1
|
Zhang L, Chen Y, Yang Z, Liu L, Yang Y, Dalladay-Simpson P, Wang J, Mao HK. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions. Nat Commun 2024; 15:4333. [PMID: 38773099 PMCID: PMC11109188 DOI: 10.1038/s41467-024-48665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Earth's lower mantle is a potential water reservoir. The physical and chemical properties of the region are in part controlled by the Fe3+/ΣFe ratio and total iron content in bridgmanite. However, the water effect on the chemistry of bridgmanite remains unclear. We carry out laser-heated diamond anvil cell experiments under hydrous conditions and observe dominant Fe2+ in bridgmanite (Mg, Fe)SiO3 above 105 GPa under the normal geotherm conditions corresponding to depth > 2300 km, whereas Fe3+-rich bridgmanite is obtained at lower pressures. We further observe FeO in coexistence with hydrous NiAs-type SiO2 under similar conditions, indicating that the stability of ferrous iron is a combined result of H2O effect and high pressure. The stability of ferrous iron in bridgmanite under hydrous conditions would provide an explanation for the nature of the low-shear-velocity anomalies in the deep lower mantle. In addition, entrainment from a hydrous dense layer may influence mantle plume dynamics and contribute to variations in the redox conditions of the mantle.
Collapse
Affiliation(s)
- Li Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
| | - Yongjin Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Ziqiang Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Lu Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Yanping Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | | | - Junyue Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Ho-Kwang Mao
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai, China
| |
Collapse
|
2
|
The evolution of basal mantle structure in response to supercontinent aggregation and dispersal. Sci Rep 2021; 11:22967. [PMID: 34824342 PMCID: PMC8617165 DOI: 10.1038/s41598-021-02359-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Seismic studies have revealed two Large Low-Shear Velocity Provinces (LLSVPs) in the lowermost mantle. Whether these structures remain stable over time or evolve through supercontinent cycles is debated. Here we analyze a recently published mantle flow model constrained by a synthetic plate motion model extending back to one billion years ago, to investigate how the mantle evolves in response to changing plate configurations. Our model predicts that sinking slabs segment the basal thermochemical structure below an assembling supercontinent, and that this structure eventually becomes unified due to slab push from circum-supercontinental subduction. In contrast, the basal thermochemical structure below the superocean is generally coherent due to the persistence of a superocean in our imposed plate reconstruction. The two antipodal basal thermochemical structures exchange material several times when part of one of the structures is carved out and merged with the other one, similarly to “exotic” tectonic terranes. Plumes mostly rise from thick basal thermochemical structures and in some instances migrate from the edges towards the interior of basal thermochemical structures due to slab push. Our results suggest that the topography of basal structures and distribution of plumes change over time due to the changing subduction network over supercontinent cycles.
Collapse
|
3
|
A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature 2021; 589:562-566. [PMID: 33505039 DOI: 10.1038/s41586-020-03139-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023]
Abstract
The location and degree of material transfer between the upper and lower mantle are key to the Earth's thermal and chemical evolution. Sinking slabs and rising plumes are generally accepted as locations of transfer1,2, whereas mid-ocean ridges are not typically assumed to have a role3. However, tight constraints from in situ measurements at ridges have proved to be challenging. Here we use receiver functions that reveal the conversion of primary to secondary seismic waves to image the discontinuities that bound the mantle transition zone, using ocean bottom seismic data from the equatorial Mid-Atlantic Ridge. Our images show that the seismic discontinuity at depths of about 660 kilometres is broadly uplifted by 10 ± 4 kilometres over a swath about 600 kilometres wide and that the 410-kilometre discontinuity is depressed by 5 ± 4 kilometres. This thinning of the mantle transition zone is coincident with slow shear-wave velocities in the mantle, from global seismic tomography4-7. In addition, seismic velocities in the mantle transition zone beneath the Mid-Atlantic Ridge are on average slower than those beneath older Atlantic Ocean seafloor. The observations imply material transfer from the lower to the upper mantle-either continuous or punctuated-that is linked to the Mid-Atlantic Ridge. Given the length and longevity of the mid-ocean ridge system, this implies that whole-mantle convection may be more prevalent than previously thought, with ridge upwellings having a role in counterbalancing slab downwellings.
