1
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
2
|
Hu J, Jin W, Tan Z, Wu S, Tian J, Sun Y, Ding CC. Potential Application of 2D Haeckelite MoS 2 as an Anode Material for Mg Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19396-19403. [PMID: 39226526 DOI: 10.1021/acs.langmuir.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The design and preparation of anode materials with structural stability, fast ion transmission, and low open-circuit voltage are critical to the development of magnesium ion batteries (MIBs). The feasibility of the unique phase Haeckelite MoS2 (Hae-MoS2) monolayer with Haeckelite structure as a potential anode material for MIBs was investigated using density functional theory (DFT) calculations. The Hae-MoS2 monolayer exhibits excellent structural stability and semimetallic characteristics with a Dirac cone located at the Gamma point of band structure. Mg ion is easily adsorbed on the Hae-MoS2 monolayer surface with an adsorption energy of -2.06 eV and can diffuse rapidly with a low diffusion energy barrier (0.3 eV), indicating excellent charge and discharge rates. Most importantly, the Hae-MoS2 monolayer exhibits a suitable open-circuit voltage, which falls within the desired voltage range and ensures the safety of battery performance. These exceptional properties indicate that the Hae-MoS2 monolayer can be proposed as a candidate for anode material for MIBs.
Collapse
Affiliation(s)
- Junshan Hu
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Wei Jin
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Zhaoyang Tan
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Song Wu
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Jingyu Tian
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Yujie Sun
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Chang-Chun Ding
- School of science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| |
Collapse
|
3
|
Li L, Tan R, Ouyang Y, Wei X, Tang Z. Prediction of two-dimensional C 3N 2 semiconductors with outstanding stability, moderate band gaps, and high carrier mobility. Dalton Trans 2024; 53:13055-13064. [PMID: 39034712 DOI: 10.1039/d4dt01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Two-dimensional (2D) semiconductors with suitable band gaps, high carrier mobility, and environmental stability are crucial for applications in the next generation of electronics and optoelectronics. However, current candidate materials each have one or more issues. In this work, two novel C3N2 monolayers, P-C3N2 and I-C3N2 are proposed by first-principles calculations. Both structures have demonstrated excellent dynamical and mechanical stability, with thermal stability approaching 3000 K. Importantly, P-C3N2 shows a distinct advantage in formation energy compared to currently synthesized 2D carbon nitride materials, indicating its potential for experimental synthesis. Electronic structure calculations reveal that both P-C3N2 and I-C3N2 are intrinsic semiconductors with moderate band gaps of 2.19 and 1.81 eV, respectively. Additionally, both C3N2 monolayers display high absorption coefficients up to 105 cm-1, with P-C3N2 showing significant absorption capabilities in the visible light region. Remarkably, P-C3N2 possesses an ultra-high carrier mobility of up to 104 cm2 V-1 s-1. These findings provide theoretical insights and candidates for future applications in the electronics and optoelectronics fields.
Collapse
Affiliation(s)
- Longhui Li
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Rui Tan
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Yulou Ouyang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Xiaolin Wei
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Zhenkun Tang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| |
Collapse
|
4
|
Banhart F. The Formation and Transformation of Low-Dimensional Carbon Nanomaterials by Electron Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310462. [PMID: 38700071 DOI: 10.1002/smll.202310462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Low-dimensional materials based on graphene or graphite show a large variety of phenomena when they are subjected to irradiation with energetic electrons. Since the 1990s, electron microscopy studies, where a certain irradiation dose is unavoidable, have witnessed unexpected structural transformations of graphitic nanoparticles. It is recognized that electron irradiation is not only detrimental but also bears considerable potential in the formation of new graphitic structures. With the availability of aberration-corrected electron microscopes and the discovery of techniques to produce monolayers of graphene, detailed insight into the atomic processes occurring during electron irradiation became possible. Threshold energies for atom displacements are determined and models of different types of lattice vacancies are confirmed experimentally. However, experimental evidence for the configuration of interstitial atoms in graphite or adatoms on graphene remained indirect, and the understanding of defect dynamics still depends on theoretical concepts. This article reviews irradiation phenomena in graphene- or graphite-based nanomaterials from the scale of single atoms to tens of nanometers. Observations from the 1990s can now be explained on the basis of new results. The evolution of the understanding during three decades of research is presented, and the remaining problems are pointed out.
Collapse
Affiliation(s)
- Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, Strasbourg, 67034, France
| |
Collapse
|
5
|
Ishida Y. Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist's Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6065-6076. [PMID: 38484331 DOI: 10.1021/acs.langmuir.3c03779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and their associated supramolecular complexes. The imaging is conducted by harnessing the power of aberration-corrected scanning transmission electron microscopy (STEM). Clay mineral nanosheets, with their anionic charge and ultrathin thickness (of 1 nm), serve as a stable Coulombic host material for cationic guest molecules through electrostatic interactions, facilitating exceptional stability and control during observation. By incorporation of heavy-metal atom markers coordinated within the target molecules, high-angle annular dark field STEM enables a clear visualization of these supramolecular complexes. This approach helps to overcome the limitations of graphene-based systems and expands the possibilities of atomic-scale imaging of nonperiodic molecular assemblies formed by weak supramolecular interactions. The fusion of electron microscopy techniques with the principles of supramolecular and material chemistry offers exciting opportunities for studying the structure, behavior, and properties of complex supramolecular systems. It sheds light on the intricate molecular architectures and design principles governing these systems. This study showcases the immense potential of electron microscopy in supramolecular chemistry and invites researchers from various disciplines to explore the transformative possibilities of atomic-scale imaging in the field.
Collapse
Affiliation(s)
- Yohei Ishida
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 Japan
| |
Collapse
|
6
|
Cheng X, Xu S, Hu T, Hu S, Gao H, Singh DJ, Ren W. First-principles predictions of room-temperature ferromagnetism in orthorhombic MnX 2 (X = O, S) monolayers. Phys Chem Chem Phys 2024; 26:9170-9178. [PMID: 37850421 DOI: 10.1039/d3cp03143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Two-dimensional ferromagnets with high spin-polarization at ambient temperature are of considerable interest because they might be useful for making nanoscale spintronic devices. We report that even though bulk phases of MnO2 are generally antiferromagnetic with low ordering temperatures, the corresponding MnO2 and MnS2 monolayers are ferromagnetic, and MnS2 is a high temperature half metallic ferromagnet. Based on first-principles calculations, we find that the MnO2 monolayer is an intrinsic ferromagnetic semiconductor with a Curie temperature TC of ∼300 K, while the half-metallic MnS2 monolayer has a remarkably high TC of ∼1150 K. Both compounds have substantial magnetocrystalline anisotropy, out of plane in the case of MnO2 monolayers, and in plane along the b-axis of orthorhombic MnS2 monolayer. Interestingly, a metal-insulator phase transition occurs in the MnS2 monolayer when the applied biaxial strain is beyond -2%. Tuning near this metal-insulator transition offers additional possibilities for devices. The present work shows that MnX2 (X = O, S) monolayers have the properties required for ultrathin nano-spintronic devices.
Collapse
Affiliation(s)
- Xuli Cheng
- Department of Physics, Materials Genome Institute, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China.
| | - Shaowen Xu
- Department of Physics, Materials Genome Institute, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China.
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou 310024, China.
| | - Tao Hu
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Shunbo Hu
- Department of Physics, Materials Genome Institute, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China.
- Institute for the Conservation of Cultural Heritage, School of Cultural Heritage and Information Management, Shanghai University, Shanghai 200444, China.
| | - Heng Gao
- Department of Physics, Materials Genome Institute, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China.
| | - David J Singh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Wei Ren
- Department of Physics, Materials Genome Institute, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China.
