1
|
Hellmuth S, Stemmann O. Requirement of Nek2a and cyclin A2 for Wapl-dependent removal of cohesin from prophase chromatin. EMBO J 2024; 43:5237-5259. [PMID: 39271794 PMCID: PMC11535040 DOI: 10.1038/s44318-024-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin. However, Sgo1-PP2A relocates to inner kinetochores well before sister chromatids are separated by separase, leaving pericentromeric regions unprotected. Why deprotected cohesin is not removed by Wapl remains enigmatic. By reconstituting Wapl-dependent cohesin removal from chromatin in vitro, we discovered a requirement for Nek2a and Cdk1/2-cyclin A2. These kinases phosphorylate cohesin-bound Pds5b, thereby converting it from a sororin- to a Wapl-interactor. Replacement of endogenous Pds5b by a phosphorylation mimetic variant causes premature sister chromatid separation (PCS). Conversely, phosphorylation-resistant Pds5b impairs chromosome arm separation in prometaphase-arrested cells and suppresses PCS in the absence of Sgo1. Early mitotic degradation of Nek2a and cyclin A2 may therefore explain why only separase, but not Wapl, can trigger anaphase.
Collapse
Affiliation(s)
- Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
2
|
Lamelza P, Parrado M, Hamlin E, Lampson MA. Species-specific satellite DNA composition dictates de novo formation of PRC1-mediated pericentric heterochromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617947. [PMID: 39416160 PMCID: PMC11482882 DOI: 10.1101/2024.10.11.617947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Pericentromeres are heterochromatic regions adjacent to centromeres that ensure accurate chromosome segregation. Despite their conserved function, they are composed of rapidly evolving A/T-rich satellite DNA. This paradoxical observation is partially resolved by epigenetic mechanisms that maintain heterochromatin, independent of specific DNA sequences. However, it is unclear how satellite DNA sequence variation impacts de novo formation of pericentric heterochromatin, which is initially absent from paternal chromosomes in the zygote. Here we show that satellite variation has functional consequences for zygotic heterochromatin formation, recruitment of the Chromosome Passenger Complex (CPC), and interactions with spindle microtubules. In M. musculus zygotes, Polycomb Repressive Complex 1 (PRC1) is recruited to pericentric satellites by its AT-hook domain, which binds runs of A/T nucleotides, to generate H2AK119ub1 (H2Aub) heterochromatin. By fertilizing M. musculus eggs with sperm from other mouse species, we show that species-specific satellite sequences differ in their ability to recruit PRC1 and form H2Aub. This satellite-DNA mediated increase in PRC1 heterochromatin leads to reduced CPC recruitment and increased microtubule forces on kinetochores. Our results provide a direct link between satellite DNA composition and pericentromere function in the zygote, when epigenetic pathways maintaining pericentromere heterochromatin are absent.
Collapse
Affiliation(s)
- Piero Lamelza
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Malena Parrado
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Emma Hamlin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
3
|
Rhind N. In through the out door: A loop-binding-first model for topological cohesin loading. Bioessays 2024; 46:e2400120. [PMID: 39159466 PMCID: PMC11427176 DOI: 10.1002/bies.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Cohesin is a ring-shaped complex that is loaded on DNA in two different conformations. In one conformation, it forms loops to organize the interphase genome; in the other, it topologically encircles sibling chromosomes to facilitate homologous recombination and to establish the cohesion that is required for orderly segregation during mitosis. How, and even if, these two loading conformation are related is unclear. Here, I propose that loop binding is a required first step for topological binding. This loop-binding-first model integrates the known information about the two loading mechanisms, explains genetic requirements for the two and explains how topological loading evolved from loop binding.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Chen Y, Xiang T. SGO2 as a Prognostic Biomarker Correlated with Cell Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition in Lung Adenocarcinoma. FRONT BIOSCI-LANDMRK 2024; 29:314. [PMID: 39344317 DOI: 10.31083/j.fbl2909314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the predominant histological subtype among non-small cell lung cancer cases, representing approximately 40% of all cases. Shugoshin 2 (SGO2) is implicated in tumorigenesis and tumor progression. This study aimed to uncover a potential role of SGO2 in the LUAD. METHODS Data related to gene mRNA expression and clinical information were obtained from The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), and the Cancer Cell Line Encyclopedia (CCLE) databases. Cell Counting Kit-8 (CCK-8), Transwell, scratch assay, and flow cytometry were applied to investigate the biological functions of SGO2 in the LUAD. Western blot was conducted to detect the protein expression. RESULTS Through pan-cancer analysis, SGO2 was found to be consistently overexpressed in 25 of 33 cancer types, including LUAD. In vitro assays revealed that SGO2 knockdown significantly impeded cell proliferation, cell migration, invasion and epithelial-mesenchymal transition (EMT), whereas its overexpression promoted these abilities. Flow cytometry confirmed that SGO2 contributed to cell cycle progression and reduced cell apoptosis. Furthermore, SGO2 facilitated cell proliferation and regulated cell cycle through upregulating recombinant E2F transcription factor 1 (E2F1). CONCLUSIONS Our study demonstrated that SGO2 was up-regulated in pan-cancers including LUAD and its high expression was strongly associated with poor overall survival (OS) and progression-free survival (PFS) of patients with LUAD. SGO2 promoted cell proliferation, cell migration, invasion and EMT of A549 cells. Additionally, E2F1 was involved in regulation of cell cycle and cell proliferation mediated by SGO2. This research elucidated the oncogenic significance of SGO2 in LUAD, proposing its potential as a prognostic biomarker and a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Yinghua Chen
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- Department of Oncology and Hematology, Chongqing University Central Hospital, 400014 Chongqing, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| |
Collapse
|
5
|
Yuan X, Yan L, Chen Q, Zhu S, Zhou X, Zeng LH, Liu M, He X, Huang J, Lu W, Zhang L, Yan H, Wang F. Molecular mechanism and functional significance of Wapl interaction with the Cohesin complex. Proc Natl Acad Sci U S A 2024; 121:e2405177121. [PMID: 39110738 PMCID: PMC11331136 DOI: 10.1073/pnas.2405177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lu Yan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shukai Zhu
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyu Zhou
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital of Zhejiang University School of Medicine, and Cancer Center of Zhejiang University, Hangzhou, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Fangwei Wang
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific decoupling of the pericentromere from the kinetochore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604490. [PMID: 39091844 PMCID: PMC11291024 DOI: 10.1101/2024.07.21.604490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The primary constriction site of the M-phase chromosome is an established marker for the kinetochore position, often used to determine the karyotype of each species. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are most tightly cohered. Here, we found an unconventional pericentromere specification with sister chromatids mainly cohered at a chromosome end, spatially separated from the kinetochore in Peromyscus mouse oocytes. This distal locus enriched cohesin protectors, such as the Chromosomal Passenger Complex (CPC) and PP2A, at a higher level compared to its centromere/kinetochore region, acting as the primary site for sister-chromatid cohesion. Chromosomes with the distal cohesion site exhibited enhanced cohesin protection at anaphase I compared to those without it, implying that these distal cohesion sites may have evolved to ensure sister-chromatid cohesion during meiosis. In contrast, mitotic cells enriched CPC only near the kinetochore and the distal locus was not cohered between sister chromatids, suggesting a meiosis-specific mechanism to protect cohesin at this distal locus. We found that this distal locus corresponds to an additional centromeric satellite block, located far apart from the centromeric satellite block that builds the kinetochore. Several Peromyscus species carry chromosomes with two such centromeric satellite blocks. Analyses on three Peromyscus species revealed that the internal satellite consistently assembles the kinetochore in both mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote sister-chromatid cohesion at that site. Thus, our study demonstrates that pericentromere specification is remarkably flexible and can control chromosome segregation in a cell-type and context dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
7
|
Prusén Mota I, Galova M, Schleiffer A, Nguyen TT, Kovacikova I, Farias Saad C, Litos G, Nishiyama T, Gregan J, Peters JM, Schlögelhofer P. Sororin is an evolutionary conserved antagonist of WAPL. Nat Commun 2024; 15:4729. [PMID: 38830897 PMCID: PMC11148194 DOI: 10.1038/s41467-024-49178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.
