from 50, 70, 90, 100 and 120 times the minimum lethal dose (MLD, equal 5 × 105 spore/ml), respectively, which killed control animals within 48 h. DISCUSSION AND CONCLUSIONS It is concluded that the ELP antigen has the necessary requirement for proper immunization against anthrax and it can be used to develop an effective recombinant vaccine candidate against anthrax.
Collapse
Affiliation(s)
- Masoud Abdous
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Hasannia
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed-Shahryar Arab
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Yamada T, Tsuge H. Preparation of Clostridium perfringens binary iota-toxin pore complex for structural analysis using cryo-EM. Methods Enzymol 2021; 649:125-148. [PMID: 33712185 DOI: 10.1016/bs.mie.2021.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Iota toxin, a type of A-B toxin produced by Clostridium perfringens, comprises an enzymatic component (Ia) and a membrane-binding component (Ib). The translocation of Ia to the target cell via the pore formed by Ib allows it to function as an ADP-ribosyltransferase that inhibits actin polymerization in the host cell. The structure of Ia-bound Ib-pore has been determined using cryo-electron microscopy (cryo-EM), thereby elucidating the mechanism of the initial Ia translocation; however, open questions regarding Ia translocation still exist. In this chapter, we describe a new method of preparing Ia-bound Ib-pore complex samples for structural analysis at high resolution using cryo-EM. This method is different from previously reported methods for other A-B toxins. Consequently, it produces Ib-pore with two different states with short and long membrane-spanning β-barrel stem. We expect that this method will be useful in functional and structural studies of iota toxin and other binary toxins.
Collapse
Affiliation(s)
- Tomohito Yamada
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan; Center for Molecular Research in Infectious Diseases, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
15
|
Elber R. Milestoning: An Efficient Approach for Atomically Detailed Simulations of Kinetics in Biophysics. Annu Rev Biophys 2020; 49:69-85. [PMID: 32375019 DOI: 10.1146/annurev-biophys-121219-081528] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in theory and algorithms for atomically detailed simulations open the way to the study of the kinetics of a wide range of molecular processes in biophysics. The theories propose a shift from the traditionally very long molecular dynamic trajectories, which are exact but may not be efficient in the study of kinetics, to the use of a large number of short trajectories. The short trajectories exploit a mapping to a mesh in coarse space and allow for efficient calculations of kinetics and thermodynamics. In this review, I focus on one theory: Milestoning is a theory and an algorithm that offers a hierarchical calculation of properties of interest, such as the free energy profile and the mean first passage time. Approximations to the true long-time dynamics can be computed efficiently and assessed at different steps of the investigation. The theory is discussed and illustrated using two biophysical examples: ion permeation through a phospholipid membrane and protein translocation through a channel.
Collapse
Affiliation(s)
- Ron Elber
- Oden Institute for Computational Engineering and Sciences, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
16
|
Ni X, Jiang J. Cryo-EM Uncovers Atomic Details for Loading Cell-Killing Enzymes to the Anthrax Toxin Pretranslocation Complex. Structure 2020; 28:871-873. [PMID: 32755568 DOI: 10.1016/j.str.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this issue of Structure, Zhou et al. report the structures of full-length lethal and edema factors, the cytotoxic components of the deadly anthrax toxin, in complex with the toxin's cell binding and delivery module, the protective antigen prechannel, providing an atomic description for the toxin recruitment prior to translocation.
Collapse
Affiliation(s)
- Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Lo SY, Goulet DL, Fraaz U, Siemann S. Effect of pH and denaturants on the fold and metal status of anthrax lethal factor. Arch Biochem Biophys 2020; 692:108547. [PMID: 32828796 DOI: 10.1016/j.abb.2020.108547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023]
Abstract
Anthrax lethal factor (LF) is a critical component of the anthrax toxin, and functions intracellularly as a zinc-dependent endopeptidase targeting proteins involved in maintaining critical host signaling pathways. To reach the cytoplasm, LF requires to be unfolded and guided through the narrow protective antigen pore in a pH-dependent process. The current study sought to address the question as to whether LF is capable of retaining its metal ion when exposed to a low-pH environment (similar to that found in late endosomes) and an unfolding stress (induced by urea). Using a combination of tryptophan fluorescence spectroscopy and chelation studies, we show that a decrease in the pH value (from 7.0 to 5.0) leads to a pronounced shift in the onset of structural alterations in LF to lower urea concentrations. More importantly, the enzyme was found to retain its Zn2+ ion beyond the unfolding transitions monitored by Trp fluorescence, a finding indicative of tight metal binding to LF in a non-native state. In addition, an analysis of red-edge excitation shift (REES) spectra suggests the protein to maintain residual structure (a feature necessary for metal binding) even at very high denaturant concentrations. Furthermore, studies using the chromophoric chelator 4-(2-pyridylazo)resorcinol (PAR) revealed LF's Zn2+ ion to become accessible to complexation at urea concentrations in between those required to cause structural changes and metal dissociation. This phenomenon likely originates from the conversion of a PAR-inaccessible (closed) to a PAR-accessible (open) state of LF at intermediate denaturant concentrations.