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
7
|
Yamamoto M, Goto S, Tang R, Yamazaki K. Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chem Sci 2024; 15:1953-1965. [PMID: 38332834 PMCID: PMC10848746 DOI: 10.1039/d3sc05022j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024] Open
Abstract
Precise template synthesis will realize three-dimensionally ordered nanoporous graphenes (NPGs) with a spatially controlled seamless graphene structure and fewer edges. These structural features result in superelastic nature, high electrochemical stability, high electrical conductivity, and fast diffusion of gases and ions at the same time. Such innovative 3D graphene materials are conducive to solving energy-related issues for a better future. To further improve the attractive properties of NPGs, we review the template synthesis and its mechanism by chemical vapor deposition of hydrocarbons, analysis of the nanoporous graphene structure, and applications in electrochemical and mechanical devices.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Ookayama 2-12-1 Meguro Tokyo 152-8550 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Rui Tang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
8
|
Liu B, Chen M, Liu X, Fu R, Zhao Y, Duan Y, Zhang L. Bespoke Tailoring of Graphenoid Sheets: A Rippled Molecular Carbon Comprising Cyclically Fused Nonbenzenoid Rings. J Am Chem Soc 2023; 145:28137-28145. [PMID: 38095317 DOI: 10.1021/jacs.3c10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The incorporation of nonbenzenoid rings into the hexagonal networks of graphenoid nanostructures is of immense importance for electronic, magnetic, and mechanical properties, but the underlying mechanisms of nonbenzenoid ring fusion are rather unexplored. Here, we report the synthesis and characterization of a rippled C84 molecular carbon, which contains 10 nonbenzenoid rings (five-, seven-, and eight-membered rings) that are contiguously fused to give a cyclic geometry. The fused nonbenzenoid rings impart high solubility, configurational stability, multiple reversible redox behaviors, unique aromaticity, and a narrow band gap to the system. Moreover, this carbon nanostructure allows for further functionalization via electrophilic substitution and metalation reactions, enabling access to finely tuned derivatives. Interestingly, both the bowl-shaped and planar conformations of the core in molecular carbon are observed in the solid state. Additionally, this molecular carbon displays ambipolar transport characteristics.
Collapse
Affiliation(s)
- Binbin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruihua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yubo Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Shakouri S, Khalili B, Nikpasand M, Kefayati H. Adsorption of Tunable aryl alkyl ionic liquids (TILs) on the graphene and Defective graphene nanosheets: A DFT Study. J Mol Graph Model 2023; 125:108612. [PMID: 37657330 DOI: 10.1016/j.jmgm.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Optical and electronic characteristics of the graphene nanosheets (GNS) could be altered by some structural defects such as double-vacancy and Stone-Wales ones. The physisorption manner of [MPI][BF4], [MPT1][BF4], [MPT2][BF4], and [MPTT][BF4] ionic liquids on intact and defective GNS surfaces were investigated using M06-2X/cc-pVDZ computational method. Capability for adsorption on the DV and SW graphene surfaces by TILs is increased by about 1.0-4.3 and 0.4-2.0 kcal/mol respectively. The electrostatic potential of the GNS-DV surface is more negative than the GNS-SW one which enables it to interact with cation parts of the adsorbed TILs so extensively. The highest adsorption energy belongs to the [MPI][BF4]/GNS-DV system. Adsorption of the TILs on the GNS surfaces leads to a decrease in the energy of the LUMO molecular orbital as well as their energy gap of them. Results revealed that the electrical conductivity, as well as absorption spectra of the GNS surfaces, are affected by TILs adsorption and defect nature.
Collapse
Affiliation(s)
- Soheila Shakouri
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Behzad Khalili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mohammad Nikpasand
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hasan Kefayati
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
10
|
Yamazaki K, Goto S, Yoshino S, Gubarevich A, Yoshida K, Kato H, Yamamoto M. Surface defect healing in annealing from nanoporous carbons to nanoporous graphenes. Phys Chem Chem Phys 2023. [PMID: 38019669 DOI: 10.1039/d3cp04921c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoporous graphene (NPG) materials have the pronounced electrochemical stability of the seamless graphene structures developed over the 3D space. We revisited the Raman spectra of nanoporous carbons (NPCs) synthesized using θ-/γ-Al2O3 templates and NPGs converted from NPCs by annealing at 1800 °C to identify the type and density of defects. We found that both the NPCs and NPGs mostly consist of single-layered graphene with a few single vacancies and Stone-Wales defects. The density of vacancy defect per hexagon in the graphene sheet is estimated to be 10-2 for NPCs, while the annealing reduced the value to 10-3-10-4 for NPGs. This supports the outstanding chemical and electrochemical stability of the novel porous carbon materials.
Collapse
Affiliation(s)
- Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Shunya Yoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Anna Gubarevich
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Katsumi Yoshida
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Hideki Kato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|
11
|
Kobayashi K, Kizu R. Experimental evaluation of usable specimen thickness of Si for lattice imaging by transmission electron microscopy at 300 kV. Ultramicroscopy 2023; 256:113876. [PMID: 37890437 DOI: 10.1016/j.ultramic.2023.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
We evaluated the usable specimen thickness of Si for lattice imaging on a transmission electron microscopy (TEM) instrument operating at 300 kV and equipped with a complementary metal-oxide-semiconductor camera by using an original reference material (RM) and comparing the lattice images obtained from Si patterns of the RM with various thicknesses. Lattice images of the {111} planes of crystalline Si are successfully observed for patterns with thicknesses of up to 508 nm. However, the contrast of these lattice fringes at a thickness of 508 nm is not distinct, even when recorded using a longer exposure time (5.0 s) than that required to obtain lattice images of patterns with thicknesses of 316 nm or less (0.5 s). Based on these results, we conclude that the practical thickness of crystalline Si specimens for accurate structural analysis and TEM magnification calibration via lattice imaging is less than approximately 500 nm under the experimental conditions.
Collapse
Affiliation(s)
- Keita Kobayashi
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba 305-8565, Japan.
| | - Ryosuke Kizu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
12
|
Nieman R, Oliveira VP, Jayee B, Aquino AJA, Machado FBC, Lischka H. High-Level Multireference Investigations on the Electronic States in Single-Vacancy (SV) Graphene Defects Using a Pyrene-SV Model. J Phys Chem A 2023; 127:8287-8296. [PMID: 37788047 DOI: 10.1021/acs.jpca.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The nonplanar character of graphene with a single carbon vacancy (SV) defect is investigated utilizing a pyrene-SV model system by way of complete-active-space self-consistent field theory (CASSCF) and multireference configuration interaction singles and doubles (MR-CISD) calculations. Planar structures were optimized with both methods, showing the 3B1 state to be the ground state with three energetically close states within an energy range of 1 eV. These planar structures constitute saddle points. However, following the out-of-plane imaginary frequency yields more stable (by 0.22 to 0.53 eV) but nonplanar structures of Cs symmetry. Of these, the 1A' structure is the lowest in energy and is strongly deformed into an L shape. Following a further out-of-plane imaginary frequency in the nonplanar structures leads to the most stable but most deformed singlet structure of C1 symmetry. In this structure, a bond is formed between the carbon atom with the dangling bond and a carbon of the cyclopentadienyl ring. This bond stabilizes the structure by more than 3 eV compared to the planar 3B1 structure. Higher excited states were calculated at the MR-CISD level, showing a grouping of four states low in energy and higher states starting around 3 eV.
Collapse
Affiliation(s)
- Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock, Texas 79409-1061, United States
| | - Vytor P Oliveira
- Departamento de Química, Instituto Tecnológico da Aeronáutica, 12228-900 São José dos Campos-SP, Brazil
| | - Bhumika Jayee
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock, Texas 79409-1061, United States
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico da Aeronáutica, 12228-900 São José dos Campos-SP, Brazil
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock, Texas 79409-1061, United States
| |
Collapse
|
13
|
Li W, Sun M. Electronic band structure and anisotropic optical properties of bulk and monolayer fullerene networks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122756. [PMID: 37120953 DOI: 10.1016/j.saa.2023.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
We theoretically investigate the local electron density, electronic band structure, density of state, dielectric function, and optical absorption of the bulk and monolayer C60 network structures, based on the latest experimental synthesis [Nature, 2022, 606, 507]. The results show that the ground state electrons are concentrated on the bridge bonds between clusters, the bulk and monolayer C60 network structures have strong absorption peaks in the visible and near infrared regions, and the monolayer quasi-tetragonal phase C60 network structure shows strong polarization dependence. Our results not only provide insights into the physical mechanism of optical absorption of the monolayer C60 network structure, but also reveal potential applications of the C60 network structure in photoelectric devices.