Collapse
Affiliation(s)
- Ignacio Prusén Mota
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Marta Galova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tan-Trung Nguyen
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Ines Kovacikova
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Carolina Farias Saad
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tomoko Nishiyama
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| | - Peter Schlögelhofer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
| |
Collapse
|
8
|
Chen J, Jiao Z, Liu Y, Zhang M, Wang D. USP7 interacts with and destabilizes oncoprotein SET. Biochem Biophys Res Commun 2024; 709:149818. [PMID: 38555840 DOI: 10.1016/j.bbrc.2024.149818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.
Collapse
Affiliation(s)
- Jianyuan Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
9
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Mihalas BP, Pieper GH, Aboelenain M, Munro L, Srsen V, Currie CE, Kelly DA, Hartshorne GM, Telfer EE, McAinsh AD, Anderson RA, Marston AL. Age-dependent loss of cohesion protection in human oocytes. Curr Biol 2024; 34:117-131.e5. [PMID: 38134935 DOI: 10.1016/j.cub.2023.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/05/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a "cohesin bridge" between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age.
Collapse
Affiliation(s)
- Bettina P Mihalas
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Gerard H Pieper
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Mansour Aboelenain
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Theriogenology department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Lucy Munro
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Vlastimil Srsen
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Cerys E Currie
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Geraldine M Hartshorne
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK; University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
11
|
Fajish G, Challa K, Salim S, Vp A, Mwaniki S, Zhang R, Fujita Y, Ito M, Nishant KT, Shinohara A. DNA double-strand breaks regulate the cleavage-independent release of Rec8-cohesin during yeast meiosis. Genes Cells 2024; 29:86-98. [PMID: 37968127 DOI: 10.1111/gtc.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The mitotic cohesin complex necessary for sister chromatid cohesion and chromatin loop formation shows local and global association to chromosomes in response to DNA double-strand breaks (DSBs). Here, by genome-wide binding analysis of the meiotic cohesin with Rec8, we found that the Rec8-localization profile along chromosomes is altered from middle to late meiotic prophase I with cleavage-independent dissociation. Each Rec8-binding site on the chromosome axis follows a unique alternation pattern with dissociation and probably association. Centromeres showed altered Rec8 binding in late prophase I relative to mid-prophase I, implying chromosome remodeling of the regions. Rec8 dissociation ratio per chromosome is correlated well with meiotic DSB density. Indeed, the spo11 mutant deficient in meiotic DSB formation did not change the distribution of Rec8 along chromosomes in late meiotic prophase I. These suggest the presence of a meiosis-specific regulatory pathway for the global binding of Rec8-cohesin in response to DSBs.
Collapse
Affiliation(s)
- Ghanim Fajish
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sagar Salim
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Ajith Vp
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Stephen Mwaniki
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Ruihao Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
13
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
15
|
García-Nieto A, Patel A, Li Y, Oldenkamp R, Feletto L, Graham JJ, Willems L, Muir KW, Panne D, Rowland BD. Structural basis of centromeric cohesion protection. Nat Struct Mol Biol 2023:10.1038/s41594-023-00968-y. [PMID: 37081319 DOI: 10.1038/s41594-023-00968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
In the early stages of mitosis, cohesin is released from chromosome arms but not from centromeres. The protection of centromeric cohesin by SGO1 maintains the sister chromatid cohesion that resists the pulling forces of microtubules until all chromosomes are attached in a bipolar manner to the mitotic spindle. Here we present the X-ray crystal structure of a segment of human SGO1 bound to a conserved surface of the cohesin complex. SGO1 binds to a composite interface formed by the SA2 and SCC1RAD21 subunits of cohesin. SGO1 shares this binding interface with CTCF, indicating that these distinct chromosomal regulators control cohesin through a universal principle. This interaction is essential for the localization of SGO1 to centromeres and protects centromeric cohesin against WAPL-mediated cohesin release. SGO1-cohesin binding is maintained until the formation of microtubule-kinetochore attachments and is required for faithful chromosome segregation and the maintenance of a stable karyotype.
Collapse
Affiliation(s)
- Alberto García-Nieto
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amrita Patel
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yan Li
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roel Oldenkamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Joshua J Graham
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Laureen Willems
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
17
|
Konecna M, Abbasi Sani S, Anger M. Separase and Roads to Disengage Sister Chromatids during Anaphase. Int J Mol Sci 2023; 24:ijms24054604. [PMID: 36902034 PMCID: PMC10003635 DOI: 10.3390/ijms24054604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Receiving complete and undamaged genetic information is vital for the survival of daughter cells after chromosome segregation. The most critical steps in this process are accurate DNA replication during S phase and a faithful chromosome segregation during anaphase. Any errors in DNA replication or chromosome segregation have dire consequences, since cells arising after division might have either changed or incomplete genetic information. Accurate chromosome segregation during anaphase requires a protein complex called cohesin, which holds together sister chromatids. This complex unifies sister chromatids from their synthesis during S phase, until separation in anaphase. Upon entry into mitosis, the spindle apparatus is assembled, which eventually engages kinetochores of all chromosomes. Additionally, when kinetochores of sister chromatids assume amphitelic attachment to the spindle microtubules, cells are finally ready for the separation of sister chromatids. This is achieved by the enzymatic cleavage of cohesin subunits Scc1 or Rec8 by an enzyme called Separase. After cohesin cleavage, sister chromatids remain attached to the spindle apparatus and their poleward movement on the spindle is initiated. The removal of cohesion between sister chromatids is an irreversible step and therefore it must be synchronized with assembly of the spindle apparatus, since precocious separation of sister chromatids might lead into aneuploidy and tumorigenesis. In this review, we focus on recent discoveries concerning the regulation of Separase activity during the cell cycle.
