1
|
Gutierrez RF, Ciol H, Carrillo Barra AL, Leonardo DA, Avaca-Crusca JS, Thiemann OH, Zanchin NIT, Araujo APU. Assigning roles in Chlamydomonas ribosome biogenesis: The conserved factor NIP7. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141045. [PMID: 39216654 DOI: 10.1016/j.bbapap.2024.141045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in Saccharomyces cerevisiae and Homo sapiens have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in Chlamydomonas reinhardtii, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from C. reinhardtii (CrNip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of CrNip7. Additionally, rRNA modeling analysis was performed using the predicted structure of CrNip7 to investigate its interaction with rRNA. The study revealed that CrNip7 can complement the role of NIP7 in yeast, implicating CrNip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.
Collapse
Affiliation(s)
- Raissa Ferreira Gutierrez
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Heloisa Ciol
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Angélica L Carrillo Barra
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Diego Antonio Leonardo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Juliana S Avaca-Crusca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Otavio H Thiemann
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | | | - Ana P Ulian Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil.
| |
Collapse
|
2
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
3
|
Glänzer D, Pfeiffer M, Ribar A, Zeindl R, Tollinger M, Nidetzky B, Kreutz C. Efficient Synthetic Access to Stable Isotope Labelled Pseudouridine Phosphoramidites for RNA NMR Spectroscopy. Chemistry 2024; 30:e202401193. [PMID: 38652483 DOI: 10.1002/chem.202401193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Here we report the efficient synthetic access to 13C/15N-labelled pseudouridine phosphoramidites, which were incorporated into a binary H/ACA box guide RNA/product complex comprising 77 nucleotides (nts) in total and into a 75 nt E. coli tRNAGly. The stable isotope (SI) labelled pseudouridines were produced via a highly efficient chemo-enzymatic synthesis. 13C/15N labelled uracils were produced via chemical synthesis and enzymatically converted to pseudouridine 5'-monophosphate (ΨMP) by using YeiN, a Ψ-5'-monophosphate C-glycosidase. Removal of the 5'-phosphate group yielded the desired pseudouridine nucleoside (Ψ), which was transformed into a phosphoramidite building suitable for RNA solid phase synthesis. A Ψ -building block carrying both a 13C and a 15N label was incorporated into a product RNA and the complex formation with a 63 nt H/ACA box RNA could be observed via NMR. Furthermore, the SI labelled pseudouridine building block was used to determine imino proton bulk water exchange rates of a 75 nt E. coli tRNAGly CCmnm5U, identifying the TΨC-loop 5-methyluridine as a modifier of the exchange rates. The efficient synthetic access to SI-labelled Ψ building blocks will allow the solution and solid-state NMR spectroscopic studies of Ψ containing RNAs and will facilitate the mass spectrometric analysis of Ψ-modified nucleic acids.
Collapse
Affiliation(s)
- David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- and Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Andrej Ribar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- and Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Ricarda Zeindl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- and Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Li Y, Wu S, Ye K. Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus. Nucleic Acids Res 2024; 52:4644-4658. [PMID: 38375885 PMCID: PMC11077068 DOI: 10.1093/nar/gkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.
Collapse
MESH Headings
- Pseudouridine/metabolism
- Sulfolobus/genetics
- Sulfolobus/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Archaeal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- Archaeal Proteins/metabolism
- Archaeal Proteins/genetics
- RNA Processing, Post-Transcriptional
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
Collapse
Affiliation(s)
- Yuqian Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Fernández-Varas B, Manguan-García C, Rodriguez-Centeno J, Mendoza-Lupiáñez L, Calatayud J, Perona R, Martín-Martínez M, Gutierrez-Rodriguez M, Benítez-Buelga C, Sastre L. Clinical mutations in the TERT and TERC genes coding for telomerase components induced oxidative stress, DNA damage at telomeres and cell apoptosis besides decreased telomerase activity. Hum Mol Genet 2024; 33:818-834. [PMID: 38641551 PMCID: PMC11031360 DOI: 10.1093/hmg/ddae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/21/2024] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.