Collapse
Affiliation(s)
- Wenwen Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, PR China.
| |
Collapse
|
14
|
Chrystie RSM. A Review on 1-D Nanomaterials: Scaling-Up with Gas-Phase Synthesis. CHEM REC 2023; 23:e202300087. [PMID: 37309743 DOI: 10.1002/tcr.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Nanowire-like materials exhibit distinctive properties comprising optical polarisation, waveguiding, and hydrophobic channelling, amongst many other useful phenomena. Such 1-D derived anisotropy can be further enhanced by arranging many similar nanowires into a coherent matrix, known as an array superstructure. Manufacture of nanowire arrays can be scaled-up considerably through judicious use of gas-phase methods. Historically, the gas-phase approach however has been extensively used for the bulk and rapid synthesis of isotropic 0-D nanomaterials such as carbon black and silica. The primary goal of this review is to document recent developments, applications, and capabilities in gas-phase synthesis methods of nanowire arrays. Secondly, we elucidate the design and use of the gas-phase synthesis approach; and finally, remaining challenges and needs are addressed to advance this field.
Collapse
Affiliation(s)
- Robin S M Chrystie
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
- IRC for Membranes & Water Security, King Fahd University of Petroleum & Minerals, KFUPM Box 5051, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
15
|
Yang Y, Feng L, Zhang Q, Fan H, Wen G, Qin LC. A New Structure with Localized sp 2 Bonding for Fivefold Twinning in Diamond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302914. [PMID: 37357169 DOI: 10.1002/smll.202302914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Indexed: 06/27/2023]
Abstract
Changes in atomic bonding configuration in carbon from sp3 to sp2 are known to exist in certain structural defects in diamond, such as twin boundaries, grain boundaries, and dislocations, which have a significant impact on many properties of diamond. In this work, the atomic structure of fivefold twinning in detonation synthesized ultra-dispersed diamonds is investigated using a combination of techniques, including spherical aberration-corrected high-resolution electron microscopy (HREM), HREM image simulations, and molecular mechanics (MM) calculations. The experimental HREM images reveal clearly that the fivefold twinning in diamond has two distinct structures. In addition to the concentric fivefold twins, where the core structure is the intersection of five {111} twinning boundaries, a new extended core structure with co-hybridization of bonding is identified and analyzed in fivefold twinning. The atomic structure forming these fivefold twinning boundaries and their respective core structures is proposed to involve both the tetrahedral sp3 and planar graphitic sp2 bonding configurations, in which a co-hybridized planar hexagon of carbon serves as a fundamental structural unit. The presence of this sp2 -bonded planar unit of hexagonal carbon rings in general grain boundaries is also discussed.
Collapse
Affiliation(s)
- Yuying Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Liu Feng
- Analytical and Testing Center, Shandong University of Technology, Zibo, 255000, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Huiqing Fan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Lu-Chang Qin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3255, USA
| |
Collapse
|
16
|
Yang J, Yang K, Du S, Luo W, Wang C, Liu H, Liu K, Zhang Z, Gao Y, Han X, Song Y. Bioorthogonal Reaction-Mediated Tumor-Selective Delivery of CRISPR/Cas9 System for Dual-Targeted Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202306863. [PMID: 37485554 DOI: 10.1002/anie.202306863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Shiyu Du
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Str, Xicheng District, Beijing, 100037, China
| | - Kunguo Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| |
Collapse
|
17
|
Coupin MJ, Wen Y, Lee S, Saxena A, Ophus C, Allen CS, Kirkland AI, Aluru NR, Lee GD, Warner JH. Mapping Nanoscale Electrostatic Field Fluctuations around Graphene Dislocation Cores Using Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM). NANO LETTERS 2023; 23:6807-6814. [PMID: 37487233 DOI: 10.1021/acs.nanolett.3c00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer. The asymmetry of the atomic density in a (1,0) edge dislocation core in graphene yields a local enhancement of the electric field in part of the dislocation core. Through experiment and simulation, the increased electric field magnitude is shown to arise from "long-range" interactions from beyond the nearest atomic neighbor. These results provide insights into the use of 4D-STEM to quantify electrostatics in thin materials and map out the lateral potential variations that are important for molecular and atomic bonding through Coulombic interactions.
Collapse
Affiliation(s)
- Matthew J Coupin
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yi Wen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Sungwoo Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 67, Berkeley, California 94720, United States
| | - Christopher S Allen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd., Didcot OX11 0DE, U.K
| | - Angus I Kirkland
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd., Didcot OX11 0DE, U.K
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K
| | - Narayana R Aluru
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gun-Do Lee
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jamie H Warner
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Zhang S, Li K, Ma Y, Bu Y, Liang Z, Yang Z, Zhang J. The Adsorption Mechanism of Hydrogen on FeO Crystal Surfaces: A Density Functional Theory Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2051. [PMID: 37513062 PMCID: PMC10384720 DOI: 10.3390/nano13142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The hydrogen-based direct reduction of iron ores is a disruptive routine used to mitigate the large amount of CO2 emissions produced by the steel industry. The reduction of iron oxides by H2 involves a variety of physicochemical phenomena from macroscopic to atomistic scales. Particularly at the atomistic scale, the underlying mechanisms of the interaction of hydrogen and iron oxides is not yet fully understood. In this study, density functional theory (DFT) was employed to investigate the adsorption behavior of hydrogen atoms and H2 on different crystal FeO surfaces to gain a fundamental understanding of the associated interfacial adsorption mechanisms. It was found that H2 molecules tend to be physically adsorbed on the top site of Fe atoms, while Fe atoms on the FeO surface act as active sites to catalyze H2 dissociation. The dissociated H atoms were found to prefer to be chemically bonded with surface O atoms. These results provide a new insight into the catalytic effect of the studied FeO surfaces, by showing that both Fe (catalytic site) and O (binding site) atoms contribute to the interaction between H2 and FeO surfaces.
Collapse
Affiliation(s)
- Shujie Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kejiang Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Ma
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Dusseldorf, Germany
| | - Yushan Bu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeng Liang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zonghao Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianliang Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
Liu L, Jiao L, Huang X. Mechanical properties of hydrogenated ψ-graphene. J Mol Model 2023; 29:185. [PMID: 37221384 DOI: 10.1007/s00894-023-05591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
CONTEXT Hydrogenation is an effective way to open a band gap of the metallic ψ-graphene, expanding its application in electronics. Evaluating the mechanical properties of hydrogenated ψ-graphene, especially the effect of hydrogen coverage, is also crucial to the application of ψ-graphene. Here, we demonstrate the mechanical properties of ψ-graphene depend closely on the hydrogen coverage and arrangement. Upon hydrogenation, Young's modulus and intrinsic strength of ψ-graphene decrease due to breaking of sp2 carbon networks. Both the ψ-graphene and hydrogenated ψ-graphene exhibit mechanical anisotropy. During changing the hydrogen coverage, the variation of mechanical strength of the hydrogenated ψ-graphene relies on the tensile direction. In addition, the arrangement of hydrogen also contributes to the mechanical strength and fracture behavior of hydrogenated ψ-graphene. Our results not only present a comprehensive understanding of the mechanical properties of hydrogenated ψ-graphene, but also provide a reference to tailor the mechanical properties of other graphene allotropes, which are of potential interest in materials science. METHODS Vienna ab initio simulation package based on the plane-wave pseudopotential technique was employed for the calculations. The exchange-correlation interaction was described by the Perdew-Burke-Ernzerhof functional within the general gradient approximation and the ion-electron interaction was treated with the projected augmented wave pseudopotential.