Collapse
Affiliation(s)
- Marketa Konecna
- Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Soodabeh Abbasi Sani
- Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Correspondence:
| |
Collapse
|
18
|
Cairo G, Greiwe C, Jung GI, Blengini C, Schindler K, Lacefield S. Distinct Aurora B pools at the inner centromere and kinetochore have different contributions to meiotic and mitotic chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527197. [PMID: 36778459 PMCID: PMC9915740 DOI: 10.1101/2023.02.05.527197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.
Collapse
Affiliation(s)
- Gisela Cairo
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| | - Cora Greiwe
- Indiana University, Department of Biology, Bloomington, IN USA
| | - Gyu Ik Jung
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | | | - Karen Schindler
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| |
Collapse
|
19
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
20
|
Tanno Y. Preparation of Mitotic Cells for Fluorescence Microscopy. Methods Mol Biol 2023; 2519:27-40. [PMID: 36066707 DOI: 10.1007/978-1-0716-2433-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell cycle-dependent regulation of chromosome is a dynamic event. After replication in S phase, sister chromatids show dynamic behavior including condensation, alignment, and segregation in M phase. These beautiful behaviors of chromosomes observed through the microscope have fascinated people since more than 100 years ago, and now we can sketch the dynamics of regulatory proteins and their posttranscriptional modifications through the fluorescent microscope. The purpose of this chapter is describing the basic methods of immunofluorescence analysis of mitotic cells and chromosomes. Besides, the key ideas for improving the preparation of the specimen are also described. Because the characteristic of the proteins of your interest differs one by one, modifying the method might cause the crucial improvement in the observation.
Collapse
Affiliation(s)
- Yuji Tanno
- Bioscience Department, Veritas Corporation, Minato-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Hu Q, Liu Q, Zhao Y, Zhang L, Li L. SGOL2 is a novel prognostic marker and fosters disease progression via a MAD2-mediated pathway in hepatocellular carcinoma. Biomark Res 2022; 10:82. [PMCID: PMC9664666 DOI: 10.1186/s40364-022-00422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. Here, we examined the potential role of SGOL2 in cancers, especially in hepatocellular carcinoma (HCC). Methods One hundred ninety-nine normal adjacent tissues and 202 HCC samples were collected in this study. Human HCC cells (SK-HEP-1 and HEP-3B) were employed in the present study. Immunohistochemistry, immunofluorescence, western blot, Co-Immunoprecipitation technique, and bioinformatic analysis were utilized to assess the role of SGOL2 in HCC development process. Results Overexpression of SGOL2 predicted an unfavorable prognosis in HCC by The Cancer Genome Atlas database (TCGA), which were further validated in our two independent cohorts. Next, 47 differentially expressed genes positively related to both SGOL2 and MAD2 were identified to be associated with the cell cycle. Subsequently, we demonstrated that SGOL2 downregulation suppressed the malignant activities of HCC in vitro and in vivo. Further investigation showed that SGOL2 promoted tumor proliferation by regulating MAD2-induced cell-cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. Consistently, MAD2 upregulation reversed the knockdown effects of SGOL2-shRNA in HCC. Moreover, we demonstrated that SGOL2 regulated MAD2 expression level by forming a SGOL2-MAD2 complex, which led to cell cycle dysreuglation of HCC cells. Conclusion SGOL2 acts as an oncogene in HCC cells by regulating MAD2 and then dysregulating the cell cycle, providing a potential therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00422-z.
Collapse
Affiliation(s)
- Qingqing Hu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Qiuhong Liu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yalei Zhao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lingjian Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
22
|
Siddaway R, Milos S, Coyaud É, Yun HY, Morcos SM, Pajovic S, Campos EI, Raught B, Hawkins C. The in vivo Interaction Landscape of Histones H3.1 and H3.3. Mol Cell Proteomics 2022; 21:100411. [PMID: 36089195 PMCID: PMC9540345 DOI: 10.1016/j.mcpro.2022.100411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.
Collapse
Affiliation(s)
- Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott Milos
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Université de Lille, Lille, France
| | - Hwa Young Yun
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shahir M. Morcos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Pajovic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric I. Campos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,For correspondence: Cynthia Hawkins
| |
Collapse
|
23
|
Abad MA, Gupta T, Hadders MA, Meppelink A, Wopken JP, Blackburn E, Zou J, Gireesh A, Buzuk L, Kelly DA, McHugh T, Rappsilber J, Lens SMA, Jeyaprakash AA. Mechanistic basis for Sgo1-mediated centromere localization and function of the CPC. J Cell Biol 2022; 221:213318. [PMID: 35776132 PMCID: PMC9253516 DOI: 10.1083/jcb.202108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Centromere association of the chromosomal passenger complex (CPC; Borealin-Survivin-INCENP-Aurora B) and Sgo1 is crucial for chromosome biorientation, a process essential for error-free chromosome segregation. Phosphorylated histone H3 Thr3 (H3T3ph; directly recognized by Survivin) and histone H2A Thr120 (H2AT120ph; indirectly recognized via Sgo1), together with CPC’s intrinsic nucleosome-binding ability, facilitate CPC centromere recruitment. However, the molecular basis for CPC–Sgo1 binding and how their physical interaction influences CPC centromere localization are lacking. Here, using an integrative structure-function approach, we show that the “histone H3-like” Sgo1 N-terminal tail-Survivin BIR domain interaction acts as a hotspot essential for CPC–Sgo1 assembly, while downstream Sgo1 residues and Borealin contribute for high-affinity binding. Disrupting Sgo1–Survivin interaction abolished CPC–Sgo1 assembly and perturbed CPC centromere localization and function. Our findings reveal that Sgo1 and H3T3ph use the same surface on Survivin to bind CPC. Hence, it is likely that these interactions take place in a spatiotemporally restricted manner, providing a rationale for the Sgo1-mediated “kinetochore-proximal” CPC centromere pool.