Collapse
Affiliation(s)
- Beatriz Fernández-Varas
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
| | - Javier Rodriguez-Centeno
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Lucía Mendoza-Lupiáñez
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Joaquin Calatayud
- Departamento de Biología y Geología, Física y Química inorgánica. ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, C.P. 28933 Madrid, Spain
| | - Rosario Perona
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
- Instituto de Salud Carlos III. Calle Monforte de Lemos 5, 28029 Madrid, Spain
| | | | | | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
6
|
Qin J, Garus A, Autexier C. The C-terminal extension of dyskerin is a dyskeratosis congenita mutational hotspot that modulates interaction with telomerase RNA and subcellular localization. Hum Mol Genet 2024; 33:318-332. [PMID: 37879098 PMCID: PMC10840380 DOI: 10.1093/hmg/ddad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
7
|
Ghanim GE, Sekne Z, Balch S, van Roon AMM, Nguyen THD. 2.7 Å cryo-EM structure of human telomerase H/ACA ribonucleoprotein. Nat Commun 2024; 15:746. [PMID: 38272871 PMCID: PMC10811338 DOI: 10.1038/s41467-024-45002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Telomerase is a ribonucleoprotein (RNP) enzyme that extends telomeric repeats at eukaryotic chromosome ends to counterbalance telomere loss caused by incomplete genome replication. Human telomerase is comprised of two distinct functional lobes tethered by telomerase RNA (hTR): a catalytic core, responsible for DNA extension; and a Hinge and ACA (H/ACA) box RNP, responsible for telomerase biogenesis. H/ACA RNPs also have a general role in pseudouridylation of spliceosomal and ribosomal RNAs, which is critical for the biogenesis of the spliceosome and ribosome. Much of our structural understanding of eukaryotic H/ACA RNPs comes from structures of the human telomerase H/ACA RNP. Here we report a 2.7 Å cryo-electron microscopy structure of the telomerase H/ACA RNP. The significant improvement in resolution over previous 3.3 Å to 8.2 Å structures allows us to uncover new molecular interactions within the H/ACA RNP. Many disease mutations are mapped to these interaction sites. The structure also reveals unprecedented insights into a region critical for pseudouridylation in canonical H/ACA RNPs. Together, our work advances understanding of telomerase-related disease mutations and the mechanism of pseudouridylation by eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
| | - Zala Sekne
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | | |
Collapse
|
8
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
9
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
10
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Sudhakar S, Barkau CL, Chilamkurthy R, Barber HM, Pater AA, Moran SD, Damha MJ, Pradeepkumar PI, Gagnon KT. Binding to the conserved and stably folded guide RNA pseudoknot induces Cas12a conformational changes during ribonucleoprotein assembly. J Biol Chem 2023; 299:104700. [PMID: 37059184 PMCID: PMC10200996 DOI: 10.1016/j.jbc.2023.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.
Collapse
Affiliation(s)
- Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Christopher L Barkau
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Ramadevi Chilamkurthy
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA; Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA.
| |
Collapse
|
12
|
Lau B, Beine-Golovchuk O, Kornprobst M, Cheng J, Kressler D, Jády B, Kiss T, Beckmann R, Hurt E. Cms1 coordinates stepwise local 90S pre-ribosome assembly with timely snR83 release. Cell Rep 2022; 41:111684. [PMID: 36417864 PMCID: PMC9715914 DOI: 10.1016/j.celrep.2022.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Ribosome synthesis begins in the nucleolus with 90S pre-ribosome construction, but little is known about how the many different snoRNAs that modify the pre-rRNA are timely guided to their target sites. Here, we report a role for Cms1 in such a process. Initially, we discovered CMS1 as a null suppressor of a nop14 mutant impaired in Rrp12-Enp1 factor recruitment to the 90S. Further investigations detected Cms1 at the 18S rRNA 3' major domain of an early 90S that carried H/ACA snR83, which is known to guide pseudouridylation at two target sites within the same subdomain. Cms1 co-precipitates with many 90S factors, but Rrp12-Enp1 encircling the 3' major domain in the mature 90S is decreased. We suggest that Cms1 associates with the 3' major domain during early 90S biogenesis to restrict premature Rrp12-Enp1 binding but allows snR83 to timely perform its modification role before the next 90S assembly steps coupled with Cms1 release take place.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Olga Beine-Golovchuk
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Markus Kornprobst
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jingdong Cheng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, Shanghai 200032, China
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Beáta Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany,Corresponding author
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,Corresponding author
| |
Collapse
|
13
|
Han Y, Guo X, Zhang T, Wang J, Ye K. Development of an RNA-protein crosslinker to capture protein interactions with diverse RNA structures in cells. RNA (NEW YORK, N.Y.) 2022; 28:390-399. [PMID: 34916333 PMCID: PMC8848928 DOI: 10.1261/rna.078896.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Characterization of RNA-protein interaction is fundamental for understanding the metabolism and function of RNA. UV crosslinking has been widely used to map the targets of RNA-binding proteins, but is limited by low efficiency, requirement for zero-distance contact, and biases for single-stranded RNA structure and certain residues of RNA and protein. Here, we report the development of an RNA-protein crosslinker (AMT-NHS) composed of a psoralen derivative and an N-hydroxysuccinimide ester group, which react with RNA bases and primary amines of protein, respectively. We show that AMT-NHS can penetrate into living yeast cells and crosslink Cbf5 to H/ACA snoRNAs with high specificity. The crosslinker induced different crosslinking patterns than UV and targeted both single- and double-stranded regions of RNA. The crosslinker provides a new tool to capture diverse RNA-protein interactions in cells.