Collapse
Affiliation(s)
- Lizhao Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Xiaoming Huang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, People's Republic of China.
| |
Collapse
|
20
|
Makwana M, Patel AM. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects. J Mol Model 2023; 29:149. [PMID: 37074494 DOI: 10.1007/s00894-023-05546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT Nanosensors and actuators are frequently made of graphene. Any defect in the graphene's manufacturing has an impact on its sensing performance and on its dynamic behaviour. Using a molecular dynamics technique, the influence of pinhole defects and atomic defects on the performance parameters of single-layer graphene sheets (SLGSs) and double-layer graphene sheets (DLGSs) with various boundary conditions and lengths is explored. In contrast to the perfect nanostructure of a graphene sheet, defects are described as holes formed by atomic vacancies. As the number of defects increases, the simulation results show that the presence of defects has the greatest impact on the resonance frequency of SLGSs and DLGSs. The influence of pinhole defect (PD) and atomic vacancy defect (AVD) on armchair, zigzag, and chiral SLGSs and DLGSs was investigated in this article using molecular dynamics simulation. The influence of both types of defects is largest when it is adjacent to the fixed support for all three different types of graphene sheets, i.e. armchair, zigzag, and chiral. METHODS The structure of the graphene sheet has been created using ANSYS APDL software. In the structure of the graphene sheet, atomic and pinhole defects have been generated. SLG and DLG sheets are modelled using a space frame structure that is identical to a three-dimensional beam. Dynamic analysis of single-layer and double-layer graphene sheets performed with different lengths using the atomistic finite element method. The interlayer separation in the form of Van der Waals interaction is modelled using characteristic spring element (Combin14). The upper and lower sheets of DLGSs are described as elastic beams connected by a spring element. With atomic vacancy defect for the bridged boundary condition, the highest frequency of 2.86 × 108 Hz was found for zigzag DLG (20 0) and with same boundary condition for pinhole defect 2.79 × 108 Hz frequency achieved. In a single-layer graphene sheet with an atomic vacancy and cantilever boundary condition, the maximum efficiency was 4.13 × 103 Hz for SLG (20 0), while in a pinhole defect, it produced 2.73 × 107 Hz. Moreover, the elastic parameters of beam components are calculated using the mechanical properties of covalent bonds between carbon atoms in the hexagonal lattice. The model has been tested against previous research. The focus of this research is to develop a mechanism for determining how defects affect graphene frequency band in application as nano resonators.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, Vallabh Vidyanagar, Gujarat, India.
| | - Ajay M Patel
- Mechatronics Engineering Department, G.H. Patel College of Engineering & Technology, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
21
|
Hembram KPSS, Kim JG, Lee SG, Park J, Lee JK. Radial-tangential mode of single-wall carbon nanotubes manifested by Landau regulation: reinterpretation of low- and intermediate-frequency Raman signals. Sci Rep 2023; 13:5012. [PMID: 36973343 PMCID: PMC10042836 DOI: 10.1038/s41598-023-32018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The low-frequency Raman signals of single-wall carbon nanotubes (SWNTs), appearing in the range of 100-300 cm-1, have been interpreted as radial-breathing mode (RBM) comprising pure radial Eigenvectors. Here, we report that most of the low-frequency and intermediate-frequency signals of SWNTs are radial-tangential modes (RTMs) coexisting radial and tangential Eigenvectors, while only the first peak at the low-frequency side is the RBM. Density functional theory simulation for SWNTs of ~ 2 nm in diameter shows that dozens of RTMs exhibit following the RBM (~ 150 cm-1) up to G-mode (~ 1592 cm-1) in order with Landau regulation. We specify the RBM and the RTM on Raman spectra obtained from SWNTs, where both appear as prominent peaks between 149 and 170 cm-1 and ripple-like peaks between 166 and 1440 cm-1, respectively. We report that the RTMs have been regarded as RBM (~ 300 cm-1) and ambiguously named as intermediate-frequency mode (300-1300 cm-1) without assignment. The RTMs gradually interlink the RBM and the G-mode resulting in the symmetric Raman spectra in intensity. We reveal high-resolution transmission microscope evidence for a helical structure of SWNTs, informing the typical diameter of commercial SWNTs to be 1.4-2 nm.
Collapse
Affiliation(s)
- K P S S Hembram
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin-Gyu Kim
- Center for Research Equipment, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sang-Gil Lee
- Center for Research Equipment, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jae-Kap Lee
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
22
|
Korkut AS, Uralcan B. Reduced graphene oxide/ionic liquid composites with tunable interlayer spacing for improved charge/discharge kinetics in supercapacitors. NANOTECHNOLOGY 2023; 34:235402. [PMID: 36877998 DOI: 10.1088/1361-6528/acc189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
The large specific surface area and high conductivity of reduced graphene oxide (RGO) make it a promising material for supercapacitors. However, aggregation of graphene sheets into graphitic domains upon drying hampers supercapacitor performance by drastically impeding ion transport inside electrodes. Here, we present a facile approach to optimize charge storage performance in RGO-based supercapacitors by systematically tuning their micropore structure. To this end, we combine RGOs with room temperature ionic liquids during electrode processing to impede stacking of sheets into graphitic structures with small interlayer distance. In this process, RGO sheets function as the active electrode material while ionic liquid serves both as a charge carrier and a spacer to control interlayer spacing inside electrodes and form ion transport channels. We show that composite RGO/ionic liquid electrodes with larger interlayer spacing and more ordered structure exhibit improved capacitance and charging kinetics.
Collapse
Affiliation(s)
- Ayse Saliha Korkut
- Department of Chemical Engineering, Bogazici University, Bebek 34342, İstanbul, Turkey
| | - Betul Uralcan
- Department of Chemical Engineering, Bogazici University, Bebek 34342, İstanbul, Turkey
- Polymer Research Center, Bogazici University, Bebek 34342, Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek 34342, Istanbul, Turkey
| |
Collapse
|
23
|
Lu N, Hu X, Jiang J, Guo H, Zuo GZ, Zhuo Z, Wu X, Zeng XC. Highly anisotropic and ultra-diffusive vacancies in α-antimonene. NANOSCALE 2023; 15:4821-4829. [PMID: 36794788 DOI: 10.1039/d3nr00194f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
α-Antimonene has recently been successfully fabricated in experiment; hence, it is timely to examine how various types of point defects in α-antimonene can affect its novel electronic properties. Herein, we present a comprehensive investigation of a total of nine possible types of point defects in α-antimonene via first-principles calculations. Particular attention is placed on the structural stability of the point defects and the effects of point defects on the electronic properties of α-antimonene. Compared with its structural analogs, such as phosphorene, graphene, and silicene, we find that most defects in α-antimonene can be more easily generated, and that among the nine types of point defects, the single vacancy SV-(5|9) is likely the most stable one while its presence can be orders of magnitude higher in concentration than that in phosphorene. Moreover, we find that the vacancy exhibits anisotropic and low diffusion barriers, of merely 0.10/0.30 eV in the zigzag/armchair direction. Notably, at room temperature, the migration of SV-(5|9) in the zigzag direction of α-antimonene is estimated to be three orders faster than that along the armchair direction, and also three orders faster than that of phosphorene in the same direction. Overall, the point defects in α-antimonene can significantly affect the electronic properties of the host two-dimensional (2D) semiconductor and thus the light absorption capability. The anisotropic, ultra-diffusive, and charge tunable single vacancies, along with the high oxidation resistance, render the α-antimonene sheet a unique 2D semiconductor (beyond the phosphorene) for developing vacancy-enabled nanoelectronics.
Collapse
Affiliation(s)
- Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Xin Hu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Jiaxin Jiang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Hongyan Guo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Gui Zhong Zuo
- Institute of Plasma Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| |
Collapse
|
24
|
Zeraati-Moghani M. First-principles study of nitrogen-doped porous graphene for Na+, K+, Mg2+, and Ca2+ cations adsorption. Struct Chem 2023. [DOI: 10.1007/s11224-023-02157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Ersoz TT, Ersoz M. Nanostructured Material and its Application in Membrane Separation
Technology. MICRO AND NANOSYSTEMS 2023; 15:16-27. [DOI: 10.2174/1876402914666220318121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 09/01/2023]
Abstract
Abstract:
Nanomaterials are classified with their at least one dimension in the range of 1-100 nm, which offers new innovative solutions for membrane development. These are included as nanosized adsorbents, nanomembranes, nanocomposites, photocatalysts, nanotubes, nanoclays, etc. Nanomaterials are promising, exceptional properties for one of the opportunity is to prevent the global water crisis with their extraordinary performance as their usage for membrane development, particularly for water treatment process. Nanomaterial based membranes that include nanoparticles, nanofibers, 2D layered materials, and their nanostructured composites which provide superior permeation characteristics besides their antifouling, antibacterial and photodegradation properties. They are enable for providing the extraordinary properties to be used as ultrafast and ultimately selective membranes for water purification. In this review, recently developed nanomaterial based membranes and their applications for water treatment process were summarized. The main attention is given to the nanomaterial based membrane structure design. The variety in terms of constituent structure and alterations provide nanomaterial based membranes which will be expected to be a perfect separation membrane in the future.