Collapse
Affiliation(s)
- Suet Y Lo
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Danica L Goulet
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Usama Fraaz
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Stefan Siemann
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada.
| |
Collapse
|
18
|
Sadeghpour SD, Karimi F, Alizadeh H. Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020; 160:1158-1167. [DOI: 10.1016/j.ijbiomac.2020.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
19
|
Continuous and Rapid Solution Exchange in a Lipid Bilayer Perfusion System Based on Droplet-Interface Bilayer. Methods Mol Biol 2020. [PMID: 32918739 DOI: 10.1007/978-1-0716-0806-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Because of the high sensitivity of lipid bilayers to external pressure fluctuations, a major challenge in functional studies of biological pores or ion channels is the difficulty in exchanging solutions rapidly while maintaining the stability of the lipid bilayer in a model membrane. Here we describe a droplet-interface bilayer-based perfusion system that has been routinely used in our research and is currently the most robust and stable perfusion system that provides prompt solution exchange surrounding a lipid bilayer. In this model membrane system, solutions can be completely exchanged within 1-2 s to obtain prompt responses of a lipid bilayer or membrane pores to the membrane environments. Also, our system is stable enough to sustain continuous perfusions up to at least dozens of minutes. To demonstrate, we show that acidification-induced protein channel insertion, substrate binding to protein channels, and pH gradient-driven protein translocation of anthrax toxin can be sequentially initiated by continuous perfusions in our system. Moreover, by rapidly switching the solutions, the protein translocation based on ratchet mechanisms can be paused and reinitiated iteratively in our system. Overall, this perfusion system provides a controllable and reliable solution exchange platform for investigations of pores and translocations on lipid bilayers.
Collapse
|
20
|
Goulet DL, Fraaz U, Zulich CJ, Pilkington TJ, Siemann S. Specificity-directed design of a FRET-quenched heptapeptide for assaying thermolysin-like proteases. Anal Biochem 2020; 604:113826. [PMID: 32622975 DOI: 10.1016/j.ab.2020.113826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022]
Abstract
Thermolysin (TL) is an industrially important zinc endopeptidase, and the prototype of the M4 family of metallopeptidases. The catalytic function of TL and its relatives is typically assessed using chromogenic or more sensitive fluorescent peptides, with the latter substrates relying on Förster resonance energy transfer (FRET). Here, we demonstrate that a FRET-quenched heptapeptide designed on the basis of the enzyme's substrate specificity (Dabcyl-FKFLGKE-EDANS) is efficiently cleaved by TL and dispase (a TL-like protease) in between the Phe3 and Leu4 residues. The specificity constants (determined at pH 7.4 and 25 °C) for TL and dispase (3.6 × 106 M-1 s-1 and 4.6 × 106 M-1 s-1, respectively) were found to be amongst the highest documented for any TL substrate. Maximal peptide cleavage rates were achieved at pH 6.5 and a temperature of 65 °C. In view of the sensitivity of the assay, concentrations as low as 10 pM TL could be detected. Furthermore, the rate of hydrolysis of Dabcyl-FKFLGKE-EDANS was slow or immeasurable with some other unrelated metallo-, serine- and cysteine proteases, suggesting that the peptide has the potential to serve as a selective substrate for TL and TL-like proteases.
Collapse
Affiliation(s)
- Danica L Goulet
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Usama Fraaz
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Carly J Zulich
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Tyson J Pilkington
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Stefan Siemann
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
21
|
Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric pre-pore state. PLoS Pathog 2020; 16:e1008530. [PMID: 32810181 PMCID: PMC7462287 DOI: 10.1371/journal.ppat.1008530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/01/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Anthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.