Collapse
Affiliation(s)
- Yan Han
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuzhen Guo
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiancai Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| | - Jiangyun Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Jády BE, Ketele A, Moulis D, Kiss T. Guide RNA acrobatics: positioning consecutive uridines for pseudouridylation by H/ACA pseudouridylation loops with dual guide capacity. Genes Dev 2022; 36:70-83. [PMID: 34916304 PMCID: PMC8763049 DOI: 10.1101/gad.349072.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Site-specific pseudouridylation of human ribosomal and spliceosomal RNAs is directed by H/ACA guide RNAs composed of two hairpins carrying internal pseudouridylation guide loops. The distal "antisense" sequences of the pseudouridylation loop base-pair with the target RNA to position two unpaired target nucleotides 5'-UN-3', including the 5' substrate U, under the base of the distal stem topping the guide loop. Therefore, each pseudouridylation loop is expected to direct synthesis of a single pseudouridine (Ψ) in the target sequence. However, in this study, genetic depletion and restoration and RNA mutational analyses demonstrate that at least four human H/ACA RNAs (SNORA53, SNORA57, SCARNA8, and SCARNA1) carry pseudouridylation loops supporting efficient and specific synthesis of two consecutive pseudouridines (ΨΨ or ΨNΨ) in the 28S (Ψ3747/Ψ3749), 18S (Ψ1045/Ψ1046), and U2 (Ψ43/Ψ44 and Ψ89/Ψ91) RNAs, respectively. In order to position two substrate Us for pseudouridylation, the dual guide loops form alternative base-pairing interactions with their target RNAs. This remarkable structural flexibility of dual pseudouridylation loops provides an unexpected versatility for RNA-directed pseudouridylation without compromising its efficiency and accuracy. Besides supporting synthesis of at least 6% of human ribosomal and spliceosomal Ψs, evidence indicates that dual pseudouridylation loops also participate in pseudouridylation of yeast and archaeal rRNAs.
Collapse
Affiliation(s)
- Beáta E Jády
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Amandine Ketele
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Dylan Moulis
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Tamás Kiss
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
- Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
15
|
Meier UT. Guide RNA acrobatics: the one-for-two shuffle. Genes Dev 2022; 36:1-3. [PMID: 35022325 PMCID: PMC8763051 DOI: 10.1101/gad.349285.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA modifications are crucial for the proper function of the RNAs. The sites of pseudouridines are often specified by dual hairpin guide RNAs, with one or both hairpins identifying a target uridine. In this issue of Genes & Development, Jády and colleagues (pp. 70-83) identify a novel mechanism by which a single guide RNA hairpin can specify two uridines adjacent to each other or separated by 1 nt; i.e., one for two or guide RNA acrobatics.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
16
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
17
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
18
|
Zipper head mechanism of telomere synthesis by human telomerase. Cell Res 2021; 31:1275-1290. [PMID: 34782750 PMCID: PMC8648750 DOI: 10.1038/s41422-021-00586-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Tetrahymena telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer-template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer-template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.
Collapse
|
19
|
Nguyen THD. Structural biology of human telomerase: progress and prospects. Biochem Soc Trans 2021; 49:1927-1939. [PMID: 34623385 PMCID: PMC8589416 DOI: 10.1042/bst20200042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Telomerase ribonucleoprotein was discovered over three decades ago as a specialized reverse transcriptase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. Telomerase plays key roles in maintaining genome stability; and its dysfunction and misregulation have been linked to different types of cancers and a spectrum of human genetic disorders. Over the years, a wealth of genetic and biochemical studies of human telomerase have illuminated its numerous fascinating features. Yet, structural studies of human telomerase have lagged behind due to various challenges. Recent technical developments in cryo-electron microscopy have allowed for the first detailed visualization of the human telomerase holoenzyme, revealing unprecedented insights into its active site and assembly. This review summarizes the cumulative work leading to the recent structural advances, as well as highlights how the future structural work will further advance our understanding of this enzyme.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| |
Collapse
|
20
|
Schmidt A, Hanspach G, Hengesbach M. Structural dynamics govern substrate recruitment and catalytic turnover in H/ACA RNP pseudouridylation. RNA Biol 2021; 18:1300-1309. [PMID: 33111609 PMCID: PMC8354600 DOI: 10.1080/15476286.2020.1842984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