Collapse
Affiliation(s)
- Tugrul Talha Ersoz
- Nanotechnology and Advanced Materials, Institute of Sciences, Selcuk University, Kampus, 42130 Konya, Turkey
| | - Mustafa Ersoz
- Department of Chemistry, Faculty of Science, Selcuk University, Kampus, 42130 Konya, Turkey
| |
Collapse
|
26
|
Wang C, Wang Z, Zhang S, Zhang J, Li K. Ab Initio Investigation of the Adsorption of CO 2 Molecules on Defect Sites of Graphene Surfaces: Role of Local Vacancy Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16030981. [PMID: 36769989 PMCID: PMC9919361 DOI: 10.3390/ma16030981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/04/2023]
Abstract
An in-depth investigation into the adsorption of CO2 on graphene vacancies is essential for the understanding of their applications in various industries. Herein, we report an investigation of the effects of vacancy defects on CO2 gas adsorption behavior on graphene surfaces using the density functional theory. The results show that the formation of vacancies leads to various deformations of local carbon structures, resulting in different adsorption capabilities. Even though most carbon atoms studied can only trigger physisorption, there are also carbon sites that are energetically favored for chemisorption. The general order of the adsorption capabilities of the local carbon atoms is as follows: carbon atoms with dangling bonds > carbon atoms shared by five- and six-membered rings and a vacancy > carbon atoms shared by two six-membered rings and a vacancy. A stronger interaction in the adsorption process generally corresponds to more obvious changes in the partial density of states and a larger amount of transferred charge.
Collapse
Affiliation(s)
- Cui Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziming Wang
- Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
- Hebei Special Vehicle Modification Technology Innovation Center, Xingtai 054000, China
| | - Shujie Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianliang Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kejiang Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia. J Control Release 2023; 353:675-684. [PMID: 36521687 DOI: 10.1016/j.jconrel.2022.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Despite exosome promise as endogenous drug delivery vehicles, the current understanding of exosome may be insufficient to develop their various applications. Here we synthesized five sialic acid analogues with different length N-acyl side chains and screened out the optimal metabolic precursor for exosome labeling via bio-orthogonal click chemistry. In proof-of-principle labeling experiments, exosomes derived from macrophages (RAW-Exo) strongly co-localized with central nervous system (CNS) microglia. Inspired by this discovery, we developed a resveratrol-loaded RAW-Exo formulation (RSV&Exo) for multiple sclerosis (MS) treatment. Intranasal administration of RSV&Exo significantly inhibited inflammatory responses in the CNS and peripheral system in a mouse model of MS and effectively improved the clinical evolution of MS in vivo. These findings suggested the feasibility and efficacy of engineered RSV&Exo administration for MS, providing a potential therapeutic strategy for CNS diseases.
Collapse
|
28
|
Mahalingam S, Omar A, Manap A, Rahim NA. Synthesis and applications of carbon-polymer composites and nanocomposite functional materials. FUNCTIONAL MATERIALS FROM CARBON, INORGANIC, AND ORGANIC SOURCES 2023:71-105. [DOI: 10.1016/b978-0-323-85788-8.00020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
29
|
Yu L, Xu J, Peng B, Qin G, Su G. Anisotropic Optical, Mechanical, and Thermoelectric Properties of Two-Dimensional Fullerene Networks. J Phys Chem Lett 2022; 13:11622-11629. [PMID: 36484710 DOI: 10.1021/acs.jpclett.2c02702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoclusters like fullerenes as the unit to build intriguing two-dimensional (2D) topological structures is of great challenge. Here we propose three bridged fullerene monolayers and comprehensively investigate the novel fullerene monolayer (α-C60-2D) as synthesized experimentally [Hou et al. Nature 2022, 606, 507-510] by state-of-the-art first-principles calculations. Our results show that α-C60-2D has a direct band gap of 1.55 eV close to the experimental value, an optical linear dichroism with strong absorption in the long-wave ultraviolet region, a small anisotropic Young's modulus, a large hole mobility, and an ultrahigh Seebeck coefficient at middle-low temperatures. It is unveiled that the anisotropic optical, mechanical, electrical, and thermoelectric properties of α-C60-2D originate from the asymmetric bridging arrangements between C60 clusters. Our study promises potential applications of monolayer fullerene networks in lots of fields.
Collapse
Affiliation(s)
- Linfeng Yu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinyuan Xu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Bo Peng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Gang Su
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Singh J, Shao JH, Chen GT, Wu HS, Tsai ML. The growth mechanism and intriguing optical and electronic properties of few-layered HfS 2. NANOSCALE ADVANCES 2022; 5:171-178. [PMID: 36605793 PMCID: PMC9765574 DOI: 10.1039/d2na00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Due to electronic properties superior to group VIB (Mo and W) transition metal dichalcogenides (TMDs), group IVB (Hf and Zr) TMDs have become intriguing materials in next-generation nanoelectronics. Therefore, the growth of few-layered hafnium disulfide (HfS2) on c-plane sapphire as well as on a SiO2/Si substrate has been demonstrated using chemical vapour deposition (CVD). The structural properties of HfS2 were investigated by recording X-ray diffraction patterns and Raman spectra. The XRD results reveal that the layers are well oriented along the (0001) direction and exhibit the high crystalline quality of HfS2. The Raman spectra confirm the in-plane and out-plane vibration of Hf and S atoms. Moreover, the HfS2 layers exhibit strong absorption in the UV to visible region. The HfS2 layer-based photodetector shows a photoresponsivity of ∼1.6, ∼0.38, and ∼0.21 μA W-1 corresponding to 9, 38, and 68 mW cm-2, respectively under green light illumination and is attributed to the generation of a large number of electron-hole pairs in the active region of the device. Besides, it also exhibits the highly crystalline structure of HfS2 at high deposition temperature. The PL spectrum shows a single peak at ∼1.8 eV and is consistent with the pristine indirect bandgap of HfS2 (∼2 eV). Furthermore, a few layered HfS2 back gate field-effect transistor (FET) is fabricated based on directly grown HfS2 on SiO2/Si, and the device exhibits p-type behaviour. Thus, the controllable and easy growth method opens the latest pathway to synthesize few layered HfS2 on different substrates for various electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jitendra Singh
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology Taipei 106335 Taiwan
- Department of Physics, Udit Narayan Post Graduate College Padrauna Kushinagar 274304 Uttar Pradesh India
| | - Jia-Hui Shao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology Taipei 106335 Taiwan
| | - Guan-Ting Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology Taipei 106335 Taiwan
| | - Han-Song Wu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology Taipei 106335 Taiwan
| | - Meng-Lin Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology Taipei 106335 Taiwan
| |
Collapse
|
31
|
Alipour S, Hassani M, Hosseini SMH, Mousavi-Khoshdel SM. Facile preparation of covalently functionalized graphene with 2,4-dinitrophenylhydrazine and investigation of its characteristics. RSC Adv 2022; 13:558-569. [PMID: 36605623 PMCID: PMC9772862 DOI: 10.1039/d2ra06343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This article reports a fast and easy method for simultaneously in situ reducing and functionalizing graphene oxide. 2,4-Dinitrophenylhydrazine hydrate salt molecules are reduced by graphene oxide by reacting with oxide groups on the surface and removing these groups, and 2,4-dinitrophenylhydrazone groups are replaced with oxide groups. The synthesized materials have been investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and UV absorption. Also, the morphology has been examined with a scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analysis. The result of the photocurrent response and electrochemical behavior of the samples through cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) have been analyzed to investigate the effect of physical and chemical changes compared to graphene.