Collapse
|
22
|
Zhou K, Liu S, Hardenbrook NJ, Cui Y, Krantz BA, Zhou ZH. Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors. Structure 2020; 28:879-887.e3. [PMID: 32521227 DOI: 10.1016/j.str.2020.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Pathogenesis of anthrax disease involves two cytotoxic enzymes-edema factor (EF) and lethal factor (LF)-which are individually recruited by the protective antigen heptamer (PA7) or octamer (PA8) prechannel and subsequently translocated across channels formed on the endosomal membrane upon exposure to low pH. Here, we report the atomic structures of PA8 prechannel-bound full-length EF and LF. In this pretranslocation state, the N-terminal segment of both factors refolds into an α helix engaged in the α clamp of the prechannel. Recruitment to the PA prechannel exposes an originally buried β strand of both toxins and enables domain organization of EF. Many interactions occur on domain interfaces in both PA prechannel-bound EF and LF, leading to toxin compaction prior to translocation. Our results provide key insights into the molecular mechanisms of translocation-coupled protein unfolding and translocation.
Collapse
Affiliation(s)
- Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Shiheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Nathan J Hardenbrook
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Bryan A Krantz
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA.
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Zhou ZH, Krantz BA. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nat Commun 2020; 11:840. [PMID: 32047164 PMCID: PMC7012834 DOI: 10.1038/s41467-020-14658-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022] Open
Abstract
Following assembly, the anthrax protective antigen (PA) forms an oligomeric translocon that unfolds and translocates either its lethal factor (LF) or edema factor (EF) into the host cell. Here, we report the cryo-EM structures of heptameric PA channels with partially unfolded LF and EF at 4.6 and 3.1-Å resolution, respectively. The first α helix and β strand of LF and EF unfold and dock into a deep amphipathic cleft, called the α clamp, which resides at the interface of two PA monomers. The α-clamp-helix interactions exhibit structural plasticity when comparing the structures of lethal and edema toxins. EF undergoes a largescale conformational rearrangement when forming the complex with the channel. A critical loop in the PA binding interface is displaced for about 4 Å, leading to the weakening of the binding interface prior to translocation. These structures provide key insights into the molecular mechanisms of translocation-coupled protein unfolding and translocation.
Collapse
Affiliation(s)
- Nathan J Hardenbrook
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Koyel Ghosal
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| | - Bryan A Krantz
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
25
|
Ma P, Cardenas AE, Chaudhari MI, Elber R, Rempe SB. Probing Translocation in Mutants of the Anthrax Channel: Atomically Detailed Simulations with Milestoning. J Phys Chem B 2018; 122:10296-10305. [PMID: 30338689 DOI: 10.1021/acs.jpcb.8b08304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthrax toxin consists of a cation channel and two protein factors. Translocation of the anthrax protein factors from endosomal to the cytosolic compartment is a complex process which utilizes the cation channel. An atomically detailed understanding of the function of the anthrax translocation machinery is incomplete. We report atomically detailed simulations of the lethal factor and channel mutants. Kinetic and thermodynamic properties of early events in the translocation process are computed within the Milestoning theory and algorithm. Several mutants of the channel illustrate that long-range electrostatic interactions provide the dominant driving force for translocation. No external energy input is required because the lower pH in the endosome relative to the cytosol drives the initial translocation process forward. Channel mutants with variable sizes cause smaller effects on translocation events relative to charge manipulations. Comparison with available experimental data is provided.
Collapse
Affiliation(s)
| | | | - Mangesh I Chaudhari
- Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | | | - Susan B Rempe
- Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
26
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
27
|
Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia. Sci Rep 2018; 8:7009. [PMID: 29725025 PMCID: PMC5934503 DOI: 10.1038/s41598-018-24581-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023] Open
Abstract
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Collapse
|
28
|
Young CJ, Richard K, Beruar A, Lo SY, Siemann S. An investigation of the pH dependence of copper-substituted anthrax lethal factor and its mechanistic implications. J Inorg Biochem 2018; 182:1-8. [PMID: 29407865 DOI: 10.1016/j.jinorgbio.2018.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of proteins critical to the maintenance of host signaling pathways during anthrax infections. Although zinc is typically regarded as the native metal ion in vivo, LF is highly tolerant to metal substitution, with its replacement by copper yielding an enzyme (CuLF) 4.5-fold more active than the native zinc protein (at pH 7). The current study demonstrates that by careful choice of the buffer, ionic strength, pH and substrate, the activity ratio of CuLF and native LF can be increased to >40-fold. Using a fluorogenic LF substrate, such optimized assay conditions can be exploited to detect LF concentrations as low as 2 pM. In contrast to the zinc form, CuLF was found to be inhibited by bromide and iodide ions, to be resistant to metal loss under acidic conditions, and to display a sharp pH dependence with significantly shifted alkaline limb towards more acidic conditions. The alkaline limb in the enzyme's pH profile is suggested to originate from changes in the protonation state of the metal-bound water molecule which serves as the nucleophile in the catalytic mechanism. Based on these observations and studies on other zinc proteases, a minimal mechanism for LF is proposed.