Collapse
|
4
|
Schaefer L, Elkins-Tanton LT. Magma oceans as a critical stage in the tectonic development of rocky planets. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0109. [PMID: 30275166 PMCID: PMC6189560 DOI: 10.1098/rsta.2018.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 05/23/2023]
Abstract
Magma oceans are a common result of the high degree of heating that occurs during planet formation. It is thought that almost all of the large rocky bodies in the Solar System went through at least one magma ocean phase. In this paper, we review some of the ways in which magma ocean models for the Earth, Moon and Mars match present-day observations of mantle reservoirs, internal structure and primordial crusts, and then we present new calculations for the oxidation state of the mantle produced during the magma ocean phase. The crystallization of magma oceans probably leads to a massive mantle overturn that may set up a stably stratified mantle. This may lead to significant delays or total prevention of plate tectonics on some planets. We review recent models that may help alleviate the mantle stability issue and lead to earlier onset of plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Laura Schaefer
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Linda T Elkins-Tanton
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Yuan K, Romanowicz B. Seismic evidence for partial melting at the root of major hot spot plumes. Science 2018; 357:393-397. [PMID: 28751607 DOI: 10.1126/science.aan0760] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/19/2017] [Indexed: 11/02/2022]
Abstract
Ultralow-velocity zones are localized regions of extreme material properties detected seismologically at the base of Earth's mantle. Their nature and role in mantle dynamics are poorly understood. We used shear waves diffracted at the core-mantle boundary to illuminate the root of the Iceland plume from different directions. Through waveform modeling, we detected a large ultralow-velocity zone and constrained its shape to be axisymmetric to a very good first order. We thus attribute it to partial melting of a locally thickened, denser- and hotter-than-average layer, reflecting dynamics and elevated temperatures within the plume root. Such structures are few and far apart, and they may be characteristic of the roots of some of the broad mantle plumes tomographically imaged within the large low-shear-velocity provinces in the lower mantle.
Collapse
Affiliation(s)
- Kaiqing Yuan
- Berkeley Seismological Laboratory, Berkeley, CA 94720, USA
| | - Barbara Romanowicz
- Berkeley Seismological Laboratory, Berkeley, CA 94720, USA. .,Collège de France, Paris, France.,Institut de Physique du Globe, Paris, France
| |
Collapse
|
6
|
A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 2016; 533:239-42. [PMID: 27172048 DOI: 10.1038/nature17422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/09/2016] [Indexed: 11/08/2022]
Abstract
Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.
Collapse
|
7
|
Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature 2015; 525:95-9. [DOI: 10.1038/nature14876] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/19/2015] [Indexed: 11/08/2022]
|
8
|
O’Neill C, Lenardic A, Condie KC. Earth's punctuated tectonic evolution: cause and effect. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp389.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractPeaks in the Precambrian preserved crustal record are associated with major volcanic, tectonic and climatic events. These include addition of juvenile continental crust, voluminous high-temperature volcanism, massive mantle depletion, widespread orogeny and mineralization, large apparent polar wander velocity spikes, and subsequent palaeomagnetic intensity increases. These events impinge on the glaciation record, atmospheric and ocean chemistry, and on the rise of oxygen. Here we summarize and assess a number of geodynamic models that have been proposed to explain the observed episodicity in the Precambrian record. We find that episodic behaviour from nonlinear slab-driven models best explains the observed record. Examples of such slab-driven systems include mantle avalanches or episodic subduction. In these cases, rapid descent of slabs into the mantle drives fast plate motions and convergence at the surface. This is accompanied by large-scale upwellings of deep hot mantle, which contribute to voluminous volcanism. Further modelling will determine the relative importance of each mechanism, and reinforce the fundamental contribution of the mantle to the evolution of Earth's surface systems.
Collapse
Affiliation(s)
- C. O’Neill
- CCFS ARC Centre of Excellence, GEMOC, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
9
|
Zhang N, Zhong S, Leng W, Li ZX. A model for the evolution of the Earth's mantle structure since the Early Paleozoic. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jb006896] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Tarduno J, Bunge HP, Sleep N, Hansen U. The Bent Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind. Science 2009; 324:50-3. [DOI: 10.1126/science.1161256] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- John Tarduno
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, München, 80333 München, Germany
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
- Institut für Geophysik, Universität Münster, 48149 Münster, Germany
| | - Hans-Peter Bunge
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, München, 80333 München, Germany
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
- Institut für Geophysik, Universität Münster, 48149 Münster, Germany
| | - Norm Sleep
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, München, 80333 München, Germany
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
- Institut für Geophysik, Universität Münster, 48149 Münster, Germany
| | - Ulrich Hansen
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, München, 80333 München, Germany
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
- Institut für Geophysik, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
11
|
Wookey J, Dobson DP. Between a rock and a hot place: the core-mantle boundary. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4543-4557. [PMID: 18818149 DOI: 10.1098/rsta.2008.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.