Collapse
Affiliation(s)
- S Alipour
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - M Hassani
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - S M H Hosseini
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - S M Mousavi-Khoshdel
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| |
Collapse
|
32
|
Wang HJ, Yang JT, Xu CJ, Huang HM, Min Q, Xiong YC, Luo SJ. Investigations on structural, electronic and optical properties of ZnO in two-dimensional configurations by first-principles calculations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 51:014002. [PMID: 36279869 DOI: 10.1088/1361-648x/ac9d17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The electronic structures and optical properties of two-dimensional (2D) ZnO monolayers in a series of configurations were systematically investigated by first-principles calculations with HubbardUevaluated by the linear response approach. Three types of 2D ZnO monolayers, as planer hexagonal-honeycomb (Plan), double-layer honeycomb (Dlhc), and corrugated tetragonal (Tile) structures, show a mechanical and dynamical stability, while the Dlhc-ZnO is the most energetically stable configuration and Plan-ZnO is the second one. Each 2D ZnO monolayer behaves as a semiconductor with that Plan-, Dlhc-ZnO have a direct band gap of 1.81 eV and 1.85 eV at theΓpoint, respectively, while Tile-ZnO has an indirect band gap of 2.03 eV. Interestingly, the 2D ZnO monolayers all show a typical near-free-electron character for the bottom conduction band with a small effective mass, leading to a tremendous optical absorption in the whole visible and ultraviolet window, and this origination was further confirmed by the transition dipole moment. Our investigations suggest a potential candidate in the photoelectric field and provide a theoretical guidance for the exploration of wide-band-gap 2D semiconductors.
Collapse
Affiliation(s)
- Hong-Ji Wang
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
| | - Jun-Tao Yang
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
- International Center of Quantum and Molecule Structure (ICQMS), Shanghai University, E-Building, Shangda Road 99, Baoshan District, Shanghai 200444, People's Republic of China
| | - Chang-Ju Xu
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
| | - Hai-Ming Huang
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
| | - Qing Min
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
| | - Yong-Chen Xiong
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
| | - Shi-Jun Luo
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China
| |
Collapse
|
33
|
Singh A, Ahmed A, Sharma A, Arya S. Graphene and Its Derivatives: Synthesis and Application in the Electrochemical Detection of Analytes in Sweat. BIOSENSORS 2022; 12:910. [PMID: 36291046 PMCID: PMC9599499 DOI: 10.3390/bios12100910] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 05/25/2023]
Abstract
Wearable sensors and invasive devices have been studied extensively in recent years as the demand for real-time human healthcare applications and seamless human-machine interaction has risen exponentially. An explosion in sensor research throughout the globe has been ignited by the unique features such as thermal, electrical, and mechanical properties of graphene. This includes wearable sensors and implants, which can detect a wide range of data, including body temperature, pulse oxygenation, blood pressure, glucose, and the other analytes present in sweat. Graphene-based sensors for real-time human health monitoring are also being developed. This review is a comprehensive discussion about the properties of graphene, routes to its synthesis, derivatives of graphene, etc. Moreover, the basic features of a biosensor along with the chemistry of sweat are also discussed in detail. The review mainly focusses on the graphene and its derivative-based wearable sensors for the detection of analytes in sweat. Graphene-based sensors for health monitoring will be examined and explained in this study as an overview of the most current innovations in sensor designs, sensing processes, technological advancements, sensor system components, and potential hurdles. The future holds great opportunities for the development of efficient and advanced graphene-based sensors for the detection of analytes in sweat.
Collapse
Affiliation(s)
| | | | | | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India
| |
Collapse
|
34
|
Ding Y, Qiao ZA. Carbon Surface Chemistry: New Insight into the Old Story. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206025. [PMID: 36127265 DOI: 10.1002/adma.202206025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The enormous complexity of the carbon material family has provoked a phenomenological approach to develop its potential in different applications. Although the electronic, chemical, mechanical, and magnetic properties of carbon materials have been widely discussed based on defect control engineering, there is still a lack of fundamental understanding of the carbon surface chemistry, which leads to many controversial conclusions. Here, by analyzing various defects on carbon surface, some commonly neglected aspects and misunderstandings in this field are pointed out, clarifying how surface chemistry affects the chemical behaviors of carbon in some specific chemical reactions. With this full-scale consideration of the carbon surface chemistry, the behaviors of carbon materials with various functions can be well defined, which is indispensable for their scalable applications. Perspectives on future developments of carbon surface chemistry are also provided to enable practically accessible design of advanced carbon in those applications.
Collapse
Affiliation(s)
- Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
35
|
Ghenaatian HR, Shakourian-Fard M, Kamath G, Trant JF, Mjalli FS. The interaction of deep eutectic solvents with pristine carbon nanotubes and their associated defects: A density functional theory study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Peng X, Pelz PM, Zhang Q, Chen P, Cao L, Zhang Y, Liao HG, Zheng H, Wang C, Sun SG, Scott MC. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat Commun 2022; 13:5197. [PMID: 36057721 PMCID: PMC9440887 DOI: 10.1038/s41467-022-32330-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Metal-organic layers (MOLs) are highly attractive for application in catalysis, separation, sensing and biomedicine, owing to their tunable framework structure. However, it is challenging to obtain comprehensive information about the formation and local structures of MOLs using standard electron microscopy methods due to serious damage under electron beam irradiation. Here, we investigate the growth processes and local structures of MOLs utilizing a combination of liquid-phase transmission electron microscopy, cryogenic electron microscopy and electron ptychography. Our results show a multistep formation process, where precursor clusters first form in solution, then they are complexed with ligands to form non-crystalline solids, followed by the arrangement of the cluster-ligand complex into crystalline sheets, with additional possible growth by the addition of clusters to surface edges. Moreover, high-resolution imaging allows us to identify missing clusters, dislocations, loop and flat surface terminations and ligand connectors in the MOLs. Our observations provide insights into controllable MOL crystal morphology, defect engineering, and surface modification, thus assisting novel MOL design and synthesis.
Collapse
Affiliation(s)
- Xinxing Peng
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Philipp M Pelz
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
| | - Qiubo Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Peican Chen
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lingyun Cao
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yaqian Zhang
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
| | - Hong-Gang Liao
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Haimei Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Cheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Mary C Scott
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
| |
Collapse
|
37
|
Xie FF, Chen ZC, Zhang M, Xie XM, Chen LF, Tian HR, Deng SL, Xie SY, Zheng LS. Capturing nonclassical C 70 with double heptagons in low-pressure combustion. Chem Commun (Camb) 2022; 58:9814-9817. [PMID: 35975480 DOI: 10.1039/d2cc03707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double-heptagon-containing C70H6 (dihept-C70H6) was isolated and unambiguously characterized in the soot of low-pressure combustion, which shares the identical heptagonal cage as dihept-C70Cl6 previously identified in the products of carbon arc, and thus represents the first nonclassical fullerene isolable in both carbon arc and combustion.
Collapse
Affiliation(s)
- Fang-Fang Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zuo-Chang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Min Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Ming Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ling-Fang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Han-Rui Tian
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shun-Liu Deng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lan-Sun Zheng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
38
|
Liu S, Yin X, Zhao H. Dual-function photonic spin Hall effect sensor for high-precision refractive index sensing and graphene layer detection. OPTICS EXPRESS 2022; 30:31925-31936. [PMID: 36242265 DOI: 10.1364/oe.463923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a photonic spin Hall effect (PSHE) sensor for high-precision refractive index (RI) detection and graphene layer number detection is proposed. Numerical analysis is performed by the transfer matrix method. The graphene material is introduced into the layered topology to stimulate the generation of PSHE phenomenon, and both H polarization and V polarization displacements occur simultaneously. The effects of parameters such as chemical potential, relaxation time, and external temperature on the PSHE shift are also discussed. The displacement of H polarization can be used for RI detection, and the measurement range (MR), sensitivity (S), figure of merit (FOM), and detection limit (DL) are 1.1-1.5, 127.85 degrees/RIU, 2412, and 2.08×10-5, respectively. The superior sensing performance provides a theoretical possibility for the detection of solids, liquids, and gases. The shift characteristic of V polarization is appropriate for detecting the number of layers in graphene, with a MR and S of 1-9 layers and 4.54 degrees/layer. The impacts of dielectric loss on sensor performance are also considered. We hope that the proposed PSHE multifunctional sensor can improve a theoretical idea for novel sensor design.