Collapse
Affiliation(s)
- Calvin J Young
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Kaitlin Richard
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Ananya Beruar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Suet Y Lo
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Stefan Siemann
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
29
|
Turk BE. Exceptionally Selective Substrate Targeting by the Metalloprotease Anthrax Lethal Factor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:189-203. [PMID: 30267305 DOI: 10.1007/5584_2018_273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zinc-dependent metalloprotease anthrax lethal factor (LF) is the enzymatic component of a toxin thought to have a major role in Bacillus anthracis infections. Like many bacterial toxins, LF is a secreted protein that functions within host cells. LF is a highly selective protease that cleaves a limited number of substrates in a site-specific manner, thereby impacting host signal transduction pathways. The major substrates of LF are mitogen-activated protein kinase kinases (MKKs), which lie in the middle of three-component phosphorylation cascades mediating numerous functions in a variety of cells and tissues. How LF targets its limited substrate repertoire has been an active area of investigation. LF recognizes a specific sequence motif surrounding the scissile bonds of substrate proteins. X-ray crystallography of the protease in complex with peptide substrates has revealed the structural basis of selectivity for the LF cleavage site motif. In addition to having interactions proximal to the cleavage site, LF binds directly to a more distal region in its substrates through a so-called exosite interaction. This exosite has been mapped to a surface within a non-catalytic domain of LF with previously unknown function. A putative LF-binding site has likewise been identified on the catalytic domains of MKKs. Here we review our current state of understanding of LF-substrate interactions and discuss the implications for the design and discovery of inhibitors that may have utility as anthrax therapeutics.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Suffredini DA, Cui X, Xu W, Li Y, Eichacker PQ. The Potential Pathogenic Contributions of Endothelial Barrier and Arterial Contractile Dysfunction to Shock Due to B. anthracis Lethal and Edema Toxins. Toxins (Basel) 2017; 9:toxins9120394. [PMID: 29210983 PMCID: PMC5744114 DOI: 10.3390/toxins9120394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shock with B. anthracis infection is particularly resistant to conventional cardiovascular support and its mortality rate appears higher than with more common bacterial pathogens. As opposed to many bacteria that lack exotoxins directly depressing hemodynamic function, lethal and edema toxin (LT and ET respectively) both cause shock and likely contribute to the high lethality rate with B. anthracis. Selective inhibition of the toxins is protective in infection models, and administration of either toxin alone in animals produces hypotension with accompanying organ injury and lethality. Shock during infection is typically due to one of two mechanisms: (i) intravascular volume depletion related to disruption of endothelial barrier function; and (ii) extravasation of fluid and/or maladaptive dilation of peripheral resistance arteries. Although some data suggests that LT can produce myocardial dysfunction, growing evidence demonstrates that it may also interfere with endothelial integrity thereby contributing to the extravasation of fluid that helps characterize severe B. anthracis infection. Edema toxin, on the other hand, while known to produce localized tissue edema when injected subcutaneously, has potent vascular relaxant effects that could lead to pathologic arterial dilation. This review will examine recent data supporting a role for these two pathophysiologic mechanisms underlying the shock LT and ET produce. Further research and a better understanding of these mechanisms may lead to improved management of B. anthracis in patients.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Fabre L, Santelli E, Mountassif D, Donoghue A, Biswas A, Blunck R, Hanein D, Volkmann N, Liddington R, Rouiller I. Structure of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry. J Gen Physiol 2017; 148:313-24. [PMID: 27670897 PMCID: PMC5037343 DOI: 10.1085/jgp.201611617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
Anthrax toxin comprises three soluble proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA must be cleaved by host proteases before it oligomerizes and forms a prepore, to which LF and EF bind. After endocytosis of this tripartite complex, the prepore transforms into a narrow transmembrane pore that delivers unfolded LF and EF into the host cytosol. Here, we find that translocation of multiple 90-kD LF molecules is rapid and efficient. To probe the molecular basis of this translocation, we calculated a three-dimensional map of the fully loaded (PA63)7-(LF)3 prepore complex by cryo-electron microscopy (cryo-EM). The map shows three LFs bound in a similar way to one another, via their N-terminal domains, to the surface of the PA heptamer. The model also reveals contacts between the N- and C-terminal domains of adjacent LF molecules. We propose that this molecular arrangement plays an important role in the maintenance of translocation efficiency through the narrow PA pore.