Collapse
Affiliation(s)
- James Wookey
- Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.
| | | |
Collapse
|
12
|
Jellinek AM, Johnson CL, Schubert G. Constraints on the elastic thickness, heat flow, and melt production at early Tharsis from topography and magnetic field observations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Imai M, Sato A, Aoyagi T, Kimura T, Matsushita Y, Tsujii N. Superconductivity in the AlB2-Type Ternary Rare-Earth Silicide YbGa1.1Si0.9. J Am Chem Soc 2008; 130:2886-7. [DOI: 10.1021/ja077669r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Motoharu Imai
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Akira Sato
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takeshi Aoyagi
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takashi Kimura
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yoshitaka Matsushita
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naohito Tsujii
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
14
|
Schmidt LE, Zhang WW. Viscous withdrawal of miscible liquid layers. PHYSICAL REVIEW LETTERS 2008; 100:044502. [PMID: 18352283 DOI: 10.1103/physrevlett.100.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Indexed: 05/26/2023]
Abstract
In viscous withdrawal, a converging flow imposed in an upper layer of viscous liquid entrains liquid from a lower, stably stratified layer. Using the idea that a thin tendril is entrained by a local straining flow, we propose a scaling law for the volume flux of liquid entrained from miscible liquid layers. A long-wavelength model including only local information about the withdrawal flow is degenerate, with multiple tendril solutions for one withdrawal condition. Including information about the global geometry of the withdrawal flow removes the degeneracy while introducing only a logarithmic dependence on the global flow parameters into the scaling law.
Collapse
Affiliation(s)
- Laura E Schmidt
- The Department of Physics & The James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
15
|
Tan E, Gurnis M. Compressible thermochemical convection and application to lower mantle structures. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004505] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Ritsema J, McNamara AK, Bull AL. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004566] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Fogg AM, Meldrum J, Darling GR, Claridge JB, Rosseinsky MJ. Chemical Control of Electronic Structure and Superconductivity in Layered Borides and Borocarbides: Understanding the Absence of Superconductivity in LixBC. J Am Chem Soc 2006; 128:10043-53. [PMID: 16881632 DOI: 10.1021/ja0578449] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthetic search for materials related to the 39 K superconductor MgB2 has been difficult. The most promising theoretical suggestion, hole doping of LiBC, does not lead to a new superconductor. We show here that a combination of density functional theory (DFT) calculations, materials synthesis, and structural characterization reveals the origin of the puzzling absence of superconductivity in Li1/2BC as a subtle change in the electronic structure driven by structural response to the introduction of holes. This indicates that the unique aspects of the electronic structure of MgB2 will be demanding to replicate in other systems.
Collapse
Affiliation(s)
- Andrew M Fogg
- Department of Chemistry, The University of Liverpool, Liverpool, L69 7ZD United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Zhong S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jb003972] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Wookey J, Stackhouse S, Kendall JM, Brodholt J, Price GD. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 2005; 438:1004-7. [PMID: 16355222 DOI: 10.1038/nature04345] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/18/2005] [Indexed: 11/09/2022]
Abstract
Constraining the chemical, rheological and electromagnetic properties of the lowermost mantle (D'') is important to understand the formation and dynamics of the Earth's mantle and core. To explain the origin of the variety of characteristics of this layer observed with seismology, a number of theories have been proposed, including core-mantle interaction, the presence of remnants of subducted material and that D'' is the site of a mineral phase transformation. This final possibility has been rejuvenated by recent evidence for a phase change in MgSiO3 perovskite (thought to be the most prevalent phase in the lower mantle) at near core-mantle boundary temperature and pressure conditions. Here we explore the efficacy of this 'post-perovskite' phase to explain the seismic properties of the lowermost mantle through coupled ab initio and seismic modelling of perovskite and post-perovskite polymorphs of MgSiO3, performed at lowermost-mantle temperatures and pressures. We show that a post-perovskite model can explain the topography and location of the D'' discontinuity, apparent differences in compressional- and shear-wave models and the observation of a deeper, weaker discontinuity. Furthermore, our calculations show that the regional variations in lower-mantle shear-wave anisotropy are consistent with the proposed phase change in MgSiO3 perovskite.
Collapse
Affiliation(s)
- James Wookey
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
20
|
Helmberger D, Lay T, Ni S, Gurnis M. Deep mantle structure and the postperovskite phase transition. Proc Natl Acad Sci U S A 2005; 102:17257-63. [PMID: 16217029 PMCID: PMC1297654 DOI: 10.1073/pnas.0502504102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 11/18/2022] Open
Abstract
Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in terms of geodynamics and mineral physics, with dense partial melts causing the ULVZs and a postperovskite solid-solid phase transition producing regional layering, with the possibility of large-scale variations in chemistry. This strong heterogeneity has significant implications on heat transport out of core, the evolution of the magnetic field, and magnetic field polarity reversals.