H/ACA ribonucleoproteins catalyse the sequence-dependent pseudouridylation of ribosomal and spliceosomal RNAs. Here, we reconstitute site-specifically fluorophore labelled H/ACA complexes and analyse their structural dynamics using single-molecule FRET spectroscopy. Our results show that the guide RNA is distorted into a substrate-binding competent conformation by specific protein interactions. Analysis of the reaction pathway using atomic mutagenesis establishes a new model how individual protein domains contribute to catalysis. Taken together, these results identify and characterize individual roles for all accessory proteins on the assembly and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
21
|
Benyelles M, O'Donohue MF, Kermasson L, Lainey E, Borie R, Lagresle-Peyrou C, Nunes H, Cazelles C, Fourrage C, Ollivier E, Marcais A, Gamez AS, Morice-Picard F, Caillaud D, Pottier N, Ménard C, Ba I, Fernandes A, Crestani B, de Villartay JP, Gleizes PE, Callebaut I, Kannengiesser C, Revy P. NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and Høyeraal-Hreidarsson syndrome. Hum Mol Genet 2021; 29:907-922. [PMID: 31985013 DOI: 10.1093/hmg/ddaa011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laëtitia Kermasson
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Elodie Lainey
- Hematology Laboratory, Robert DEBRE Hospital-APHP and INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Raphael Borie
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France.,INSERM, Unité 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Hilario Nunes
- Service de Pneumologie, Centre de Référence des Maladies Pulmonaires rares, Hôpital Avicenne, AP-HP, INSERM 1272, Université Paris 13, Bobigny, France
| | - Clarisse Cazelles
- Service d'hématologie adulte, Hôpital Necker- Enfants malades, Paris, France
| | - Cécile Fourrage
- INSERM UMR 1163, Genomics platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Genomic Core Facility, Imagine Institute-Structure Fédérative de Recherche Necker, INSERM U1163, Paris, France
| | - Emmanuelle Ollivier
- INSERM UMR 1163, Genomics platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Genomic Core Facility, Imagine Institute-Structure Fédérative de Recherche Necker, INSERM U1163, Paris, France
| | - Ambroise Marcais
- Service d'hématologie Adultes, Hôpital Necker-Enfants Malades, Assistance publique hôpitaux de Paris, Paris, France, Laboratoire d'onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université Paris Descartes, Paris, France
| | | | - Fanny Morice-Picard
- Service de Dermatologie Pédiatrique, Centre de Reference des Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux F-33076, France
| | - Denis Caillaud
- Service de Pneumologie-Allergologie, Hôpital Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Pottier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, Lille, France
| | - Christelle Ménard
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ibrahima Ba
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alicia Fernandes
- Biological Resources Center, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Assistance Publique des Hôpitaux de Paris and Institut Imagine, Paris, France
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Jean-Pierre de Villartay
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée La Ligue contre le Cancer, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
22
|
Abstract
Efficient horizontal gene transfer of the conjugative plasmid pCF10 from Enterococcus faecalis depends on the expression of its type 4 secretion system (T4SS) genes, controlled by the PQ promoter. Transcription from the PQ promoter is tightly regulated, partially to limit cell toxicity caused by overproduction of PrgB, a T4SS adhesin. PrgU plays an important role in regulating this toxicity by decreasing PrgB levels. PrgU has an RNA-binding fold, prompting us to test whether PrgU exerts its regulatory control through binding of prgQ transcripts. We used a combination of in vivo methods to quantify PrgU effects on prgQ transcripts at both single-cell and population levels. PrgU function requires a specific RNA sequence within an intergenic region (IGR) about 400 bp downstream of PQ. PrgU interaction with the IGR reduces levels of downstream transcripts. Single-cell expression analysis showed that cells expressing prgU decreased transcript levels more rapidly than isogenic prgU-minus cells. PrgU bound RNA in vitro without sequence specificity, suggesting that PrgU requires a specific RNA structure or one or more host factors for selective binding in vivo. PrgU binding to its IGR target might recruit RNase(s) for targeted degradation of downstream transcripts or reduce elongation of nascent transcripts beyond the IGR. IMPORTANCE Bacteria utilize type 4 secretion systems (T4SS) to efficiently transfer DNA between donor and recipient cells, thereby spreading genes encoding antibiotic resistance as well as various virulence factors. Regulation of expression of the T4SS proteins and surface adhesins in Gram-positive bacteria is crucial, as some of these are highly toxic to the cell. The significance of our research lies in identifying the novel mechanism by which PrgU performs its delicate fine-tuning of the expression levels. As prgU orthologs are present in various conjugative plasmids and transposons, our results are likely relevant to understanding of diverse clinically important transfer systems.