Collapse
Affiliation(s)
- Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tanmay Gupta
- Early Cancer Institute, University of Cambridge Department of Oncology, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Amanda Meppelink
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J Pepijn Wopken
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Anjitha Gireesh
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Lana Buzuk
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David A Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Toni McHugh
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
24
|
Kamel SM, Broekman S, Tessadori F, van Wijk E, Bakkers J. The zebrafish cohesin protein Sgo1 is required for cardiac function and eye development. Dev Dyn 2022; 251:1357-1367. [PMID: 35275424 PMCID: PMC9545960 DOI: 10.1002/dvdy.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cohesinopathies is a term that refers to/covers rare genetic diseases caused by mutations in the cohesin complex proteins. The cohesin complex is a multiprotein complex that facilitates different aspects of cell division, gene transcription, DNA damage repair, and chromosome architecture. Shugoshin proteins prevent the cohesin complex from premature dissociation from chromatids during cell division. Patients with a homozygous missense mutation in SGO1, which encodes for Shugoshin1, have problems with normal pacing of the heart and gut. RESULTS To study the role of shugoshin during embryo development, we mutated the zebrafish sgo1 gene. Homozygous sgo1 mutant embryos display various phenotypes related to different organs, including a reduced heart rate accompanied by reduced cardiac function. In addition, sgo1 mutants are vision-impaired as a consequence of structurally defective and partially non-functional photoreceptor cells. Furthermore, the sgo1 mutants display reduced food intake and early lethality. CONCLUSION We have generated a zebrafish model of Sgo1 that showed its importance during organ development and function.
Collapse
Affiliation(s)
- Sarah M. Kamel
- Hubrecht Institute‐KNAW, University Medical Centre UtrechtUtrechtThe Netherlands
| | - Sanne Broekman
- Department of OtorhinolaryngologyRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Federico Tessadori
- Hubrecht Institute‐KNAW, University Medical Centre UtrechtUtrechtThe Netherlands
| | - Erwin van Wijk
- Department of OtorhinolaryngologyRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute‐KNAW, University Medical Centre UtrechtUtrechtThe Netherlands
- Department of Medical Physiology, Division of Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Pediatric Cardiology, Division of PediatricsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
25
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Aurora B/C-dependent phosphorylation promotes Rec8 cleavage in mammalian oocytes. Curr Biol 2022; 32:2281-2290.e4. [DOI: 10.1016/j.cub.2022.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
|
27
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Genes (Basel) 2022; 13:genes13030546. [PMID: 35328099 PMCID: PMC8949218 DOI: 10.3390/genes13030546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
To generate gametes, sexually reproducing organisms need to achieve a reduction in ploidy, via meiosis. Several mechanisms are set in place to ensure proper reductional chromosome segregation at the first meiotic division (MI), including chromosome remodeling during late prophase I. Chromosome remodeling after crossover formation involves changes in chromosome condensation and restructuring, resulting in a compact bivalent, with sister kinetochores oriented to opposite poles, whose structure is crucial for localized loss of cohesion and accurate chromosome segregation. Here, we review the general processes involved in late prophase I chromosome remodeling, their regulation, and the strategies devised by different organisms to produce bivalents with configurations that promote accurate segregation.
Collapse
|
29
|
Sakuno T, Hiraoka Y. Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 2022; 13:200. [PMID: 35205245 PMCID: PMC8871791 DOI: 10.3390/genes13020200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.
Collapse
Affiliation(s)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
30
|
Shimoi G, Wakabayashi R, Ishikawa R, Kameyama Y. Effects of post-ovulatory aging on centromeric cohesin protection in murine MII oocytes. Reprod Med Biol 2022; 21:RMB212433. [PMID: 35386382 PMCID: PMC8967304 DOI: 10.1002/rmb2.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose Post-ovulatory aging causes a high frequency of aneuploidy during meiosis II in mouse oocytes, irrespective of maternal age. In this study, we evaluated the effects of post-ovulatory oocyte aging on the protection of chromosomal cohesion involved in aneuploidy and verified the relationship between PP2A or SGO2 expression and the phosphorylation level of REC8 in oocytes. Methods Murine ovulated oocytes were incubated for 6 or 12 h in vitro after collection and denoted as the aged group. The oocytes examined immediately after collection were used as the control group. Immunofluorescent staining was used to detect the localization of PP2A, SGO2, BUB1, AURORA B, and MAD2 in the chromosomal centromere. Immunoblotting was used to quantify the expression of proteins describe above and REC8 in the oocytes. Results PP2A expression involved in the de-phosphorylation of REC8 decreased over time in oocytes, suggesting a deficiency in PP2A in centromeres. This indicated an increase in the level of phosphorylated REC8, which destabilizes centromeric cohesion in oocytes. In contrast, SGO2 expression was significantly high in aged oocytes. Conclusions The findings show that post-ovulatory aging destabilizes the centromeric cohesin protection in oocytes and can cause aneuploidy, which is often observed in aged oocytes during meiosis II.
Collapse
Affiliation(s)
- Gaku Shimoi
- Faculty of BioindustryTokyo University of AgricultureAbashiriJapan
- Graduate School of BioindustryTokyo University of AgricultureAbashiriJapan
| | - Rico Wakabayashi
- Faculty of BioindustryTokyo University of AgricultureAbashiriJapan
| | - Ryu Ishikawa
- Graduate School of BioindustryTokyo University of AgricultureAbashiriJapan
| | - Yuichi Kameyama
- Faculty of BioindustryTokyo University of AgricultureAbashiriJapan
- Graduate School of BioindustryTokyo University of AgricultureAbashiriJapan
| |
Collapse
|
31
|
Sule A, Golding SE, Ahmad SF, Watson J, Ahmed MH, Kellogg GE, Bernas T, Koebley S, Reed JC, Povirk LF, Valerie K. ATM phosphorylates PP2A subunit A resulting in nuclear export and spatiotemporal regulation of the DNA damage response. Cell Mol Life Sci 2022; 79:603. [PMID: 36434396 PMCID: PMC9700600 DOI: 10.1007/s00018-022-04550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a serine-threonine protein kinase and important regulator of the DNA damage response (DDR). One critical ATM target is the structural subunit A (PR65-S401) of protein phosphatase 2A (PP2A), known to regulate diverse cellular processes such as mitosis and cell growth as well as dephosphorylating many proteins during the recovery from the DDR. We generated mouse embryonic fibroblasts expressing PR65-WT, -S401A (cannot be phosphorylated), and -S401D (phospho-mimetic) transgenes. Significantly, S401 mutants exhibited extensive chromosomal aberrations, impaired DNA double-strand break (DSB) repair and underwent increased mitotic catastrophe after radiation. Both S401A and the S401D cells showed impaired DSB repair (nonhomologous end joining and homologous recombination repair) and exhibited delayed DNA damage recovery, which was reflected in reduced radiation survival. Furthermore, S401D cells displayed increased ERK and AKT signaling resulting in enhanced growth rate further underscoring the multiple roles ATM-PP2A signaling plays in regulating prosurvival responses. Time-lapse video and cellular localization experiments showed that PR65 was exported to the cytoplasm after radiation by CRM1, a nuclear export protein, in line with the very rapid pleiotropic effects observed. A putative nuclear export sequence (NES) close to S401 was identified and when mutated resulted in aberrant PR65 shuttling. Our study demonstrates that the phosphorylation of a single, critical PR65 amino acid (S401) by ATM fundamentally controls the DDR, and balances DSB repair quality, cell survival and growth by spatiotemporal PR65 nuclear-cytoplasmic shuttling mediated by the nuclear export receptor CRM1.