Collapse
|
39
|
Wang J, Wang D. Two-dimensional spin-gapless semiconductors: A mini-review. Front Chem 2022; 10:996344. [PMID: 36092680 PMCID: PMC9452911 DOI: 10.3389/fchem.2022.996344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, two-dimensional (2D) materials and spintronic materials have been rapidly developing in recent years. 2D spin-gapless semiconductors (SGSs) are a novel class of ferromagnetic 2D spintronic materials with possible high Curie temperature, 100% spin-polarization, possible one-dimensional or zero-dimensional topological signatures, and other exciting spin transport properties. In this mini-review, we summarize a series of ideal 2D SGSs in the last 3 years, including 2D oxalate-based metal-organic frameworks, 2D single-layer Fe2I2, 2D Cr2X3 (X = S, Se, and Te) monolayer with the honeycomb kagome (HK) lattice, 2D CrGa2Se4 monolayer, 2D HK Mn-cyanogen lattice, 2D MnNF monolayer, and 2D Fe4N2 pentagon crystal. The mini-review also discusses the unique magnetic, electronic, topological, and spin-transport properties and the possible application of these 2D SGSs. The mini-review can be regarded as an improved understanding of the current state of 2D SGSs in recent 3 years.
Collapse
Affiliation(s)
| | - Dandan Wang
- School of Physical Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Klein BP, Ihle A, Kachel SR, Ruppenthal L, Hall SJ, Sattler L, Weber SM, Herritsch J, Jaegermann A, Ebeling D, Maurer RJ, Hilt G, Tonner-Zech R, Schirmeisen A, Gottfried JM. Topological Stone-Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface. ACS NANO 2022; 16:11979-11987. [PMID: 35916359 DOI: 10.1021/acsnano.2c01952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone-Wales (S-W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S-W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.
Collapse
Affiliation(s)
- Benedikt P Klein
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Alexander Ihle
- Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Stefan R Kachel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
| | - Lukas Ruppenthal
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
| | | | - Lars Sattler
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße. 9-11, 26111 Oldenburg, Germany
| | - Sebastian M Weber
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße. 9-11, 26111 Oldenburg, Germany
| | - Jan Herritsch
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
| | - Andrea Jaegermann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
| | - Daniel Ebeling
- Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | | | - Gerhard Hilt
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße. 9-11, 26111 Oldenburg, Germany
| | - Ralf Tonner-Zech
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
| | - André Schirmeisen
- Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - J Michael Gottfried
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany
| |
Collapse
|
41
|
Li Y, Li J, Wan L, Li J, Qu H, Ding C, Li M, Yu D, Fan K, Yao H. The First-Principle Study on Tuning Optical Properties of MA 2Z 4 by Cr Replacement of Mo Atoms in MoSi 2N 4. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2822. [PMID: 36014687 PMCID: PMC9415143 DOI: 10.3390/nano12162822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Recently, with the successful preparation of MoSi2N4, an emerging family of two-dimensional (2D) layered materials has been predicted with a general formula of MA2Z4 (M: an early transition metal, A: Si or Ge and Z: N, P, or As). In terms of this new type of 2D material, how to effectively tune its light absorption properties is unclear. We systematically discuss the effects of replacing Mo with Cr atoms on the lattice structure, energy bands, and light absorption properties of 2D monolayer MoSi2N4 using density functional theory (DFT) and the Vienna Ab initio Simulation Package (VASP). Additionally, the results show that the single replacement of the atom Cr has no significant effect on the lattice structure of the outermost and sub-outer layers but plays a major role in the accumulation of electrons. In addition, the 2D MoSi2N4, Mo0.5Cr0.5Si2N4, and CrSi2N4 all have effective electron-hole separation properties. In the visible region, as the excited state increases, the required excitation energy is higher and the corresponding wavelength of light is shorter. It was found that the ultraviolet (UV)-visible spectra are red-shifted when Cr atoms replace Mo atoms in MoSi2N4; when Cr atoms and Mo atoms coexist, the coupling between Cr atoms and Mo atoms achieves modulation of the ultraviolet (UV)-visible spectra. Finally, we reveal that doping M-site atoms can effectively tune the light absorption properties of MA2Z4 materials. These results provide a strategy for the design of new 2D materials with high absorption properties.
Collapse
Affiliation(s)
- Yongsheng Li
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiawei Li
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Lingyu Wan
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiayu Li
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Hang Qu
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Cui Ding
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dan Yu
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Kaidi Fan
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Huilu Yao
- Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
42
|
Diameter-Change-Induced Transition in Buckling Modes of Defective Zigzag Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12152617. [PMID: 35957048 PMCID: PMC9370459 DOI: 10.3390/nano12152617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
In general, the insertion of Stone-Wales (SW) defects into single-walled carbon nanotubes (SWNTs) reduces the buckling resistance of SWNTs under axial compression. The magnitude of reduction is more noticeable in zigzag-type SWNTs than armchair- or chiral-type SWNTs; however, the relation between the magnitude of reduction and aspect ratio of the zigzag SWNTs remains unclear. This study conducted molecular dynamics (MD) simulation to unveil the buckling performance of zigzag SWNTs exhibiting SW defects with various tube diameter. The dependencies of energetically favorable buckling modes and the SW-defect induced reduction in the critical buckling point on the tube diameter were investigated in a systematic manner. In particular, an approximate expression for the critical buckling force as a function of the tube diameter was formulated based on the MD simulation data.
Collapse
|
43
|
Bhatt MD, Kim H, Kim G. Various defects in graphene: a review. RSC Adv 2022; 12:21520-21547. [PMID: 35975063 PMCID: PMC9347212 DOI: 10.1039/d2ra01436j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Pristine graphene has been considered one of the most promising materials because of its excellent physical and chemical properties. However, various defects in graphene produced during synthesis or fabrication hinder its performance for applications such as electronic devices, transparent electrodes, and spintronic devices. Due to its intrinsic bandgap and nonmagnetic nature, it cannot be used in nanoelectronics or spintronics. Intrinsic and extrinsic defects are ultimately introduced to tailor electronic and magnetic properties and take advantage of their hidden potential. This article emphasizes the current advancement of intrinsic and extrinsic defects in graphene for potential applications. We also discuss the limitations and outlook for such defects in graphene.
Collapse
Affiliation(s)
| | - Heeju Kim
- Hybrid Materials Center, Sejong University Seoul 05006 Korea
- Department of Physics and Astronomy, Sejong University Seoul 05006 Korea
| | - Gunn Kim
- Hybrid Materials Center, Sejong University Seoul 05006 Korea
- Department of Physics and Astronomy, Sejong University Seoul 05006 Korea
| |
Collapse
|
44
|
Abstract
Two-dimensional (2D) ultrathin silica films have the potential to reach technological importance in electronics and catalysis. Several well-defined 2D-silica structures have been synthesized so far. The silica bilayer represents a 2D material with SiO2 stoichiometry. It consists of precisely two layers of tetrahedral [SiO4] building blocks, corner connected via oxygen bridges, thus forming a self-saturated silicon dioxide sheet with a thickness of ∼0.5 nm. Inspired by recent successful preparations and characterizations of these 2D-silica model systems, scientists now can forge novel concepts for realistic systems, particularly by atomic-scale studies with the most powerful and advanced surface science techniques and density functional theory calculations. This Review provides a solid introduction to these recent developments, breakthroughs, and implications on ultrathin 2D-silica films, including their atomic/electronic structures, chemical modifications, atom/molecule adsorptions, and catalytic reactivity properties, which can help to stimulate further investigations and understandings of these fundamentally important 2D materials.