Collapse
|
23
|
Kazimierczyk M, Wrzesinski J. Long Non-Coding RNA Epigenetics. Int J Mol Sci 2021; 22:6166. [PMID: 34200507 PMCID: PMC8201194 DOI: 10.3390/ijms22116166] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs exceeding a length of 200 nucleotides play an important role in ensuring cell functions and proper organism development by interacting with cellular compounds such as miRNA, mRNA, DNA and proteins. However, there is an additional level of lncRNA regulation, called lncRNA epigenetics, in gene expression control. In this review, we describe the most common modified nucleosides found in lncRNA, 6-methyladenosine, 5-methylcytidine, pseudouridine and inosine. The biosynthetic pathways of these nucleosides modified by the writer, eraser and reader enzymes are important to understanding these processes. The characteristics of the individual methylases, pseudouridine synthases and adenine-inosine editing enzymes and the methods of lncRNA epigenetics for the detection of modified nucleosides, as well as the advantages and disadvantages of these methods, are discussed in detail. The final sections are devoted to the role of modifications in the most abundant lncRNAs and their functions in pathogenic processes.
Collapse
Affiliation(s)
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland;
| |
Collapse
|
24
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
25
|
Trucks S, Hanspach G, Hengesbach M. Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs. Nucleic Acids Res 2021; 49:4629-4642. [PMID: 33823543 PMCID: PMC8096250 DOI: 10.1093/nar/gkab177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
H/ACA Box ribonucleoprotein complexes (RNPs) play a major role in modification of rRNA and snRNA, catalyzing the sequence specific pseudouridylation in eukaryotes and archaea. This enzymatic reaction takes place on a substrate RNA recruited via base pairing to an internal loop of the snoRNA. Eukaryotic snoRNPs contain the four proteins Nop10, Cbf5, Gar1 and Nhp2, with Cbf5 as the catalytic subunit. In contrast to archaeal H/ACA RNPs, eukaryotic snoRNPs contain several conserved features in both the snoRNA as well as the protein components. Here, we reconstituted the eukaryotic H/ACA RNP containing snR81 as a guide RNA in vitro and report on the effects of these eukaryote specific features on complex assembly and enzymatic activity. We compare their contribution to pseudouridylation activity for stand-alone hairpins versus the bipartite RNP. Using single molecule FRET spectroscopy, we investigated the role of the different eukaryote-specific proteins and domains on RNA folding and complex assembly, and assessed binding of substrate RNA to the RNP. Interestingly, we found diverging effects for the two hairpins of snR81, suggesting hairpin-specific requirements for folding and RNP formation. Our results for the first time allow assessing interactions between the individual hairpin RNPs in the context of the full, bipartite snoRNP.
Collapse
Affiliation(s)
- Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
26
|
Ghanim GE, Fountain AJ, van Roon AMM, Rangan R, Das R, Collins K, Nguyen THD. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 2021; 593:449-453. [PMID: 33883742 DOI: 10.1038/s41586-021-03415-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication1. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease2. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture3, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A-H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.
Collapse
Affiliation(s)
- George E Ghanim
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Adam J Fountain
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA, USA.,Department of Biochemistry, Stanford University, Stanford, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
| | | |
Collapse
|
27
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
28
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
29
|
Majumder M, Mukhopadhyay S, Kharel P, Gupta R. The presence of the ACA box in archaeal H/ACA guide RNAs promotes atypical pseudouridylation. RNA (NEW YORK, N.Y.) 2020; 26:396-418. [PMID: 31919243 PMCID: PMC7075261 DOI: 10.1261/rna.073734.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Parinati Kharel
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
30
|
Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci 2020; 77:61-79. [PMID: 31728577 PMCID: PMC6986361 DOI: 10.1007/s00018-019-03369-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023]
Abstract
Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
Collapse
Affiliation(s)
- Eric M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032383. [PMID: 31451513 DOI: 10.1101/cshperspect.a032383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as well as species-specific TER-binding proteins important for biogenesis and assembly (core RNP); other proteins bind telomerase transiently or constitutively to allow association of telomerase and other proteins with telomere ends for regulation of DNA synthesis. Here we describe how nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography of TER and protein domains helped define the structure and function of the core RNP, laying the groundwork for interpreting negative-stain and cryo electron microscopy (cryo-EM) density maps of Tetrahymena thermophila and human telomerase holoenzymes. As the resolution has improved from ∼30 Å to ∼5 Å, these studies have provided increasingly detailed information on telomerase architecture and mechanism.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| |
Collapse
|
32
|
MacNeil DE, Lambert-Lanteigne P, Autexier C. N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation. Nucleic Acids Res 2019; 47:5368-5380. [PMID: 30931479 PMCID: PMC6547437 DOI: 10.1093/nar/gkz233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3′ extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.