Collapse
Affiliation(s)
- Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| | - Eugenio Santelli
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Driss Mountassif
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| | - Annemarie Donoghue
- Departments of Physics, Université de Montréal, Montréal, Québec H3T 1J4, Canada Department of Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Aviroop Biswas
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| | - Rikard Blunck
- Departments of Physics, Université de Montréal, Montréal, Québec H3T 1J4, Canada Department of Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Robert Liddington
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Groupe d'Étude des Protéines Membranaires (GÉPROM), McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
32
|
Ma P, Cardenas AE, Chaudhari MI, Elber R, Rempe SB. The Impact of Protonation on Early Translocation of Anthrax Lethal Factor: Kinetics from Molecular Dynamics Simulations and Milestoning Theory. J Am Chem Soc 2017; 139:14837-14840. [PMID: 29019235 PMCID: PMC5656527 DOI: 10.1021/jacs.7b07419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report atomically detailed molecular dynamics simulations of the permeation of the lethal factor (LF) N-terminal segment through the anthrax channel. The N-terminal chain is unstructured and leads the permeation process for the LF protein. The simulations were conducted in explicit solvent with milestoning theory, making it possible to extract kinetic information from nanosecond to millisecond time scales. We illustrate that the initial event is strongly influenced by the protonation states of the permeating amino acids. While the N-terminal segment passes easily at high protonation state through the anthrax channel (and the ϕ clamp), the initial permeation represents a critical step, which can be irreversible and establishes a hook in the channel mouth.
Collapse
Affiliation(s)
- Piao Ma
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712
| | - Alfredo E. Cardenas
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712
| | - Mangesh I. Chaudhari
- Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, NM 87185
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712
| | - Susan B. Rempe
- Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, NM 87185
| |
Collapse
|
33
|
Verdurmen WPR, Mazlami M, Plückthun A. A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci Rep 2017; 7:13194. [PMID: 29038564 PMCID: PMC5643320 DOI: 10.1038/s41598-017-13469-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Over many years, a variety of delivery systems have been investigated that have the capacity to shuttle macromolecular cargoes, especially proteins, into the cytosol. Due to the lack of an objective way to quantify cytosolic delivery, relative delivery efficiencies of the various transport systems have remained unclear. Here, we demonstrate the use of the biotin ligase assay for a quantitative comparison of protein transport to the cytosol via cell-penetrating peptides, supercharged proteins and bacterial toxins in four different cell lines. The data illustrate large differences in both the total cellular internalization, which denotes any intracellular location including endosomes, and in the cytosolic uptake of the transport systems, with little correlation between the two. Also, we found significant differences between the cell lines. In general, protein transport systems based on cell-penetrating peptides show a modest total uptake, and mostly do not deliver cargo to the cytosol. Systems based on bacterial toxins show a modest receptor-mediated internalization but an efficient delivery to the cytosol. Supercharged proteins, on the contrary, are not receptor-specific and lead to massive total internalization into endosomes, but only low amounts end up in the cytosol.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marigona Mazlami
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
34
|
Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. Toxins (Basel) 2017; 9:toxins9100298. [PMID: 28937604 PMCID: PMC5666345 DOI: 10.3390/toxins9100298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
The anthrax lethal toxin consists of protective antigen (PA) and lethal factor (LF). Understanding both the PA pore formation and LF translocation through the PA pore is crucial to mitigating and perhaps preventing anthrax disease. To better understand the interactions of the LF-PA engagement complex, the structure of the LFN-bound PA pore solubilized by a lipid nanodisc was examined using cryo-EM. CryoSPARC was used to rapidly sort particle populations of a heterogeneous sample preparation without imposing symmetry, resulting in a refined 17 Å PA pore structure with 3 LFN bound. At pH 7.5, the contributions from the three unstructured LFN lysine-rich tail regions do not occlude the Phe clamp opening. The open Phe clamp suggests that, in this translocation-compromised pH environment, the lysine-rich tails remain flexible and do not interact with the pore lumen region.