Collapse
Affiliation(s)
- Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Syed F Ahmad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - James Watson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tytus Bernas
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean Koebley
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jason C Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
32
|
Ogushi S, Rattani A, Godwin J, Metson J, Schermelleh L, Nasmyth K. Loss of sister kinetochore co-orientation and peri-centromeric cohesin protection after meiosis I depends on cleavage of centromeric REC8. Dev Cell 2021; 56:3100-3114.e4. [PMID: 34758289 PMCID: PMC8629431 DOI: 10.1016/j.devcel.2021.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
Protection of peri-centromeric (periCEN) REC8 cohesin from Separase and sister kinetochore (KT) attachment to microtubules emanating from the same spindle pole (co-orientation) ensures that sister chromatids remain associated after meiosis I. Both features are lost during meiosis II, resulting in sister chromatid disjunction and the production of haploid gametes. By transferring spindle-chromosome complexes (SCCs) between meiosis I and II in mouse oocytes, we discovered that both sister KT co-orientation and periCEN cohesin protection depend on the SCC, and not the cytoplasm. Moreover, the catalytic activity of Separase at meiosis I is necessary not only for converting KTs from a co- to a bi-oriented state but also for deprotection of periCEN cohesion, and cleavage of REC8 may be the key event. Crucially, selective cleavage of REC8 in the vicinity of KTs is sufficient to destroy co-orientation in univalent chromosomes, albeit not in bivalents where resolution of chiasmata may also be required.
Collapse
Affiliation(s)
- Sugako Ogushi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Ahmed Rattani
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jean Metson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
33
|
Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2021; 46:481-488. [PMID: 35600766 PMCID: PMC9120780 DOI: 10.1016/j.jgr.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 10/27/2022] Open
|
34
|
Kao Y, Tsai WC, Chen SH, Hsu SY, Huang LC, Chang CJ, Huang SM, Hueng DY. Shugosin 2 is a biomarker for pathological grading and survival prediction in patients with gliomas. Sci Rep 2021; 11:18541. [PMID: 34535705 PMCID: PMC8448842 DOI: 10.1038/s41598-021-97119-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastomas are the most common type of adult primary brain neoplasms. Clinically, it is helpful to identify biomarkers to predict the survival of patients with gliomas due to its poor outcome. Shugoshin 2 (SGO2) is critical in cell division and cell cycle progression in eukaryotes. However, the association of SGO2 with pathological grading and survival in patients with gliomas remains unclear. We analyzed the association between SGO2 expression and clinical outcomes from Gene Expression Omnibus (GEO) dataset profiles, The Cancer Genome Atlas (TCGA), and Chinese Glioma Genome Atlas (CGGA). SGO2 mRNA and protein expression in normal brain tissue and glioma cell lines were investigated via quantitative RT-PCR, Western blot, and IHC staining. The roles of SGO2 in proliferation, migration, and apoptosis of GBM cells were studied with wound-healing assay, BrdU assay, cell cycle analysis, and JC-1 assay. The protein–protein interaction (PPI) was analyzed via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). SGO2 mRNA expression predicted higher grade gliomas than non-tumor brain tissues. Kaplan–Meier survival analysis showed that patients with high-grade gliomas with a higher SGO2 expression had worse survival outcomes. SGO2 mRNA and protein expression were upper regulated in gliomas than in normal brain tissue. Inhibition of SGO2 suppressed cell proliferation and migration. Also, PPI result showed SGO2 to be a potential hub protein, which was related to the expression of AURKB and FOXM1. SGO2 expression positively correlates with WHO pathological grading and patient survival, suggesting that SGO2 is a biomarker that is predictive of disease progression in patients with gliomas.
Collapse
Affiliation(s)
- Ying Kao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei, Taiwan, ROC.,University of Taipei, Taipei, Taiwan, ROC
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ssu-Han Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shao-Yuan Hsu
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital, Renai Branch, Taipei, Taiwan, ROC
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Ju Chang
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan, ROC.,Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC.,Department of Mechanical Engineering, National Central University, Taoyuan County, Taiwan, ROC
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC. .,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC. .,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
35
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Sane A, Sridhar S, Sanyal K, Ghosh SK. Shugoshin ensures maintenance of the spindle assembly checkpoint response and efficient spindle disassembly. Mol Microbiol 2021; 116:1079-1098. [PMID: 34407255 DOI: 10.1111/mmi.14796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Shugoshin proteins are evolutionarily conserved across eukaryotes, with some species-specific cellular functions, ensuring the fidelity of chromosome segregation. They act as adaptors at various subcellular locales to mediate several protein-protein interactions in a spatio-temporal manner. Here, we characterize shugoshin (Sgo1) in the human fungal pathogen Candida albicans. We observe that Sgo1 retains its centromeric localization and performs its conserved functions of regulating the sister chromatid biorientation, centromeric condensin localization, and maintenance of chromosomal passenger complex (CPC). We identify novel roles of Sgo1 as a spindle assembly checkpoint (SAC) component with functions in maintaining a prolonged SAC response by retaining Mad2 and Bub1 at the kinetochores in response to improper kinetochore-microtubule attachments. Strikingly, we discover the in vivo localization of Sgo1 along the length of the mitotic spindle. Our results indicate that Sgo1 performs a hitherto unknown function of facilitating timely disassembly of the mitotic spindle in C. albicans. To summarize, this study unravels a unique functional adaptation of shugoshin in maintaining genomic stability.