Collapse
Affiliation(s)
- Deanna E MacNeil
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Patrick Lambert-Lanteigne
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Chantal Autexier
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
33
|
Dyskerin Mutations Present in Dyskeratosis Congenita Patients Increase Oxidative Stress and DNA Damage Signalling in Dictyostelium Discoideum. Cells 2019; 8:cells8111406. [PMID: 31717312 PMCID: PMC6912284 DOI: 10.3390/cells8111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.
Collapse
|
34
|
Kim M, Park SH, Park JS, Kim HJ, Han BW. Crystal Structure of Human EOLA1 Implies Its Possibility of RNA Binding. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24193529. [PMID: 31569543 PMCID: PMC6803910 DOI: 10.3390/molecules24193529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023]
Abstract
Human endothelial-overexpressed lipopolysaccharide-associated factor 1 (EOLA1) has been suggested to regulate inflammatory responses in endothelial cells by controlling expression of proteins, interleukin-6 and vascular cell adhesion molecule-1, and by preventing apoptosis. To elucidate the structural basis of the EOLA1 function, we determined its crystal structure at 1.71 Å resolution and found that EOLA1 is structurally similar to an activating signal cointegrator-1 homology (ASCH) domain with a characteristic β-barrel fold surrounded by α-helices. Despite its low sequence identity with other ASCH domains, EOLA1 retains a conserved 'GxKxxExR' motif in its cavity structure. The cavity harbors aromatic and polar residues, which are speculated to accommodate nucleotide molecules as do YT521-B homology (YTH) proteins. Additionally, EOLA1 exhibits a positively charged cleft, similar to those observed in YTH proteins and the ASCH protein from Zymomonas mobilis that exerts ribonuclease activity. This implies that the positively charged cleft in EOLA1 could stabilize the binding of RNA molecules. Taken together, we suggest that EOLA1 controls protein expression through RNA binding to play protective roles against endothelial cell injuries resulting from lipopolysaccharide (LPS)-induced inflammation responses.
Collapse
Affiliation(s)
- Minju Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Sang Ho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
35
|
Abstract
The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.
Collapse
|
36
|
Nguyen THD, Collins K, Nogales E. Telomerase structures and regulation: shedding light on the chromosome end. Curr Opin Struct Biol 2019; 55:185-193. [PMID: 31202023 DOI: 10.1016/j.sbi.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
During genome replication, telomerase adds repeats to the ends of chromosomes to balance the loss of telomeric DNA. The regulation of telomerase activity is of medical relevance, as it has been implicated in human diseases such as cancer, as well as in aging. Until recently, structural information on this enzyme that would facilitate its clinical manipulation had been lacking due to telomerase very low abundance in cells. Recent cryo-EM structures of both the human and Tetrahymena thermophila telomerases have provided a picture of both the shared catalytic core of telomerase and its interaction with species-specific factors that play different roles in telomerase RNP assembly and function. We discuss also progress toward an understanding of telomerase RNP biogenesis and telomere recruitment from recent studies.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA.
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Huang L, Ashraf S, Lilley DMJ. The role of RNA structure in translational regulation by L7Ae protein in archaea. RNA (NEW YORK, N.Y.) 2019; 25:60-69. [PMID: 30327333 PMCID: PMC6298567 DOI: 10.1261/rna.068510.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/07/2018] [Indexed: 05/03/2023]
Abstract
A recent study has shown that archaeal L7Ae binds to a putative k-turn structure in the 5'-leader of the mRNA of its structural gene to regulate translation. To function as a regulator, the RNA should be unstructured in the absence of protein, but it should adopt a k-turn-containing stem-loop on binding L7Ae. Sequence analysis of UTR sequences indicates that their k-turn elements will be unable to fold in the absence of L7Ae, and we have demonstrated this experimentally in solution using FRET for the Archaeoglobus fulgidus sequence. We have solved the X-ray crystal structure of the complex of the A. fulgidus RNA bound to its cognate L7Ae protein. The RNA adopts a standard k-turn conformation that is specifically recognized by the L7Ae protein, so stabilizing the stem-loop. In-line probing of the natural-sequence UTR shows that the RNA is unstructured in the absence of L7Ae binding, but folds on binding the protein such that the ribosome binding site is occluded. Thus, L7Ae regulates its own translation by switching the conformation of the RNA to alter accessibility.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Saira Ashraf
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
38
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
39
|
Adachi H, De Zoysa MD, Yu YT. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:230-239. [PMID: 30414851 DOI: 10.1016/j.bbagrm.2018.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023]