Collapse
|
35
|
Goldstein JM, Lee J, Tang X, Boyer AE, Barr JR, Bagarozzi DA, Quinn CP. Phage Display Analysis of Monoclonal Antibody Binding to Anthrax Toxin Lethal Factor. Toxins (Basel) 2017. [PMCID: PMC5535168 DOI: 10.3390/toxins9070221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AVR1674 and AVR1675 are monoclonal antibodies (mAbs) that bind with high specificity to anthrax toxin lethal factor (LF) and lethal toxin (LTx). These mAbs have been used as pivotal reagents to develop anthrax toxin detection tests using mass spectrometry. The mAbs were demonstrated to bind LF with good affinity (KD 10−7–10−9 M) and to enhance LF-mediated cleavage of synthetic peptide substrates in vitro. Sequence analysis indicated that the mAbs shared 100% amino acid identity in their complementarity determining regions (CDR). A phage display library based on a combinatorial library of random heptapeptides fused to the pIII coat protein of M13 phage was enriched and screened to identify peptide sequences with mAb binding properties. Selection and sequence analysis of 18 anti-LF-reactive phage clones identified a 7-residue (P1–P7) AVR1674/1675 consensus target binding sequence of TP1-XP2-K/RP3-DP4-D/EP5-ZP6-X/ZP7 (X = aromatic, Z = non-polar). The phage peptide sequence with highest affinity binding to AVR1674/1675 was identified as T-F-K-D-E-I-V. Synthetic oligopeptides were designed based on the phage sequences and interacted with mAbs with high affinity (KD ~ 10−9 M). Single amino acid substitutions of A, H, or Q in the peptides identified positions P1–P5 as critical residues for mAb-peptide interactions. CLUSTALW alignment of phage sequences with native LF implicated residues 644–650 (sequence T-H-Q-D-E-I-Y) as a putative linear epitope component located within a structural loop (L2) of LF Domain IV. The activation effects of these mAbs contribute to the analytic sensitivity of function-based LF detection assays.
Collapse
Affiliation(s)
- Jason M. Goldstein
- Reagent and Diagnostic Services Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, MS-A03, 1600 Clifton Road, Atlanta, GA 30333, USA; (J.L.); (X.T.); (D.A.B.J.)
- Correspondence: ; Tel.: +1-404-639-2258
| | - Joo Lee
- Reagent and Diagnostic Services Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, MS-A03, 1600 Clifton Road, Atlanta, GA 30333, USA; (J.L.); (X.T.); (D.A.B.J.)
| | - Xiaoling Tang
- Reagent and Diagnostic Services Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, MS-A03, 1600 Clifton Road, Atlanta, GA 30333, USA; (J.L.); (X.T.); (D.A.B.J.)
| | - Anne E. Boyer
- Clinical Chemistry Branch, Division of Laboratory Services, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; (A.E.B.); (J.R.B.)
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Services, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; (A.E.B.); (J.R.B.)
| | - Dennis A. Bagarozzi
- Reagent and Diagnostic Services Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, MS-A03, 1600 Clifton Road, Atlanta, GA 30333, USA; (J.L.); (X.T.); (D.A.B.J.)
| | - Conrad P. Quinn
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-D17, 1600 Clifton Road, Atlanta, GA 30333, USA;
| |
Collapse
|
36
|
Karuppanan K, Duhra-Gill S, Kailemia MJ, Phu ML, Lebrilla CB, Dandekar AM, Rodriguez RL, Nandi S, McDonald KA. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana. Int J Mol Sci 2017; 18:E89. [PMID: 28054967 PMCID: PMC5297723 DOI: 10.3390/ijms18010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022] Open
Abstract
Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 (CMG2) protein fused via a linker to the fragment crystallizable (Fc) domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus (CaMV) 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N-glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N-glycans consists of complex type structures in both protein samples. The most abundant (>50%) N-glycan structure was GlcNAc₂(Xyl)Man₃(Fuc)GlcNAc₂ in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N-glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting.
Collapse
Affiliation(s)
- Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
| | - Sifti Duhra-Gill
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
| | - Muchena J Kailemia
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - My L Phu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA.
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Raymond L Rodriguez
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA.
| | - Somen Nandi
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA.
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Goldberg AB, Cho E, Miller CJ, Lou HJ, Turk BE. Identification of a Substrate-selective Exosite within the Metalloproteinase Anthrax Lethal Factor. J Biol Chem 2016; 292:814-825. [PMID: 27909054 DOI: 10.1074/jbc.m116.761734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/23/2016] [Indexed: 01/02/2023] Open
Abstract
The metalloproteinase anthrax lethal factor (LF) is secreted by Bacillus anthracis to promote disease virulence through disruption of host signaling pathways. LF is a highly specific protease, exclusively cleaving mitogen-activated protein kinase kinases (MKKs) and rodent NLRP1B (NACHT leucine-rich repeat and pyrin domain-containing protein 1B). How LF achieves such restricted substrate specificity is not understood. Previous studies have suggested the existence of an exosite interaction between LF and MKKs that promotes cleavage efficiency and specificity. Through a combination of in silico prediction and site-directed mutagenesis, we have mapped an exosite to a non-catalytic region of LF. Mutations within this site selectively impair proteolysis of full-length MKKs yet have no impact on cleavage of short peptide substrates. Although this region appears important for cleaving all LF protein substrates, we found that mutation of specific residues within the exosite differentially affects MKK and NLRP1B cleavage in vitro and in cultured cells. One residue in particular, Trp-271, is essential for cleavage of MKK3, MKK4, and MKK6 but dispensable for targeting of MEK1, MEK2, and NLRP1B. Analysis of chimeric substrates suggests that this residue interacts with the MKK catalytic domain. We found that LF-W271A blocked ERK phosphorylation and growth in a melanoma cell line, suggesting that it may provide a highly selective inhibitor of MEK1/2 for use as a cancer therapeutic. These findings provide insight into how a bacterial toxin functions to specifically impair host signaling pathways and suggest a general strategy for mapping protease exosite interactions.