Collapse
Affiliation(s)
- Aakanksha Sane
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| | - Shreyas Sridhar
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kaustuv Sanyal
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| |
Collapse
|
37
|
Jang JK, Gladstein AC, Das A, Shapiro JG, Sisco ZL, McKim KS. Multiple pools of PP2A regulate spindle assembly, kinetochore attachments and cohesion in Drosophila oocytes. J Cell Sci 2021; 134:jcs254037. [PMID: 34297127 PMCID: PMC8325958 DOI: 10.1242/jcs.254037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/14/2021] [Indexed: 01/06/2023] Open
Abstract
Meiosis in female oocytes lacks centrosomes, the microtubule-organizing centers. In Drosophila oocytes, meiotic spindle assembly depends on the chromosomal passenger complex (CPC). To investigate the mechanisms that regulate Aurora B activity, we examined the role of protein phosphatase 2A (PP2A) in Drosophila oocyte meiosis. We found that both forms of PP2A, B55 and B56, antagonize the Aurora B spindle assembly function, suggesting that a balance between Aurora B and PP2A activity maintains the oocyte spindle during meiosis I. PP2A-B56, which has a B subunit encoded by two partially redundant paralogs, wdb and wrd, is also required for maintenance of sister chromatid cohesion, establishment of end-on microtubule attachments, and metaphase I arrest in oocytes. WDB recruitment to the centromeres depends on BUBR1, MEI-S332 and kinetochore protein SPC105R. Although BUBR1 stabilizes microtubule attachments in Drosophila oocytes, it is not required for cohesion maintenance during meiosis I. We propose at least three populations of PP2A-B56 regulate meiosis, two of which depend on SPC105R and a third that is associated with the spindle.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim S. McKim
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
38
|
Ueki Y, Hadders MA, Weisser MB, Nasa I, Sotelo‐Parrilla P, Cressey LE, Gupta T, Hertz EPT, Kruse T, Montoya G, Jeyaprakash AA, Kettenbach A, Lens SMA, Nilsson J. A highly conserved pocket on PP2A-B56 is required for hSgo1 binding and cohesion protection during mitosis. EMBO Rep 2021; 22:e52295. [PMID: 33973335 PMCID: PMC8256288 DOI: 10.15252/embr.202052295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
The shugoshin proteins are universal protectors of centromeric cohesin during mitosis and meiosis. The binding of human hSgo1 to the PP2A-B56 phosphatase through a coiled-coil (CC) region mediates cohesion protection during mitosis. Here we undertook a structure function analysis of the PP2A-B56-hSgo1 complex, revealing unanticipated aspects of complex formation and function. We establish that a highly conserved pocket on the B56 regulatory subunit is required for hSgo1 binding and cohesion protection during mitosis in human somatic cells. Consistent with this, we show that hSgo1 blocks the binding of PP2A-B56 substrates containing a canonical B56 binding motif. We find that PP2A-B56 bound to hSgo1 dephosphorylates Cdk1 sites on hSgo1 itself to modulate cohesin interactions. Collectively our work provides important insight into cohesion protection during mitosis.
Collapse
Affiliation(s)
- Yumi Ueki
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Michael A Hadders
- Oncode Institute and Center for Molecular MedicineUniversity Medical Center UtrechUtrecht UniversityUtrechtThe Netherlands
| | - Melanie B Weisser
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Isha Nasa
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | | | - Lauren E Cressey
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | - Tanmay Gupta
- Wellcome Center for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Emil P T Hertz
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Guillermo Montoya
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| | | | - Arminja Kettenbach
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular MedicineUniversity Medical Center UtrechUtrecht UniversityUtrechtThe Netherlands
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
39
|
Zhang HY, Li J, Ouyang YC, Meng TG, Zhang CH, Yue W, Sun QY, Qian WP. Cell Division Cycle 5-Like Regulates Metaphase-to-Anaphase Transition in Meiotic Oocyte. Front Cell Dev Biol 2021; 9:671685. [PMID: 34277613 PMCID: PMC8282184 DOI: 10.3389/fcell.2021.671685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The quality of oocytes is a vital factor for embryo development. Meiotic progression through metaphase I usually takes a relatively long time to ensure correct chromosome separation, a process that is critical for determining oocyte quality. Here, we report that cell division cycle 5-like (Cdc5L) plays a critical role in regulating metaphase-to-anaphase I transition during mouse oocyte meiotic maturation. Knockdown of Cdc5L by small interfering RNA injection did not affect spindle assembly but caused metaphase I arrest and subsequent reduced first polar body extrusion due to insufficient anaphase-promoting complex/cyclosome activity. We further showed that Cdc5L could also directly interact with securin, and Cdc5L knockdown led to a continuous high expression level of securin, causing severely compromised meiotic progression. The metaphase-to-anaphase I arrest caused by Cdc5L knockdown could be rescued by knockdown of endogenous securin. In summary, we reveal a novel role for Cdc5L in regulating mouse oocyte meiotic progression by interacting with securin.
Collapse
Affiliation(s)
- Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
40
|
Deng M, Li S, Mei J, Lin W, Zou J, Wei W, Guo R. High SGO2 Expression Predicts Poor Overall Survival: A Potential Therapeutic Target for Hepatocellular Carcinoma. Genes (Basel) 2021; 12:genes12060876. [PMID: 34200261 PMCID: PMC8226836 DOI: 10.3390/genes12060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Shugoshin2 (SGO2) may participate in the occurrence and development of tumors by regulating abnormal cell cycle division, but its prognostic value in hepatocellular carcinoma (HCC) remains unclear. In this study, we accessed The Cancer Genome Atlas (TCGA) database to get the clinical data and gene expression profile of HCC. The expression of SGO2 in HCC tissues and nontumor tissues and the relationship between SGO2 expression, survival, and clinicopathological parameters were analyzed. The SGO2 expression level was significantly higher in HCC tissues than in nontumor tissues (p < 0.001). An analysis from the Oncomine and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases also demonstrated that SGO2 was upregulated in HCC (all p < 0.001). A logistic regression analysis revealed that the high expression of SGO2 was significantly correlated with gender, tumor grade, pathological stage, T classification, and Eastern Cancer Oncology Group (ECOG) score (all p < 0.05). The overall survival (OS) of HCC patients with higher SGO2 expression was significantly poor (p < 0.001). A multivariate analysis showed that age and high expression of SGO2 were independent predictors of poor overall survival (all p < 0.05). Twelve signaling pathways were significantly enriched in samples with the high-SGO2 expression phenotype. Ten proteins and 34 genes were significantly correlated with SGO2. In conclusion, the expression of SGO2 is closely related to the survival of HCC. It may be used as a potential therapeutic target and prognostic marker of HCC.