Collapse
Affiliation(s)
- Jian-Qiang Zhong
- School of Physics, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121 Zhejiang, China
| | - Hans-Joachim Freund
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
45
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
46
|
Atomic Simulations of (8,0)CNT-Graphene by SCC-DFTB Algorithm. NANOMATERIALS 2022; 12:nano12081361. [PMID: 35458069 PMCID: PMC9027127 DOI: 10.3390/nano12081361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Self-consistent density functional tight binding (SCC-DFTB) approaches were used to study optimized structures, energy, differential charge density, and Mülliken populations for the (8,0) carbon nanotubes (CNTs) connected to the graphene having different topology defects. Based on the calculations, nine seamless (8,0)CNT-graphenes were selected. For these connected systems, geometric configurations of the graphene and nanotubes were characterized, and the nearest neighbor length of C-C atoms and average length were obtained. The intrinsic energy, energy gap, and chemical potential were analyzed, and they presented apparent differences for different connection modes. Differential charge densities of these connection modes were analyzed to present covalent bonds between the atoms. We have also thoroughly analyzed the Mülliken charge transfer among the C atoms at the junctions.
Collapse
|
47
|
Zhang S, Liang Z, Li K, Zhang J, Ren S. A density functional theory study on the adsorption reaction mechanism of double CO 2 on the surface of graphene defects. J Mol Model 2022; 28:118. [PMID: 35412080 DOI: 10.1007/s00894-022-05105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
Much research has been done on reactions of a single CO2 molecule with a graphene surface. In this paper, density functional theory calculations are used to investigate the adsorption and reaction of double CO2 on the surface of single vacancy (SV) and divacancy (DV) defect graphene. The study found that due to the mutual repulsion between CO2 and the size of the SV defect, it is difficult for two CO2 molecular to be adsorbed directly above the SV defect at the same time. Regardless of SV or DV, the adsorption of the first CO2 in the defect center will have a beneficial effect on the adsorption of the second CO2. In addition, the transition state calculation of the CO2 reaction on the DV plane was carried out, and the adsorption behavior was analyzed and studied. This in-depth study is helpful to the understanding of the reaction behavior of CO2 on graphene, and further exploration in the direction of the effective application of graphene to the reaction and adsorption of CO2. Our work explores the adsorption behavior of CO2 on graphene surfaces, the physical and chemical adsorption of double CO2 at the defect was studied and analyzed.
Collapse
Affiliation(s)
- Shujie Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xueyuan Rd., Haidian District, Beijing, 100083, People's Republic of China
| | - Zeng Liang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xueyuan Rd., Haidian District, Beijing, 100083, People's Republic of China
| | - Kejiang Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xueyuan Rd., Haidian District, Beijing, 100083, People's Republic of China.
| | - Jianliang Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xueyuan Rd., Haidian District, Beijing, 100083, People's Republic of China
| | - Shan Ren
- College of Materials Science and Engineering, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
48
|
Aydin A, Sisman A, Fransson J, Black-Schaffer AM, Dutta P. Thermodefect voltage in graphene nanoribbon junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:195304. [PMID: 35168226 DOI: 10.1088/1361-648x/ac553b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Thermoelectric junctions are often made of components of different materials characterized by distinct transport properties. Single material junctions, with the same type of charge carriers, have also been considered to investigate various classical and quantum effects on the thermoelectric properties of nanostructured materials. We here introduce the concept of defect-induced thermoelectric voltage, namely,thermodefect voltage, in graphene nanoribbon (GNR) junctions under a temperature gradient. Our thermodefect junction is formed by two GNRs with identical properties except the existence of defects in one of the nanoribbons. At room temperature the thermodefect voltage is highly sensitive to the types of defects, their locations, as well as the width and edge configurations of the GNRs. We computationally demonstrate that the thermodefect voltage can be as high as 1.7 mV K-1for 555-777 defects in semiconducting armchair GNRs. We further investigate the Seebeck coefficient, electrical conductance, and electronic thermal conductance, and also the power factor of the individual junction components to explain the thermodefect effect. Taken together, our study presents a new pathway to enhance the thermoelectric properties of nanomaterials.
Collapse
Affiliation(s)
- Alhun Aydin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States of America
| | - Altug Sisman
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - Jonas Fransson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | | | - Paramita Dutta
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
- Theoretical Physics Division, Physical Research Laboratory, Ahmedabad-380009, India
- Department of Physics, Birla Institute of Technology and Science-Pilani, Rajasthan-333031, India
| |
Collapse
|
49
|
Longo RC, Ueda H, Cho K, Ranjan A, Ventzek PLG. Mechanisms for Graphene Growth on SiO 2 Using Plasma-Enhanced Chemical Vapor Deposition: A Density Functional Theory Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9492-9503. [PMID: 35138793 DOI: 10.1021/acsami.1c23603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasma-enhanced chemical vapor deposition (PE-CVD) of graphene layers on dielectric substrates is one of the most important processes for the incorporation of graphene in semiconductor devices. Graphene is moving rapidly from the laboratory to practical implementation; therefore, devices may take advantage of the unique properties of such nanomaterial. Conventional approaches rely on pattern transfers after growing graphene on transition metals, which can cause nonuniformities, poor adherence, or other defects. Direct growth of graphene layers on the substrates of interest, mostly dielectrics, is the most logical approach, although it is not free from challenges and obstacles such as obtaining a specific yield of graphene layers with desired properties or accurate control of the growing number of layers. In this work, we use density-functional theory (DFT) coupled with ab initio molecular dynamics (AIMD) to investigate the initial stages of graphene growth on silicon oxide. We select C2H2 as the PE-CVD precursor due to its large carbon contribution. On the basis of our simulation results for various surface models and precursor doses, we accurately describe the early stages of graphene growth, from the formation of carbon dimer rows to the critical length required to undergo dynamical folding that results in the formation of low-order polygonal shapes. The differences in bonding with the functionalization of the silicon oxide also mark the nature of the growing carbon layers as well as shed light of potential flaws in the adherence to the substrate. Finally, our dynamical matrix calculations and the obtained infrared (IR) spectra and vibrational characteristics provide accurate recipes to trace experimentally the growth mechanisms described and the corresponding identification of possible stacking faults or defects in the emerging graphene layers.
Collapse
Affiliation(s)
- Roberto C Longo
- Tokyo Electron America, Incorporated, 2400 Grove Boulevard, Austin, Texas 78741, United States
| | - Hirokazu Ueda
- Tokyo Electron Technology Solutions Limited, Miyahara 3-4-30 Yodogawaku, Osaka 532-0003, Japan
| | - Kyeongjae Cho
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Alok Ranjan
- Tokyo Electron America, Incorporated, 2400 Grove Boulevard, Austin, Texas 78741, United States
| | - Peter L G Ventzek
- Tokyo Electron America, Incorporated, 2400 Grove Boulevard, Austin, Texas 78741, United States
| |
Collapse
|
50
|
Shi X, He X, Sun L, Liu X. Influence of Defect Number, Distribution Continuity and Orientation on Tensile Strengths of the CNT-Based Networks: A Molecular Dynamics Study. NANOSCALE RESEARCH LETTERS 2022; 17:15. [PMID: 35032241 PMCID: PMC8761213 DOI: 10.1186/s11671-022-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Networks based on carbon nanotube (CNT) have been widely utilized to fabricate flexible electronic devices, but defects inevitably exist in these structures. In this study, we investigate the influence of the CNT-unit defects on the mechanical properties of a honeycomb CNT-based network, super carbon nanotube (SCNT), through molecular dynamics simulations. Results show that tensile strengths of the defective SCNTs are affected by the defect number, distribution continuity and orientation. Single-defect brings 0 ~ 25% reduction of the tensile strength with the dependency on defect position and the reduction is over 50% when the defect number increases to three. The distribution continuity induces up to 20% differences of tensile strengths for SCNTs with the same defect number. A smaller arranging angle of defects to the tensile direction leads to a higher tensile strength. Defective SCNTs possess various modes of stress concentration with different concentration degrees under the combined effect of defect number, arranging direction and continuity, for which the underlying mechanism can be explained by the effective crack length of the fracture mechanics. Fundamentally, the force transmission mode of the SCNT controls the influence of defects and the cases that breaking more force transmission paths cause larger decreases of tensile strengths. Defects are non-negligible factors of the mechanical properties of CNT-based networks and understanding the influence of defects on CNT-based networks is valuable to achieve the proper design of CNT-based electronic devices with better performances.
Collapse
Affiliation(s)
- Xian Shi
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaoqiao He
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon Tong, Hong Kong.
- Center for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Ligang Sun
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xuefeng Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|