Collapse
Affiliation(s)
- Allison B Goldberg
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eunice Cho
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Chad J Miller
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hua Jane Lou
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Benjamin E Turk
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
39
|
Wang J, Zheng S, Liu Y, Zhang Z, Lin Z, Li J, Zhang G, Wang X, Li J, Chen PR. Palladium-Triggered Chemical Rescue of Intracellular Proteins via Genetically Encoded Allene-Caged Tyrosine. J Am Chem Soc 2016; 138:15118-15121. [PMID: 27797486 DOI: 10.1021/jacs.6b08933] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemical de-caging has emerged as an attractive strategy for gain-of-function study of proteins via small-molecule reagents. The previously reported chemical de-caging reactions have been largely centered on liberating the side chain of lysine on a given protein. Herein, we developed an allene-based caging moiety and the corresponding palladium de-caging reagents for chemical rescue of tyrosine (Tyr) activity on intracellular proteins. This bioorthogonal de-caging pair has been successfully applied to unmask enzymatic Tyr sites (e.g., Y671 on Taq polymerase and Y728 on Anthrax lethal factor) as well as the post-translational Tyr modification site (Y416 on Src kinase) in vitro and in living cells. Our strategy provides a general platform for chemical rescue of Tyr-dependent protein activity inside cells.
Collapse
Affiliation(s)
- Jie Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Siqi Zheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yanjun Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zhaoyue Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zhi Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Gong Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xin Wang
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Jie Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
40
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
41
|
Vrentas CE, Moayeri M, Keefer AB, Greaney AJ, Tremblay J, O'Mard D, Leppla SH, Shoemaker CB. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection. J Biol Chem 2016; 291:21596-21606. [PMID: 27539858 DOI: 10.1074/jbc.m116.749184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Infection with Bacillus anthracis, the causative agent of anthrax, can lead to persistence of lethal secreted toxins in the bloodstream, even after antibiotic treatment. VHH single-domain antibodies have been demonstrated to neutralize diverse bacterial toxins both in vitro and in vivo, with protein properties such as small size and high stability that make them attractive therapeutic candidates. Recently, we reported on VHHs with in vivo activity against the protective antigen component of the anthrax toxins. Here, we characterized a new set of 15 VHHs against the anthrax toxins that act by binding to the edema factor (EF) and/or lethal factor (LF) components. Six of these VHHs are cross-reactive against both EF and LF and recognize the N-terminal domain (LFN, EFN) of their target(s) with subnanomolar affinity. The cross-reactive VHHs block binding of EF/LF to the protective antigen C-terminal binding interface, preventing toxin entry into the cell. Another VHH appears to recognize the LF C-terminal domain and exhibits a kinetic effect on substrate cleavage by LF. A subset of the VHHs neutralized against EF and/or LF in murine macrophage assays, and the neutralizing VHHs that were tested improved survival of mice in a spore model of anthrax infection. Finally, a bispecific VNA (VHH-based neutralizing agent) consisting of two linked toxin-neutralizing VHHs, JMN-D10 and JMO-G1, was fully protective against lethal anthrax spore infection in mice as a single dose. This set of VHHs should facilitate development of new therapeutic VNAs and/or diagnostic agents for anthrax.
Collapse
Affiliation(s)
- Catherine E Vrentas
- From the Department of Biology, Frostburg State University, Frostburg, Maryland 50010.,Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Andrea B Keefer
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Allison J Greaney
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jacqueline Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Maryland 01536
| | - Danielle O'Mard
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Maryland 01536
| |
Collapse
|
42
|
Silin V, Kasianowicz JJ, Michelman-Ribeiro A, Panchal RG, Bavari S, Robertson JWF. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins. MEMBRANES 2016; 6:E36. [PMID: 27348008 PMCID: PMC5041027 DOI: 10.3390/membranes6030036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/18/2023]
Abstract
Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects.