Abstract
Pseudouridylation is a post-transcriptional isomerization reaction that converts a uridine to a pseudouridine (Ψ) within an RNA chain. Ψ has chemical properties that are distinct from that of uridine and any other known nucleotides. Experimental data accumulated thus far have indicated that Ψ is present in many different types of RNAs, including coding and noncoding RNAs. Ψ is particularly concentrated in rRNA and spliceosomal snRNAs, and plays an important role in protein translation and pre-mRNA splicing, respectively. Ψ has also been found in mRNA, but its function there remains essentially unknown. In this review, we discuss the mechanisms and functions of RNA pseudouridylation, focusing on rRNA, snRNA and mRNA. We also discuss the methods, which have been developed to detect Ψs in RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Hironori Adachi
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Meemanage D De Zoysa
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
40
|
Homology Model and Docking-Based Virtual Screening for Ligands of Human Dyskerin as New Inhibitors of Telomerase for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19103216. [PMID: 30340325 PMCID: PMC6214037 DOI: 10.3390/ijms19103216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 01/31/2023] Open
Abstract
Immortality is one of the main features of cancer cells. Tumor cells have an unlimited replicative potential, principally due to the holoenzyme telomerase. Telomerase is composed mainly by dyskerin (DKC1), a catalytic retrotranscriptase (hTERT) and an RNA template (hTR). The aim of this work is to develop new inhibitors of telomerase, selecting the interaction between hTR⁻DKC1 as a target. We designed two models of the human protein DKC1: homology and ab initio. These models were evaluated by different procedures, revealing that the homology model parameters were the most accurate. We selected two hydrophobic pockets contained in the PUA (pseudouridine synthase and archaeosine transglycosylase) domain, using structural and stability analysis. We carried out a docking-based virtual screen on these pockets, using the reported mutation K314 as the center of the docking. The hDKC1 model was tested against a library of 450,000 drug-like molecules. We selected the first 10 molecules that showed the highest affinity values to test their inhibitory activity on the cell line MDA MB 231 (Monroe Dunaway Anderson Metastasis Breast cancer 231), obtaining three compounds that showed inhibitory effect. These results allowed us to validate our design and set the basis to continue with the study of telomerase inhibitors for cancer treatment.
Collapse
|
41
|
Fujikane R, Behm-Ansmant I, Tillault AS, Loegler C, Igel-Bourguignon V, Marguet E, Forterre P, Branlant C, Motorin Y, Charpentier B. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein. Sci Rep 2018; 8:13815. [PMID: 30218085 PMCID: PMC6138745 DOI: 10.1038/s41598-018-32164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023] Open
Abstract
Archaeal RNA:pseudouridine-synthase (PUS) Cbf5 in complex with proteins L7Ae, Nop10 and Gar1, and guide box H/ACA sRNAs forms ribonucleoprotein (RNP) catalysts that insure the conversion of uridines into pseudouridines (Ψs) in ribosomal RNAs (rRNAs). Nonetheless, in the absence of guide RNA, Cbf5 catalyzes the in vitro formation of Ψ2603 in Pyrococcus abyssi 23S rRNA and of Ψ55 in tRNAs. Using gene-disrupted strains of the hyperthermophilic archaeon Thermococcus kodakarensis, we studied the in vivo contribution of proteins Nop10 and Gar1 to the dual RNA guide-dependent and RNA-independent activities of Cbf5 on 23S rRNA. The single-null mutants of the cbf5, nop10, and gar1 genes are viable, but display a thermosensitive slow growth phenotype. We also generated a single-null mutant of the gene encoding Pus10, which has redundant activity with Cbf5 for in vitro formation of Ψ55 in tRNA. Analysis of the presence of Ψs within the rRNA peptidyl transferase center (PTC) of the mutants demonstrated that Cbf5 but not Pus10 is required for rRNA modification. Our data reveal that, in contrast to Nop10, Gar1 is crucial for in vivo and in vitro RNA guide-independent formation of Ψ2607 (Ψ2603 in P. abyssi) by Cbf5. Furthermore, our data indicate that pseudouridylation at orphan position 2589 (2585 in P. abyssi), for which no PUS or guide sRNA has been identified so far, relies on RNA- and Gar1-dependent activity of Cbf5.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Fukuoka Dental College, Department of Physiological Sciences and Molecular Biology, Section of Cellular and Molecular Regulation, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Isabelle Behm-Ansmant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Anne-Sophie Tillault
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Christine Loegler
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Evelyne Marguet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Institut Pasteur, Département de Microbiologie, 25 rue du Dr Roux, F-7505, Paris, France
| | - Christiane Branlant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, F-54500, Nancy, France
| | - Bruno Charpentier
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France.