Collapse
Affiliation(s)
- Min Deng
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaohua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenping Lin
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jingwen Zou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rongping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-188-1980-9988
| |
Collapse
|
41
|
Liu D, Song AT, Qi X, van Vliet PP, Xiao J, Xiong F, Andelfinger G, Nattel S. Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nat Commun 2021; 12:2551. [PMID: 33953173 PMCID: PMC8100125 DOI: 10.1038/s41467-021-22737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Endogenous cardiac pacemaker function regulates the rate and rhythm of cardiac contraction. The mutation p.Lys23Glu in the cohesin protein Shugoshin-1 causes severe heart arrhythmias due to sinoatrial node dysfunction and a debilitating gastrointestinal motility disorder, collectively termed the Chronic Atrial and Intestinal Dysrhythmia Syndrome, linking Shugoshin-1 and pacemaker activity. Hyperpolarization-activated, cyclic nucleotide-gated cation channel 4 (HCN4) is the predominant pacemaker ion-channel in the adult heart and carries the majority of the "funny" current, which strongly contributes to diastolic depolarization in pacemaker cells. Here, we study the mechanism by which Shugoshin-1 affects cardiac pacing activity with two cell models: neonatal rat ventricular myocytes and Chronic Atrial and Intestinal Dysrhythmia Syndrome patient-specific human induced pluripotent stem cell derived cardiomyocytes. We find that Shugoshin-1 interacts directly with HCN4 to promote and stabilize cardiac pacing. This interaction enhances funny-current by optimizing HCN4 cell-surface expression and function. The clinical p.Lys23Glu mutation leads to an impairment in the interaction between Shugoshin-1 and HCN4, along with depressed funny-current and dysrhythmic activity in induced pluripotent stem cell derived cardiomyocytes derived from Chronic Atrial and Intestinal Dysrhythmia Syndrome patients. Our work reveals a critical non-canonical, cohesin-independent role for Shugoshin-1 in maintaining cardiac automaticity and identifies potential therapeutic avenues for cardiac pacemaking disorders, in particular Chronic Atrial and Intestinal Dysrhythmia Syndrome.
Collapse
Affiliation(s)
- Donghai Liu
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Andrew Taehun Song
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
| | - Xiaoyan Qi
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- LIA (International Associated Laboratory) INSERM, Marseille, France
- LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Jiening Xiao
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Feng Xiong
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montréal, QC, Canada
- Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Stanley Nattel
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
- IHU LIRYC Institute, Fondation Bordeaux Université, Bordeaux, France.
| |
Collapse
|
42
|
Ma W, Zhou J, Chen J, Carr AM, Watanabe Y. Meikin synergizes with shugoshin to protect cohesin Rec8 during meiosis I. Genes Dev 2021; 35:692-697. [PMID: 33888556 PMCID: PMC8091969 DOI: 10.1101/gad.348052.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/03/2021] [Indexed: 12/03/2022]
Abstract
The conserved meiosis-specific kinetochore regulator, meikin (Moa1 in fission yeast) plays a central role in establishing meiosis-specific kinetochore function. However, the underlying molecular mechanisms remain elusive. Here, we show how Moa1 regulates centromeric cohesion protection, a function that has been previously attributed to shugoshin (Sgo1). Moa1 is known to associate with Plo1 kinase. We explore Plo1-dependent Rec8 phosphorylation and identify a key phosphorylation site required for cohesion protection. The phosphorylation of Rec8 by Moa1-Plo1 potentiates the activity of PP2A associated with Sgo1. This leads to dephosphorylation of Rec8 at another site, which thereby prevents cleavage of Rec8 by separase.
Collapse
Affiliation(s)
- Wei Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | - Yoshinori Watanabe
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
43
|
Abstract
Chromosome instability (CIN) is a major hallmark of cancer cells and believed to drive tumor progression. Several cellular defects including weak centromeric cohesion are proposed to promote CIN, but the molecular mechanisms underlying these defects are poorly understood. In a screening for SET protein levels in various cancer cell lines, we found that most of the cancer cells exhibit higher SET protein levels than nontransformed cells, including RPE-1. Cancer cells with elevated SET often show weak centromeric cohesion, revealed by MG132-induced cohesion fatigue. Partial SET knockdown largely strengthens centromeric cohesion in cancer cells without increasing overall phosphatase 2A (PP2A) activity. Pharmacologically increased PP2A activity in these cancer cells barely ameliorates centromeric cohesion. These results suggest that compromised PP2A activity, a common phenomenon in cancer cells, may not be responsible for weak centromeric cohesion. Furthermore, centromeric cohesion in cancer cells can be strengthened by ectopic Sgo1 overexpression and weakened by SET WT, not by Sgo1-binding-deficient mutants. Altogether, these findings demonstrate that SET overexpression contributes to impaired centromeric cohesion in cancer cells and illustrate misregulated SET-Sgo1 pathway as an underlying mechanism.
Collapse
Affiliation(s)
- Lu Yang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Tianhua Niu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112.,Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
44
|
Nadarajan S, Altendorfer E, Saito TT, Martinez-Garcia M, Colaiácovo MP. HIM-17 regulates the position of recombination events and GSP-1/2 localization to establish short arm identity on bivalents in meiosis. Proc Natl Acad Sci U S A 2021; 118:e2016363118. [PMID: 33883277 PMCID: PMC8092412 DOI: 10.1073/pnas.2016363118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The position of recombination events established along chromosomes in early prophase I and the chromosome remodeling that takes place in late prophase I are intrinsically linked steps of meiosis that need to be tightly regulated to ensure accurate chromosome segregation and haploid gamete formation. Here, we show that RAD-51 foci, which form at the sites of programmed meiotic DNA double-strand breaks (DSBs), exhibit a biased distribution toward off-centered positions along the chromosomes in wild-type Caenorhabditis elegans, and we identify two meiotic roles for chromatin-associated protein HIM-17 that ensure normal chromosome remodeling in late prophase I. During early prophase I, HIM-17 regulates the distribution of DSB-dependent RAD-51 foci and crossovers on chromosomes, which is critical for the formation of distinct chromosome subdomains (short and long arms of the bivalents) later during chromosome remodeling. During late prophase I, HIM-17 promotes the normal expression and localization of protein phosphatases GSP-1/2 to the surface of the bivalent chromosomes and may promote GSP-1 phosphorylation, thereby antagonizing Aurora B kinase AIR-2 loading on the long arms and preventing premature loss of sister chromatid cohesion. We propose that HIM-17 plays distinct roles at different stages during meiotic progression that converge to promote normal chromosome remodeling and accurate chromosome segregation.