Collapse
Affiliation(s)
- Vitalii Silin
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20899, USA.
| | - John J Kasianowicz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| | - Ariel Michelman-Ribeiro
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| | - Rekha G Panchal
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Joseph W F Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| |
Collapse
|
43
|
Rabideau AE, Pentelute BL. Delivery of Non-Native Cargo into Mammalian Cells Using Anthrax Lethal Toxin. ACS Chem Biol 2016; 11:1490-501. [PMID: 27055654 DOI: 10.1021/acschembio.6b00169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular delivery of peptide and protein therapeutics is a major challenge due to the plasma membrane, which acts as a barrier between the extracellular environment and the intracellular milieu. Over the past two decades, a nontoxic PA/LFN delivery platform derived from anthrax lethal toxin has been developed for the transport of non-native cargo into the cytosol of cells in order to understand the translocation process through a protective antigen (PA) pore and to probe intracellular biological functions. Enzyme-mediated ligation using sortase A and native chemical ligation are two facile methods used to synthesize these non-native conjugates, inaccessible by recombinant technology. Cargo molecules that translocate efficiently include enzymes from protein toxins, antibody mimic proteins, and peptides of varying lengths and non-natural amino acid compositions. The PA pore has been found to effectively convey over 30 known cargos other than native lethal factor (LF; i.e., non-native) with diverse sequences and functionalities on the LFN transporter protein. All together these studies demonstrated that non-native cargos must adopt an unfolded or extended conformation and contain a suitable charge composition in order to efficiently pass through the PA pore. This review provides insight into design parameters for the efficient delivery of new cargos using PA and LFN.
Collapse
Affiliation(s)
- Amy E. Rabideau
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley Lether Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 2016; 91:1431-1445. [DOI: 10.1007/s00204-016-1716-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
45
|
Cardona-Correa A, Rios-Velazquez C. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening. Mol Med Rep 2016; 13:3797-804. [PMID: 27035230 PMCID: PMC4838128 DOI: 10.3892/mmr.2016.5031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Albin Cardona-Correa
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| | - Carlos Rios-Velazquez
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| |
Collapse
|
46
|
Young CJ, Siemann S. Highly dynamic metal exchange in anthrax lethal factor involves the occupation of an inhibitory metal binding site. Chem Commun (Camb) 2016; 52:11748-51. [DOI: 10.1039/c6cc05460a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid metal exchange in anthrax lethal factor and potentially other zinc enzymes proceeds via the formation of transient bimetallic species.
Collapse
Affiliation(s)
- Calvin J. Young
- Department of Chemistry and Biochemistry
- Laurentian University
- Sudbury
- Canada
| | - Stefan Siemann
- Department of Chemistry and Biochemistry
- Laurentian University
- Sudbury
- Canada
| |
Collapse
|
47
|
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. J Mol Model 2015; 22:7. [PMID: 26659402 DOI: 10.1007/s00894-015-2878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation.
Collapse
|
48
|
Maize KM, Kurbanov EK, Johnson RL, Amin EA, Finzel BC. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor. FEBS Lett 2015; 589:3836-41. [PMID: 26578066 DOI: 10.1016/j.febslet.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'(∗) which might afford new opportunities to design selective inhibitors that target this subsite.
Collapse
Affiliation(s)
- Kimberly M Maize
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Elbek K Kurbanov
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Rodney L Johnson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Elizabeth Ambrose Amin
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Barry C Finzel
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States.
| |
Collapse
|
49
|
Kurbanov EK, Chiu TL, Solberg J, Francis S, Maize KM, Fernandez J, Johnson RL, Hawkinson JE, Walters MA, Finzel BC, Amin EA. Probing the S2′ Subsite of the Anthrax Toxin Lethal Factor Using Novel N-Alkylated Hydroxamates. J Med Chem 2015; 58:8723-33. [DOI: 10.1021/acs.jmedchem.5b01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elbek K. Kurbanov
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ting-Lan Chiu
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jonathan Solberg
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Subhashree Francis
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Kimberly M. Maize
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jenna Fernandez
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rodney L. Johnson
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jon E. Hawkinson
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A. Walters
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Barry C. Finzel
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Elizabeth Ambrose Amin
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
- Minnesota
Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Schacherl M, Pichlo C, Neundorf I, Baumann U. Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. Structure 2015. [DOI: 10.1016/j.str.2015.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|