| |
Collapse
|
42
|
Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, Collins K. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 2018; 557:190-195. [PMID: 29695869 PMCID: PMC6223129 DOI: 10.1038/s41586-018-0062-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Telomerase adds telomeric repeats to chromosome ends to balance incomplete replication. Telomerase regulation is implicated in cancer, aging and other human diseases, but progress towards telomerase clinical manipulation is hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of substrate-bound human telomerase holoenzyme at subnanometer resolution, describing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
| | - Jane Tam
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert A Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Harvard Medical School, Boston, MA, USA
| | - Basil J Greber
- California Institute for Quantitative Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Toso
- California Institute for Quantitative Biology, University of California, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biology, University of California, Berkeley, CA, USA. .,Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
43
|
|
44
|
Zhao Y, Dunker W, Yu YT, Karijolich J. The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Front Bioeng Biotechnol 2018; 6:8. [PMID: 29473035 PMCID: PMC5809436 DOI: 10.3389/fbioe.2018.00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudouridine is the most abundant internal RNA modification in stable noncoding RNAs (ncRNAs). It can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Pseudouridylation impacts both the biochemical and biophysical properties of RNAs and thus influences RNA-mediated cellular processes. The investigation of nuclear-ncRNA pseudouridylation has demonstrated that it is critical for the proper control of multiple stages of gene expression regulation. Here, we review how nuclear-ncRNA pseudouridylation contributes to transcriptional regulation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| |
Collapse
|
45
|
Caton EA, Kelly EK, Kamalampeta R, Kothe U. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA. Nucleic Acids Res 2018; 46:905-916. [PMID: 29177505 PMCID: PMC5778458 DOI: 10.1093/nar/gkx1167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p-Nop10p-Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs.
Collapse
Affiliation(s)
- Evan A Caton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Erin K Kelly
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rajashekhar Kamalampeta
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
46
|
Liu RJ, Long T, Li J, Li H, Wang ED. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res 2017; 45:6684-6697. [PMID: 28531330 PMCID: PMC5499824 DOI: 10.1093/nar/gkx473] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
5-methylcytosine (m5C) modifications of RNA are ubiquitous in nature and play important roles in many biological processes such as protein translational regulation, RNA processing and stress response. Aberrant expressions of RNA:m5C methyltransferases are closely associated with various human diseases including cancers. However, no structural information for RNA-bound RNA:m5C methyltransferase was available until now, hindering elucidation of the catalytic mechanism behind RNA:m5C methylation. Here, we have solved the structures of NSun6, a human tRNA:m5C methyltransferase, in the apo form and in complex with a full-length tRNA substrate. These structures show a non-canonical conformation of the bound tRNA, rendering the base moiety of the target cytosine accessible to the enzyme for methylation. Further biochemical assays reveal the critical, but distinct, roles of two conserved cysteine residues for the RNA:m5C methylation. Collectively, for the first time, we have solved the complex structure of a RNA:m5C methyltransferase and addressed the catalytic mechanism of the RNA:m5C methyltransferase family, which may allow for structure-based drug design toward RNA:m5C methyltransferase–related diseases.
Collapse
Affiliation(s)
- Ru-Juan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Tao Long
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jing Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
47
|
|
48
|
Crystal structure of an ASCH protein from Zymomonas mobilis and its ribonuclease activity specific for single-stranded RNA. Sci Rep 2017; 7:12303. [PMID: 28951575 PMCID: PMC5615036 DOI: 10.1038/s41598-017-12186-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 01/29/2023] Open
Abstract
Activating signal cointegrator-1 homology (ASCH) domains were initially reported in human as a part of the ASC-1 transcriptional regulator, a component of a putative RNA-interacting protein complex; their presence has now been confirmed in a wide range of organisms. Here, we have determined the trigonal and monoclinic crystal structures of an ASCH domain-containing protein from Zymomonas mobilis (ZmASCH), and analyzed the structural determinants of its nucleic acid processing activity. The protein has a central β-barrel structure with several nearby α-helices. Positively charged surface patches form a cleft that runs through the pocket formed between the β-barrel and the surrounding α-helices. We further demonstrate by means of in vitro assays that ZmASCH binds nucleic acids, and degrades single-stranded RNAs in a magnesium ion-dependent manner with a cleavage preference for the phosphodiester bond between the pyrimidine and adenine nucleotides. ZmASCH also removes a nucleotide at the 5′-end. Mutagenesis studies, guided by molecular dynamics simulations, confirmed that three residues (Tyr47, Lys53, and Ser128) situated in the cleft contribute to nucleic acid-binding and RNA cleavage activities. These structural and biochemical studies imply that prokaryotic ASCH may function to control the cellular RNA amount.
Collapse
|
49
|
Abstract
Telomerase is an RNA-protein complex that extends the 3' ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo-electron microscopy map of the Tetrahymena telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and Tetrahymena telomerase activity, assembly, and interactions.
Collapse
Affiliation(s)
- Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| |
Collapse
|
50
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|