Collapse
Affiliation(s)
| | - Elisabeth Altendorfer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Takamune T Saito
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | | | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
45
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
46
|
Mengoli V, Jonak K, Lyzak O, Lamb M, Lister LM, Lodge C, Rojas J, Zagoriy I, Herbert M, Zachariae W. Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO J 2021; 40:e106812. [PMID: 33644894 PMCID: PMC8013787 DOI: 10.15252/embj.2020106812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
Genome haploidization involves sequential loss of cohesin from chromosome arms and centromeres during two meiotic divisions. At centromeres, cohesin's Rec8 subunit is protected from separase cleavage at meiosis I and then deprotected to allow its cleavage at meiosis II. Protection of centromeric cohesin by shugoshin-PP2A seems evolutionarily conserved. However, deprotection has been proposed to rely on spindle forces separating the Rec8 protector from cohesin at metaphase II in mammalian oocytes and on APC/C-dependent destruction of the protector at anaphase II in yeast. Here, we have activated APC/C in the absence of sister kinetochore biorientation at meiosis II in yeast and mouse oocytes, and find that bipolar spindle forces are dispensable for sister centromere separation in both systems. Furthermore, we show that at least in yeast, protection of Rec8 by shugoshin and inhibition of separase by securin are both required for the stability of centromeric cohesin at metaphase II. Our data imply that related mechanisms preserve the integrity of dyad chromosomes during the short metaphase II of yeast and the prolonged metaphase II arrest of mammalian oocytes.
Collapse
Affiliation(s)
- Valentina Mengoli
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute for Research in BiomedicineUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mahdi Lamb
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Lisa M Lister
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Chris Lodge
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
EMBL HeidelbergHeidelbergGermany
| | - Mary Herbert
- Biosciences InstituteCentre for LifeTimes SquareNewcastle UniversityNewcastle upon TyneUK
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
47
|
Wang P, Yang F, Ma Z, Zhang R. Chromosome Unipolar Division and Low Expression of Tws May Cause Parthenogenesis of Rice Water Weevil ( Lissorhoptrus oryzophilus Kuschel). INSECTS 2021; 12:278. [PMID: 33805047 PMCID: PMC8064085 DOI: 10.3390/insects12040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Rice water weevil (RWW) is divided into two types of population, triploid parthenogenesis and diploid bisexual reproduction. In this study, we explored the meiosis of triploid parthenogenesis RWW (Shangzhuang Town, Haidian District, Beijing, China) by marking the chromosomes and microtubules of parthenogenetic RWW oocytes via immunostaining. The immunostaining results show that there is a canonical meiotic spindle formed in the triploid parthenogenetic RWW oocytes, but chromosomes segregate at only one pole, which means that there is a chromosomal unipolar division during the oogenesis of the parthenogenetic RWW. Furthermore, we cloned the conserved sequences of parthenogenetic RWW REC8 and Tws, and designed primers based on the parthenogenetic RWW sequence to detect expression patterns by quantitative PCR (Q-PCR). Q-PCR results indicate that the expression of REC8 and Tws in ovarian tissue of bisexual Drosophila melanogaster is 0.98 and 10,000.00 times parthenogenetic RWW, respectively (p < 0.01). The results show that Tws had low expression in parthenogenetic RWW ovarian tissue, and REC8 was expressed normally. Our study suggests that the chromosomal unipolar division and deletion of Tws may cause parthenogenesis in RWW.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- Department of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhuo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Li J, Zhang HY, Wang F, Sun QY, Qian WP. The Cyclin B2/CDK1 Complex Conservatively Inhibits Separase Activity in Oocyte Meiosis II. Front Cell Dev Biol 2021; 9:648053. [PMID: 33777955 PMCID: PMC7993350 DOI: 10.3389/fcell.2021.648053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
Recently, we have reported that the cyclin B2/CDK1 complex regulates homologous chromosome segregation through inhibiting separase activity in oocyte meiosis I, which further elucidates the compensation of cyclin B2 on cyclin B1’s function in meiosis I. However, whether cyclin B2/CDK1 complex also negatively regulates separase activity during oocyte meiosis II remains unknown. In the present study, we investigated the function of cyclin B2 in meiosis II of oocyte. We found that stable cyclin B2 expression impeded segregation of sister chromatids after oocyte parthenogenetic activation. Consistently, stable cyclin B2 inhibited separase activation, while introduction of non-phosphorylatable separase mutant rescued chromatid separation in the stable cyclin B2-expressed oocytes. Therefore, the cyclin B2/CDK1 complex conservatively regulates separase activity via inhibitory phosphorylation of separase in both meiosis I and meiosis II of mouse oocyte.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|
49
|
Lei WL, Qian WP, Sun QY. Critical Functions of PP2A-Like Protein Phosphotases in Regulating Meiotic Progression. Front Cell Dev Biol 2021; 9:638559. [PMID: 33718377 PMCID: PMC7947259 DOI: 10.3389/fcell.2021.638559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Meiosis is essential to the continuity of life in sexually-reproducing organisms through the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation and sumoylation have emerged as important regulatory events in meiosis. There are dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic cell cycle process, regulated by a conservative series of protein kinases and protein phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein, we review recent discoveries and explore the role of PP2A-like protein phosphatases during meiotic progression.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
50
|
Liu Y, Wang C, Su H, Birchler JA, Han F. Phosphorylation of histone H3 by Haspin regulates chromosome alignment and segregation during mitosis in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1046-1058. [PMID: 33130883 DOI: 10.1093/jxb/eraa506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In human cells, Haspin-mediated histone H3 threonine 3 (H3T3) phosphorylation promotes centromeric localization of the chromosomal passenger complex, thereby ensuring proper kinetochore-microtubule attachment. Haspin also binds to PDS5 cohesin-associated factor B (Pds5B), antagonizing the Wings apart-like protein homolog (Wapl)-Pds5B interaction and thus preventing Wapl from releasing centromeric cohesion during mitosis. However, the role of Haspin in plant chromosome segregation is not well understood. Here, we show that in maize (Zea mays) mitotic cells, ZmHaspin localized to the centromere during metaphase and anaphase, whereas it localized to the telomeres during meiosis. These results suggest that ZmHaspin plays different roles during mitosis and meiosis. Knockout of ZmHaspin led to decreased H3T3 phosphorylation and histone H3 serine 10 phosphorylation, and defects in chromosome alignment and segregation in mitosis. These lines of evidence suggest that Haspin regulates chromosome segregation in plants via the mechanism described for humans, namely, H3T3 phosphorylation. Plant Haspin proteins lack the RTYGA and PxVxL motifs needed to bind Pds5B and heterochromatin protein 1, and no obvious cohesion defects were detected in ZmHaspin knockout plants. Taken together, these results highlight the conserved but slightly different roles of Haspin proteins in cell division in plants and in animals.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhui Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|