Collapse
Affiliation(s)
- D Helmberger
- Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
21
|
McNamara AK, Zhong S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 2005; 437:1136-9. [PMID: 16237440 DOI: 10.1038/nature04066] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 07/21/2005] [Indexed: 11/08/2022]
Abstract
Large low-velocity seismic anomalies have been detected in the Earth's lower mantle beneath Africa and the Pacific Ocean that are not easily explained by temperature variations alone. The African anomaly has been interpreted to be a northwest-southeast-trending structure with a sharp-edged linear, ridge-like morphology. The Pacific anomaly, on the other hand, appears to be more rounded in shape. Mantle models with heterogeneous composition have related these structures to dense thermochemical piles or superplumes. It has not been shown, however, that such models can lead to thermochemical structures that satisfy the geometrical constraints, as inferred from seismological observations. Here we present numerical models of thermochemical convection in a three-dimensional spherical geometry using plate velocities inferred for the past 119 million years. We show that Earth's subduction history can lead to thermochemical structures similar in shape to the observed large, lower-mantle velocity anomalies. We find that subduction history tends to focus dense material into a ridge-like pile beneath Africa and a relatively more-rounded pile under the Pacific Ocean, consistent with seismic observations.
Collapse
Affiliation(s)
- Allen K McNamara
- Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA.
| | | |
Collapse
|
22
|
Rost S, Garnero EJ, Williams Q, Manga M. Seismological constraints on a possible plume root at the core-mantle boundary. Nature 2005; 435:666-9. [PMID: 15931220 DOI: 10.1038/nature03620] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 04/06/2005] [Indexed: 11/09/2022]
Abstract
Recent seismological discoveries have indicated that the Earth's core-mantle boundary is far more complex than a simple boundary between the molten outer core and the silicate mantle. Instead, its structural complexities probably rival those of the Earth's crust. Some regions of the lowermost mantle have been observed to have seismic wave speed reductions of at least 10 per cent, which appear not to be global in extent. Here we present robust evidence for an 8.5-km-thick and approximately 50-km-wide pocket of dense, partially molten material at the core-mantle boundary east of Australia. Array analyses of an anomalous precursor to the reflected seismic wave ScP reveal compressional and shear-wave velocity reductions of 8 and 25 per cent, respectively, and a 10 per cent increase in density of the partially molten aggregate. Seismological data are incompatible with a basal layer composed of pure melt, and thus require a mechanism to prevent downward percolation of dense melt within the layer. This may be possible by trapping of melt by cumulus crystal growth following melt drainage from an anomalously hot overlying region of the lowermost mantle. This magmatic evolution and the resulting cumulate structure seem to be associated with overlying thermal instabilities, and thus may mark a root zone of an upwelling plume.
Collapse
Affiliation(s)
- Sebastian Rost
- Department of Geological Sciences, Arizona State University, Box 871404, Tempe , Arizona 85287-1404, USA.
| | | | | | | |
Collapse
|
23
|
Humayun M, Qin L, Norman MD. Geochemical Evidence for Excess Iron in the Mantle Beneath Hawaii. Science 2004; 306:91-4. [PMID: 15459385 DOI: 10.1126/science.1101050] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chemical interaction of Earth's mantle with the liquid outer core should influence the mantle's iron content. Osmium isotope ratios in Hawaiian lavas indicate a mass flux of </=1% core to the mantle, which is the immediate source of these lavas. We present precise measurements of the Fe/Mn ratio for Hawaiian lavas, revealing an increase of 1 to 2% in the mole fraction of iron in the mantle beneath Hawaii. This corresponds to a density anomaly of about 0.5%, about the same magnitude observed in seismic tomography models of the Pacific superswell region. These data also rule out a role for Mn-rich sediments as the source of the Hawaiian Os isotope signal.
Collapse
Affiliation(s)
- Munir Humayun
- Department of the Geophysical Sciences, 5734 South Ellis Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
24
|
McNamara AK, Zhong S. Thermochemical structures within a spherical mantle: Superplumes or piles? ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002847] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shijie Zhong
- Department of Physics; University of Colorado; Boulder Colorado USA
| |
Collapse
|
25
|
Tarduno JA, Duncan RA, Scholl DW, Cottrell RD, Steinberger B, Thordarson T, Kerr BC, Neal CR, Frey FA, Torii M, Carvallo C. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science 2003; 301:1064-9. [PMID: 12881572 DOI: 10.1126/science.1086442] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.
Collapse
Affiliation(s)
- John A Tarduno
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Johnson CL. A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001962] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|